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Abstract

Maps of the plane can be generated by sampling the flow of peri-

odically forced planar oscillators at the period of forcing. Numerical

studies of the bifurcations present in a two-parameter family of such

maps, obtained by varying the forcing frequency and amplitude, have

revealed a rich structure. Resonance regions in the parameter space,

corresponding to maps having periodic orbits of a certain period, are

always a part of the bifurcation picture.

Much insight has been gained into the bifurcation structure by

viewing resonance regions as projections to the two-dimensional pa-

rameter space of “resonance surfaces” from the four-dimensional phase

× parameter space. Here we continue the study of these surfaces by

presenting an algorithm to determine their global topology from the

bifurcation diagram in the parameter plane and knowledge of generic

codimension-one and -two bifurcations.



1 Background: Forced oscillators and reso-

nance surfaces

Differential equations which can be classified as periodically forced planar os-
cillators are abundant in science and engineering. These oscillators are often
studied by doing a bifurcation analysis on the maps generated, as explained
in Section 1.1, by sampling the flow at the time period of forcing. As is
typical in studies of periodically forced oscillators, we use the frequency of
forcing and amplitude of forcing as our two parameters.

Period-q “resonance regions” (also called Arnold tongues, horns, or en-
trainment regions), defined as the regions of parameter space where the corre-
sponding maps have a period-q orbit, are always a prominent feature of the
bifurcation diagrams. In previous studies ([AMKA, 1986] [P1, 1988], [P2,
1990]), it proved useful to consider sets of period-q points in the phase ×
parameter space and view the resonance regions as projections of these sets
to the parameter space. Because the parameter space is two-dimensional,
the period-q sets are two-dimensional manifolds which we call “resonance
surfaces.”

In this paper, we look specifically at the question of determining the
global topology of various period-q resonance surfaces from the bifurcation
diagram in the parameter plane. This is similar to the problem of deter-
mining the topology of a surface in three dimensions from its shadow on a
plane, but the fact that the ambient space is four-dimensional rather than
three-dimensional makes the problem more challenging. We rely on the local
features of the resonance surfaces, determined by normal forms and univer-
sal unfoldings of bifurcations, to arrive at their global topology. We hope
that an understanding of the topology of the resonance surfaces and their
relationship to corresponding bifurcation diagrams will aid in understanding
of the underlying bifurcation theory.

1.1 The periodically forced oscillator model

A standard model of a periodically forced planar oscillator with parameters
α (forcing amplitude) and ω (forcing frequency) is given by

dx

dt
= V(x) + αW(x, ωt) (1)
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where x ∈ R2; ω, α, t ∈ R; and W is periodic with period one in its second
variable. The vector fields V and W are assumed to be smooth. We assume
that for α = 0 the nonautonomous flow of (1) has a repelling equilibrium
point c0 inside a normally hyperbolic attracting limit cycle C0 with frequency
ω0 > 0. We call C0 the unforced oscillator and the frequency ω0 the natural

frequency of the system. For simplicity we assume that the unforced flow
travels counterclockwise around C0, C0 is globally attracting except for the
repelling equilibrium point c0, and ω > 0. See Figure 1.

In performing a bifurcation study of (1), it turns out to be more conve-
nient to use ω0/ω than ω as our first parameter, and to restrict α to [0,∞),
so we define µ := (ω0/ω, α) ∈ (0,∞) × [0,∞). We define φµ(x, t) to be the
flow of (1) satisfying φµ(x, 0) = x. We can then reduce the study of (1) to a
two-parameter family fµ of diffeomorphisms of the plane by considering time
1/ω maps of the flows:

fµ(x) := φµ(x, 1/ω) (2)

We assume that for α > 0 the family fµ is generic (in the space of smooth
two-parameter families of smooth diffeomorphisms of the plane) so that only
codimension-one and -two bifurcations need to be considered. (At α = 0, fµ
is a time 1/ω map of an autonomous flow, which is not generic: restricted
to the invariant circle C0, f(a,0) is conjugate to a rigid rotation of ω0/ω = a
times around the circle; in particular, if ω0/ω equals the rational number
p/q, every point on the circle C0 is a period-q point.)

1.2 Small forcing amplitude

The normal hyperbolicity of C0 at α = 0 ensures that for small α > 0,
fµ will continue to have an attracting invariant curve near C0. Since all
recurrence (other than the fixed point which persists from the unforced vector
field’s repelling equilibrium c0) must be on this invariant curve, a bifurcation
analysis can be made via circle map theory. The assumptions that fµ is a
rigid rotation for α = 0 and that fµ is generic for α > 0 imply that resonance

regions (horns, tongues), nonoverlapping for small α, generically open into
the first quadrant of the parameter plane from every point on the α = 0 axis
where ω0/ω = p/q is rational ([Ar, 1982], [Ha, 1984]). A period-q resonance
region is defined as the set of parameter values for which the corresponding
map has a “least-period-q orbit.” (The persistence of a period-q orbit implies
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a constant ratio of the response frequency to the forcing frequency ω for
the original differential equation in (1). The two frequencies are said to
be entrained or locked or in resonance.) See Figure 2 for the low forcing
amplitude portion of a single (period-2) resonance region and some phase
portraits for the second iterate of the map which might correspond to the
indicated parameter values.

