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Abstract

This study provides some connections between bifurcations of one-
complex-parameter complex analytic families of maps of the complex
plane C and bifurcations of more general two-real-parameter families of
real analytic (or Ck or C∞) maps of the real plane R2. We perform a
numerical study of local bifurcations in the families of maps of the plane
given by

z 7→ F(C,α)(z, z) = z2 + C + αz

where z is a complex dynamic (phase) variable, z its complex conjugate, C
is a complex parameter, and α is a real parameter. For α = 0, the resulting
family is the familiar complex quadratic family. For α 6= 0, the map fails
to be complex analytic, but is still analytic (quadratic) when viewed as a
map of R2. We treat α in this family as a perturbing parameter and ask
how the two-parameter bifurcation diagrams in the C parameter plane
change as the perturbing parameter α is varied.

The most striking phenomenon that appears as α is varied is that
bifurcation points in the C plane for the quadratic family (α = 0) evolve
into fascinating bifurcation regions in the C plane for nonzero α. Such
points are the cusp of the main cardioid of the Mandelbrot set and contact
points between “bulbs” of the Mandelbrot set. Arnold resonance tongues
are part of the evolved scenario.

We also provide sufficient conditions for more general perturbations of
complex analytic maps of the plane of the form:

z 7→ F(C,α)(z, z) = fC(z) + αgα(z, z)

to have bifurcation points for α = 0 which evolve into nontrivial bifurca-
tion regions as α grows from zero.



1 Introduction: Background and Motivation

Complex analytic maps of the complex plane C form a very special subset in the
more general function space of real analytic (or Ck or C∞) maps of the real plane
R2. Although the study of bifurcations of iterated maps in the two settings has
overlap, the reliance on powerful tools in the complex analytic setting makes the
two areas seem, at times, as completely distinct areas of research