Inside the “period-q resonance region,” the corresponding phase portraits
generically include an attracting invariant “circle in resonance” with at least
one pair of period-q orbits, one of the pair attracting and one or the pair
repelling when restricted to the circle in resonance. Phase portraits B and
C of Figure 2 include examples of circles in resonance. The two sides of
the period-q resonance region are saddle-node bifurcation curves for the qth
iterate of the map. As the parameters are varied to approach a saddle-node
curve from inside a period-q resonance region, a pair of orbits coalesces into a
single period-q orbit, neutrally stable when restricted to the circle. Outside
the period-q resonance region, as in phase portraits A and D of Figure 2,
there are no period-q orbits. Except for the number of orbits which exist at
points inside the resonance regions, the collection of all resonance horns, one
for each rational point on the ω/ω0 axis, is the complete bifurcation story for
small α.

1.3 Higher forcing amplitudes

As we increase the forcing amplitude, the invariant circles which necessarily
persist for small forcing amplitude, can, and in many examples do, break
apart. Circle map theory is therefore no longer sufficient to explain the
bifurcations.

The period-q points whose existence determines the parameter values
that are inside a resonance region, however, can persist whether or not the
original invariant circle persists. The same is true for the saddle-node bi-
furcation curves that form the boundaries of the period-q resonance regions
for small α. Many researchers, in fact, were able to numerically “continue”
to higher forcing amplitude these saddle-node curves ([KT, 1979], [AMKA,
1986], [KAS, 1986], [MSA, 1988], [P1, 1988], [SDCM, 1988], [VR, 1989]).
The numerical work leads to some fascinating bifurcation diagrams. One
common feature of these bifurcation diagrams is that, at least for q ≥ 3, the
two saddle-node curves which begin as the two sides of a resonance region
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almost always come back together at some higher forcing amplitude. As we
shall see in our application in Section 2, the compact region of parameter
space bounded by the saddle-node curves is often the projection of a com-
pact surface from the phase × parameter space to the parameter space. We
define these surfaces in the next subsection.

1.4 Resonance surfaces

As suggested in [AMKA, 1986], because a period-q resonance region is defined
via the existence of period-q points, it turns out to be more natural to consider
the sets of period-q points in the four-dimensional phase × parameter space
than just the corresponding set of parameter values. So we make the following
definitions:

Γ(q) := {(x, µ) ∈ R2 × ((0,∞) × [0,∞)) : x is a least period q
point of fµ}

Because the parameter space is two-dimensional, we expect these sets
to be two-dimensional manifolds or surfaces. We actually need to take the
closure of Γ(q) to fill in some “missing points” on the corresponding surfaces
for q ≥ 2. (We are using the subspace topology for R2×(0,∞)×[0,∞) ⊂ R4.)

Definition: A period-q resonance surface is a component of cl(Γ(q)).

Definition: The projection to the parameter plane of a period-q resonance
surface is a period-q resonance region.

Because we are most interested in the periodic point surfaces which em-
anate from the “unforced oscillator,” as described in the Small Forcing Am-
plitude subsection above, we make the following definitions as well.

Definition: The p/q resonance surface := the period-q resonance surface
containing C0 × (p/q, 0), q ≥ 2.

Definition: The projection to the parameter plane of the p/q resonance
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surface is the p/q resonance region.

Remarks:

1. The definition of p/q resonance surfaces forces p and q to be relatively
prime or the rigid rotation of C0 under f(p/q,0) would not have least

period q, as is required for points on a period-q resonance surface.

2. Surfaces can be identified with a generalized rotation number [P2, 1990]
instead of merely a period. Among other things, this means that a p/q
surface and an r/q surface cannot connect if p 6= r.

3. The fact that a period-q surface “continues” from C0 × (p/q, 0), as
suggested in the definition of the p/q resonance surface, is justified in
the Lemma in the following section.

2 Identifying resonance surfaces

2.1 Local topology

The first order of business is to justify that our resonance surfaces are in fact
surfaces. This justification comes from a combination of the implicit function
theorem and bifurcation theory; we provide a brief outline of the arguments
below. See [P2, 1990] for more details.

Note first that all points on a period-q resonance surface (the period-q
points and any points in their closure) satisfy F(x, µ) := fµ

q(x)−x = 0. The
implicit function theorem guarantees that the period-q surface has a unique
local continuation whenever the 2× 4 Jacobian matrix DF(x, µ) has rank 2.
In order to be sure the surface has a local homeomorphic projection to the
parameter plane, however, we require the more restrictive condition: the 2×2
Jacobian matrix D

x
F = Dfµ

q(x)− I must be nonsingular. This is equivalent
to requiring that Dfµ

q(x) not have an eigenvalue of one. Consequently, we
define the period-q resonance surface projection singularities (singular
with respect to projection to the parameter plane), Z(q), as

Z(q) := {(x, µ) ∈ a period-q resonance surface : D
x
fµ

q(x)

has an eigenvalue equal to one}
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In the context of dynamical systems, the surface projection singularities
are map bifurcation points, most of which have been extensively studied
in the literature. We assume that by restricting ourselves to generic pe-
riodically forced oscillators, we can restrict our list of possible projection
singularities (corresponding to positive forcing amplitudes, at least) to those
of codimension-one and -two. The list is even further restricted because the
continuity of a “self rotation number,” defined in [P2, 1990], allows only fixed
points to be added to the least-period-q points by the closure operation in
the definition of the resonance surfaces. We then rely on existing normal
forms and universal unfoldings to see that the period-q surfaces are mani-
folds near all relevant codimension-one and -two bifurcation points. We list
the universal unfoldings of the relevant bifurcations, and explicit formulas
for the local pieces of period-q resonance surfaces, in the Appendix.

Because of the special form at zero forcing amplitude of maps generated
by periodically forced oscillators (as described in Section 1.1), these points
cannot be treated with generic map bifurcation theory. The implicit function
theorem can still be used, however, to ensure that the period-q surfaces ex-
tend locally from the “unforced oscillator” to a topological cylinder. Because
this result is not as well-known, we state it more formally.

Lemma: Let the family fµ(x) be defined from a periodically forced planar
oscillator as in Section 1.1. (This implies fµ(x) is C∞ as a function from
R2× (parameter space) to R2). Then for each rational p/q > 0, the set
of all least-period-q points near the unforced oscillator, C0 × (p/q, 0), and
having α ≥ 0, is a C∞ topological cylinder with C0 × (p/q, 0) as a boundary
component.

Proof: By the assumptions in Section 1.1, f(p/q,0) restricted to C0 is conjugate
to a rigid rotation by p/q times around C0. In particular, all points on
C0 × (p/q, 0) are least-period-q points and satisfy F(x, µ) := fµ

q(x)− x = 0.
We make a local change of phase variables near C0 by choosing a θ variable in
T := R (mod 1) along C0 and an r variable in (1−ε1, 1+ε1) (for some ε1 > 0)
transverse to C0. Assume C0 is described by r = 1. Let (Rµ(r, θ), Θµ(r, θ))
be the new coordinates of fµ

q(x) where (r, θ) are the new coordinates of x.
Then F(x, µ) = 0 is equivalent to the two scalar equations

Rµ(r, θ) − r = 0
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Θµ(r, θ) − θ = 0

Our assumption that the unforced oscillator was a normally hyperbolic at-
tracting limit cycle implies ∂Rµ(r,θ)

∂r
< 1 at (µ1, µ2, r, θ) = (p/q, 0, 1, θ) for any

θ. The use of ω0/ω for our first parameter µ1 implies that ∂Θµ(r,θ)
∂µ1

< 0 at

(µ1, µ2, r, θ) = (p/q, 0, 1, θ) for any θ. These two partial derivatives imply,
via the implicit function theorem, that solutions to the system of equations
F(x, µ) = 0 can be locally continued from the unforced oscillator C0×(p/q, 0),
parametrized by the forcing amplitude α (i.e., µ2) and the angular phase
variable θ. Since our map was assumed to be C∞ in both its phase and
parameter variables, the implicit function theorem guarantees that the set of
least-period-q points near the unforced oscillator is locally a C∞ two-manifold
parametrized by (α, θ) ∈ (−ε, ε) × T, for some small ε. By restricting to
α ≥ 0, we are left with the C∞ cylinder with boundary corresponding to
α = 0. This boundary is the unforced oscillator C0 × (p/q, 0). 2

2.2 The algorithm for determining global topology

We now present an algorithm to identify the global topology of an individual
p/q resonance surface with q ≥ 2. The algorithm will be modified only
slightly for the fixed point surface. Note that the completion of step 1,
determining all bifurcations associated with a p/q resonance surface, may
be impossible to justify in applications. Assuming step one, however, the
remaining steps can be accomplished. We include step 1 in our “algorithm”
because in practice, this is the first step one would perform.

1. Determine the bifurcation diagram in the parameter space for the
period-q resonance surface in question. In practice, this is done by nu-
merically continuing the two period-q saddle-node orbits which project
to the left and right side boundaries near the zero-forcing-amplitude
tip of the corresponding period-q resonance region. Any other projec-
tion singularities which connect to the continuation of the saddle-node
curves are also continued. If other components of projection singu-
larities exist on the surface, we usually locate them (or rule out the
likelihood of their existence) with additional numerics (computing var-
ious “constant α cross sections”, for example).
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2. Divide the surface into pieces by “cutting” the surface along the
curves of these singularities. If necessary to ensure each resulting sur-
face piece projects injectively to the parameter plane (it will be nec-
essary for the period-3 surfaces), make additional cuts which are not
necessarily along projection singularities. (The number of cuts on the
resonance surface corresponding to each bifurcation curve in the pa-
rameter plane is determined from bifurcation theory; the number of re-
sulting pieces from the cuts is also determined from bifurcation theory.)
“Flatten” each of the surface pieces by projecting into the parameter
plane.

3. For each surface piece which emanates from the unforced oscillator
C0 × (p/q, 0) add an appropriate part of the unforced oscillator
which the Lemma of Section 2.1 guarantees to be the boundary of the
p/q surface.

4. Label edges so that pieces which were cut apart can later be glued
back in place. (Familiarity with the “local” surface features, deter-
mined by local bifurcation theory partially summarized in the Ap-
pendix, and by the Lemma in section 2.1, is essential for this iden-
tification.)

5. Reassemble the surface “in the parameter plane” by rearranging,
flipping, and stretching the flat pieces so the identified edges can be
reglued.

6. Identify the topology of the surface.

2.3 An application

We use for illustration a two-parameter family of maps which can be thought
of as a model of a planar oscillator with periodic “impulse” forcing. This
model was preferable to using a standard planar oscillator with periodic
forcing as in equation (1) because it enabled us to use an explicit formula for
the maps, instead of computing each iteration of the map by integrating the
differential equation in the form of equation (1) for the time period of forcing.
The computational savings of this approach are considerable. Additionally,
the model was chosen to guarantee the maps had a unique globally attracting
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fixed point for high enough value of a parameter which can be interpreted
as the amplitude of forcing. Consequently, all resonance regions eventually
terminate as the forcing amplitude increases.

We define our family of maps, Hµ, as the composition gα ◦ hω0
, where

hω0
is defined as the time one map of the (integrable) flow described by

dr

dt
=

r(1 − r2)

1 + r2
,
dθ

dt
= 2πω0 +

1 − r2

1 + r2
, ω0 ∈ R

and gα ≡ (1−α)((x1, x2)−(1, 0))+(1, 0), α ∈ [0, 1]. Note that this caricature
allows us to vary ω0/ω by varying ω0 instead of ω. (ω = 1 for all our maps
since we always take the time one map.) Consequently, we can allow the
parameter ω0/ω to take on any real value. The parameter α plays the role
of the forcing amplitude.

Guided by the knowledge of the small amplitude of forcing theory, which
assures us that a horn-shaped period-q resonance region emanated from each
“rational” point on the ω0/ω axis (of form (p/q, 0)), we numerically followed
both (saddle-node) sides of each resonance horn for 1 ≤ q ≤ 5 and 0 ≤
p/q < 1. When the saddle-node curves intersected other codimension-one
bifurcation curves (such as a fixed-point “Hopf” curve or a fixed-point period-
doubling curve), we continued these codimension-one curves as well. The
result was Figure 3a. An enlargement of a portion of Figure 3a is shown in
Figure 3b. We put the word Hopf in quotes because the “Hopf” curve was
defined numerically by requiring the product of the eigenvalues of the fixed
point to be one. This condition allow the inclusion of three segments of our
“Hopf” curve in Figure 3a which are actually saddles: between the two pairs
of “B” points and the one pair of “A” points.

2.4 Applying the identification algorithm

We now walk through the algorithm for several of the resonance surfaces for
our example family of maps.

The 1/5 resonance surface

1. The two period-5 saddle-node curves which marked the boundary of the
period-5 resonance region at small forcing amplitude were continued
numerically from the parameter value (1/5, 0). They joined a resonant
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Hopf bifurcation (a 5
√

1 point). This formed the skinny 1/5 resonance
region illistrated in Figure 3a. An enlargement including the part of the
1/5 region with the 5

√
1 point is shown in Figure 3b. Since several “α =

constant” cross sections of the 1/5 resonance surface all turned out to
be qualitatively like the one shown in Figure 4a, we are convinced that
there are no other projection singularities on the 1/5 surface. More
specifically, there are exactly ten singularities in the projection of the
slice in Figure 4a to the ω0/ω axis: five corresponding to one period-
five saddle-node orbit (all having a common parameter value on the
left side of the 1/5 resonance region) and five corresponding to another
period-five saddle-node orbit (all having a common parameter value on
the right side of the 1/5 resonance region).

2. Because a pair of period-5 orbits is born as the parameters are varied
from outside to inside the 1/5 resonance region by crossing the saddle-
node boundary curve, there are ten saddle-node cuts to be made on
the 1/5 surface: five projecting to the left side of the 1/5 region and
five projecting the the right side. This results in ten pieces of the 1/5
surface.

3. We add a boundary piece at the “bottom” of each of the ten pieces. The
ten boundary pieces make up the unforced oscillator C0×(1/5, 0). This
gives us the shape of the ten pieces we start with in Figure 5a. We have
labelled the surfaces with “S” or “N,” according to whether they are
saddles or nodes in the corresponding phase portraits for small forcing
amplitudes, although that designation is not necessarily constant on
the whole piece.

Technical Note: Adding the boundary piece to get the shapes of the
ten surface pieces in Figure 5a suggests that as we follow a saddle-node
curve in the phase × parameter space with parameter values approach-
ing the tip, (p/q, 0), the corresponding phase coordinates approach a
fixed phase point on C0. This limiting behavior is suggested by our
numerical studies (not presented here) and we believe it to be generic.
In any case, the Lemma in Section 2.1 justifies the topology of Figure
5a, even if the saddle-node sides of the surface pieces didn’t limit to a
fixed phase point as the parameters approached the tip.

4. The edge identifications near the 5
√

1 point and the fact that the ten
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saddle-node curves on the 1/5 surface come together at the 5
√

1 point
are justified by the local bifurcation analysis of a 5

√
1 point” [Ar, 1982].

The “cyclic” identification of the saddle and node pieces is corroborated
by our cross section of Figure 4a and by the fact that the given identifi-
cations join the ten added boundary pieces to make a single topological
circle. After filling in some details, it is also corroborated by the for-
mula in the Appendix for the period-5 surface near the 5

√
1 point: a

small circle around the origin in the phase space travels back and forth
five times across the 1/5 resonance region. For further illustration, we
show some projections of a small part of the 1/5 surface near the 5

√
1

point in Figure 4b.

5. Reassemble as indicated in the rest of Figure 5a.

6. The 1/5 resonance surface is a toplogical disk.

The 1/3 resonance surface

1. The left-hand side period-3 saddle-node curve which starts from pa-
rameter value (1/3, 0) continues up, around, and back down to the
right hand side saddle-node curve. No codimension-two points are en-
countered on the way. An isolated 3

√
1 point, however, lies inside (in

the parameter space) the curve of saddle-nodes. The existence of this
isolated surface singularity point is guaranteed by Theorem 2 in [P2,
1990]; we were able to easily locate it because it had to be on the fixed-
point Hopf bifurcation curve; that it is an isolated surface singularity
is consistent with the unfolding of the 3

√
1 point in the Appendix. See

the enlargement in Figure 3b where it is apparent that the period-three
saddle-node curve extends above the Hopf bifurcation curve; again, this
is consistent with the unfolding. As with the 1/5 resonance surface,
various cross sections convinced us that there are no other projection
singularities on the 1/3 surface.

2. Because of the singular point on the interior, it is still possible that
after cutting along the three saddle-node curves, the surface pieces
don’t project injectively to the parameter plane. In fact, guided by the
local universal unfolding of the 3

√
1 point, we know that the period-3

surface near the 3
√

1 point, whose formula is given in the Appendix,

11



projects in a 3-1 fashion to a deleted neighborhood (after removing the
3
√

1 point) of the parameter plane; all period-3 points in the deleted
neighborhood of the 3

√
1 point are saddles. So we make three extra

cuts on the saddle surface, all three projecting to the same curve in the
parameter space from the 3

√
1 point to an arbitrarily chosen point on

the period-3 saddle-node curve, as indicated in Figure 5b. This leaves
us with three “saddle” pieces to accompany the three “node” pieces.
All six pieces project to the parameter plane in the “inverted teardrop”
shape of the 1/3 resonance region of Figure 3a, the saddle pieces each
having an extra cut.

3. Add the six pieces corresponding to the boundary circle in a procedure
similar to that for the 1/5 surface.

4. The cyclical identification of saddle pieces to each other along the
“extra” cut is justified by the period-3 surface formula near the 3

√
1

point given in the Appendix: a closed loop on the period-three surface
parametrized by a small circle around the origin in the phase plane
projects to a loop which travels three times around the 3

√
1 point in the

parameter plane. This forces the rest of the edge labels given in the
first step of Figure 5b. As with the 1/5 surface, the labelling is cor-
roborated because the six boundary pieces are joined to form a single
topological circle.

5. Reassemble as indicated in the rest of Figure 5b.

6. The 1/3 surface is a topological disk. Notice that, similar to the 1/5
surface, the 3

√
1 point can still be thought of as the center of the disk,

but, unlike the 1/5 surface, the saddle-node curves don’t meet this
point.

The 1/2 resonance surface

1. The period-two saddle-node curves on the sides of the 1/2 horn for
small forcing amplitude each terminate in a degenerate period-doubling
bifurcation, where the two points on the period-two orbit come together
to form a fixed point. The local bifurcation analysis of such a point
[PK, 1991] shows a period-doubling curve passing through such a point.
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Continuation of this curve reveals that both degenerate period-doubling
points turn out to be on the same period-doubling curve, which forms a
circle in the parameter space. This give us the “ice cream cone” shape
for the 1/2 resonance region in Figure 3a. As for our other surfaces,
additional cross sections convinced us that there are no more projection
singularities on the 1/2 surface.

2. After cutting along the saddle-node curves and the period-doubling
curves of the 1/2 surface, we are left with four pieces: two which project
to the whole 1/2 resonance region, and two which project only to the
bottom triangular “cone” part of the region.

3. Add the four pieces corresponding to the boundary circle in a procedure
similar to that for the 1/5 surface.

4. The edge identifications are forced by the local bifurcation analysis of
the degenerate period-doubling points, where all four surfaces come
together, and by the fact that the four added boundary pieces must
form a single topological circle. Which pieces are labelled saddles and
which are labelled nodes can be determined from corresponding phase
portraits, but this does not affect the topology. This is the starting
point of Figure 5c.

5. Reassemble as indicated in the rest of Figure 5c.

6. The surface is a mobius strip!! Note that the period-doubling circle is
a “generator” of the mobius strip.

The fixed point resonance surface

1. The continuation of the two saddle-node curves which emanate from
(p/1, 0) in the parameter plane for any integer p results in a triangular
region in the parameter space. Triangles for p = 0 and p = 1 are shown
in Figure 3a. The two top “corners” of the p = 0 triangle, shown in
the enlargement of Figure 3b, are cusp bifurcations. As for the other
surfaces, additional numerical cross sections convinced us there are no
other fixed point projection singularities.
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2. We make cuts along all the saddle-node curves. We note that there
are two fixed points born as we enter any one of the triangular re-
gions across a saddle-node bifurcation, but there is a third one which
is involved in the cusp bifurcations. Thus there are three fixed points
for parameter values inside the triangular regions and one fixed point
outside. The “outside” point can be thought of as the continuation of
the repelling “center” fixed point which came from the repelling equi-
librium point of the original unforced oscillator. For increased clarity,
we choose to make three extra cuts on the surface for each triangular
region, one corresponding to the parameter values along each (saddle-
node) leg of the triangle but for the surface which is not involved in the
saddle-node bifurcation. This leaves us with three pieces which cover
each triangular region and a single piece which covers the rest of the
parameter space (−∞,∞) × [0, 1].

3. For each triangular region, add the two boundary pieces corresponding
to the boundary circle to two of the three trianguar surface pieces.
(The “center” fixed point is not part of the unforced oscillator, so the
boundary pieces are added to the saddle and node pieces only.)

4. We restrict our description and figures to −1/2 ≤ ω0/ω ≤ 1/2, so that
we are dealing with only one of the triangular regions. The saddle
piece and node piece are identified along the edges corresponding to
the two “legs” of the triangle. The local unfolding of the cusp points
implies that the saddle-node pairings of the two surface pieces changes
at a cusp point. So the identification at the top of the triangle must
be between the third piece (the “center” piece) and one of the other
two. As can be verified from phase portraits, the saddle piece is the
one which pairs with the “center” piece. The surface not involved in
the saddle-node bifurcation must be the one identified with the sides
of the “hole” in the surface which represents the unique fixed point for
parameter values outside the triangle. This provides the starting point
for Figure 5d. The dotted lines indicate the continuation of the fixed
point surface to |ω0/ω| > 1/2. Note also that the “center” piece of
fixed points has boundaries at α = 0 and α = 1, where our caricature’s
parameter space was cut off. This boundary is unique to the fixed point
surface because for all other p/q surfaces boundary components exist
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only at C0 × (p/q, 0).

5. Reassemble the four pieces as in the rest of Figure 5d.

6. The surface restricted to −1/2 ≤ ω0/ω ≤ 1/2 is an annulus. That is,
topologically, each triangular region corresponds to a hole (a boundary
component) in the single surface of fixed points. The whole fixed point
surface, then, is a strip with an infinite number of holes.

Remarks:

1. Because the normal forms for any q
√

1 point with q ≥ 5 indicate pairings
of saddle surfaces and node surfaces analogous to the pairings near a
5
√

1 point, the strategy to determine the toplogy of surfaces with q ≥ 5
is analogous to the strategy we used for the 1/5 surface. Likewise, we
expect the topology of all period-3 surfaces to be determined as was
our 1/3 surface, the topology of all period-2 surfaces to be determined
as was our 1/2 surface, and the topology of all fixed-point surfaces
to be determined as was our fixed-point surface. Depending on the
relative magnitudes of the normal form coefficients A and B (as in the
Appendix) near a 4

√
1 point, the period-4 surfaces could either be like

a 1/5 surface, with a 4
√

1 point connected to the saddle-node curves, or
like a 1/3 surface, with the 4

√
1 point isolated from the other singular

points. The 1/4 surface and 3/4 surfaces of our caricature both appear
to be of the former variety.

2. Although we have labelled most surfaces with S (respectively N) for
saddle (respectively node), it is not necessary that the continuation
of these surfaces stay saddles (respectively nodes) in all applications.
Period doubling bifurcations could cause a change from one to the
other.

3 Comments

This paper deals mainly with the topology of the resonance surfaces, but
only hints at the geometry of the surfaces as they are situated in the four-
dimensional phase × parameter space. Work in progress presents much more
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of the geometry, including various three-dimensional projections such as Fig-
ure 4b (from the four-dimensional phase × parameter space) of global res-
onance surfaces which have been numerically computed [MP1, 1994 and to
appear]. A better “feel” for the geometry of these surfaces is provided by
a movie illustrating these numerically computed surfaces [MP2, 1992]. Bet-
ter yet is the understanding obtained by using the computer to interactively
rotate the surfaces through various three- and four-dimensional projections.

In dealing with other forced oscillator families we note that for q ≥ 3
the p/q resonance surfaces are generically orientable two-manifolds with one
boundary component. Thus they must be disks with some number of han-
dles. So the topology of resonance surfaces for other forced oscillators can
differ from ours only in the number of handles it may have. (This statement
holds for q = 2 as well, if the conjecture that all period-two surfaces are
nonorientable is true.) Although we have seen no “natural” example of a
forced oscillator family having a handle on any resonance surface, we can
construct families having resonance surfaces with handles by transforming
the parameter space. Other parameter space diagrams of forced oscillators
[SDCM, 1988] appear to have sets of projection singularities more compli-
cated than in our application, but such complications do not correspond to
handles; they can be thought of merely as extra folds with respect to projec-
tion to the parameter plane. Both these handles and surface “folds” will be
treated in future work [MP 1995].

We point out that although this study targets bifurcations for periodically
forced oscillator systems, it is really applicable to generic two-parameter fam-
ilies of maps of the plane. Forced oscillator families differ from the generic
case only because there is a known starting point: forcing amplitude (α)
equals zero. Because the corresponding map behavior at zero forcing am-
plitude is not generic, the “boundary circles” we described do not occur in
generic families of maps. The other “local” descriptions of periodic surfaces,
however, still apply. For example, a period-5 resonance surface which is
“born” in a Hopf bifurcation at a 5

√
1 point can “die” at a second such point.

This would result in a period-5 surface which would be a topological sphere.
This is a typical scenario for resonance horns corresponding to “secondary”
Hopf bifurcations as studied in [PFK, to appear].

We also acknowledge that our study is far from the final word on the study
of bifurcations of forced oscillator systems. For example, we have said nothing
about the global bifurcations (invariant manifold crossings), the relationship
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of the resonance surfaces to the global bifurcations, or the relationship of
the resonance surfaces to associated phase portraits. A complete bifurcation
study doesn’t yet exist. See, however, [VR, 1989] and [P1, 1988] for more
complete numerical studies of forced oscillator systems, and [ACHM, 1983]
for additional bifurcation features which may be present inside any given
resonance region.

In addition to providing a philosophical plug for resonance surfaces as
more natural building blocks for bifurcation analysis than the bifurcation
regions obtained from their projections to the parameter plane, we note that
the use of these surfaces may also provide some practical benefits for nu-
merical computation of bifurcation diagrams. For example, it may be easier
numerically to locate the saddle-node boundaries of a resonance surface by
computing the whole resonance surface than by computing the saddle-node
boundaries directly. In order to do so, however, we must first know the
topology of the surface, as studied in this paper, so that we may succesfully
parametrize it. Our real goal is to extend the same philosophy to the compu-
tation of global bifurcations: computing whole surfaces of homoclinic points
may turn out to be a more tractable task than computing the curves of ho-
moclinic tangencies that project to the boundaries of homoclinic regions in
the parameter space. The further expectation that homoclinic surfaces can
be viewed in many contexts as limits of periodic point surfaces is even more
motivation for understanding the topology of resonance surfaces as presented
in this paper.

Acknowledgements: Discussions over the last several years with D. G. Aron-
son, G. R. Hall, and R. Moeckel have been instrumental in the development
of the ideas presented in this paper. Work was partially supported by NSF
grant DMS-9020220. Figures 4a and 4b were obtained with the aid of “ge-
omview,” an interactive geometry viewer developed by The Geometry Cen-
ter, Minneapolis, MN, a Science and Technology Center supported by the
National Science Foundation.

4 Appendix

We list below a table of local representation of period-q surfaces (actually
the closure of the least-period-q points) which exist in the neighborhood of
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the described fixed-point bifurcation.

Bifurcation: q Universal Period-q Reference
unfolding Surface

Saddle-node 1 (x, y) → ε1 = ∓x2, y = 0 Ar,GH
(ev*=1) (x + ε1 ± x2, by)
Cusp 1 (x, y) → ε1 = −(ε2x ± x3) Ar, GH
(ev*=1 (ε1 + (ε2 + 1)x ± x3, by)
and hod*)

Takens- 1 (ẋ, ẏ) = ε1 = −x2, y = 0 Ar,Bo
Bogdanov (y, ε1 + ε2y + x2 ± xy) GH, Ta
(both ev*=1)
Period- 2 (x, y) → ε1 = ∓x2, y = 0 Ar,GH
doubling ((ε1 − 1)x ∓ x3,−ay)
(ev*=-1)
Degenerate 2 (x, y) → ε1 = −(ε2x2 ± x4), y = 0 PK
period ((ε1 − 1)x + ε2x3 ± x5,−ay)
doubling
(ev*=-1
and hod*)

Double -1 2 (ẋ, ẏ) = ε1 = ∓x2, y = 0 Ar, Ta
(both ev*=1) (y, ε1x + 2ε2y ± x3 − 2x2y)
q
√

1 point 3 ż = εz + Az|z|2 + Bz̄
2 ε = −A|z|2 − Bz̄

2/z Ar, Ta

(ev* = 4 ż = εz + Az|z|2 + Bz̄
3 ε = −A|z|2 − Bz̄

3/z Ar, Ta

e±2πip/q)
≥ 5 ż = εz + z

2
z̄A(|z|2) + Bz̄

q−1 ε = −|z|2A(|z|2) − Bz̄
q−1/z Ar, Ta

* ev = eigenvalue(s) of the fixed point, hod = higher order degeneracy

Comments:

1. For the universal unfoldings given as differential equations, the time
one map of the differential equation agrees with the qth iterate of the
original map (after a coordinate change) up to arbitrarily high order.

2. The period-q surface formulas are determined directly from the univer-
sal unfoldings. For q ≥ 2, the fixed point at the origin of the phase
plane must be “divided out” to leave us with a representation of the
closure of the least-period-q surface.
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5 Figure Captions

1. Phase portrait of the “unforced” oscillator.

2. The low forcing amplitude part of a period-two resonance horn in the
parameter space and accompanying phase portraits for the second it-
erate of the map.

3. (a) Partial parameter space bifurcation diagram:
A - Double -1 point
B - Takens-Bogdanov point (double +1 point)
C - Cusp point
D - Degenerate period-doubling point
qth root of one points - Resonant Hopf points
“Hopf curve” - defined by product of eigenvalues = 1
Period-doubling curve - defined by an eigenvalue = -1
All other curves are saddle-node curves defined by an eigenvalue of the
qth iterate of the map = 1. (The appropriate value of q is given by the
denominator of the label at the bottom tip of the respective resonance
regions.)

(b) Enlargement of a part of Figure 3a.

4. (a) An α = .38 cross section of the 1/5 surface.

(b) The projection of the 1/5 resonance surface near the 5
√

1 point
from the four-dimensional (x, y, ω0/ω, α) space to the three di-
mensional (x, ω0/ω, α) space and its “shadow,” part of the 1/5
resonance region, a further projection to (ω0/ω, α) space. The
five curves along the surface “folds” are period-five saddle-node
curves; they all project to the left side of the 1/5 resonance re-
gion.

5. (a) The 1/5 surface. Lines ai and bi are period-five saddle-nodes.

(b) The 1/3 surface. Lines ai, bi, and ci are period-three saddle-nodes;
lines d, e, and f are “extra” cuts.

(c) The 1/2 surface. Lines a, b, c, and d are period-two saddle-nodes;
lines e and f are period doublings.
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(d) The fixed-point surface restricted to −1/2 ≤ ω0/ω ≤ 1/2. Lines
a, b, and d are saddle-nodes; lines c, e, and f are “extra” cuts.
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Phase portrait of the ‘unforced’ oscillator.
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Figure 3b

Enlargement of a part of Figure 3a.
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Figure 4a

An  α = .38 cross section of the 1/5 surface.
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Figure 4b

The projection of the 1/5 resonance surface near the fifth root of one point 
from the four−dimensional (x,y,ω0/ω,α) space to the three−dimensional 

(x,ω0/ω,α) and its ‘shadow,’ part of the 1/5 resonance region, a further 
projection to the (ω0/ω,α) parameter plane.  The five curves along the surface 
‘fol ds’ are period−five saddle−node curves; they all project to the left side of 
the 1/5 resonance region.
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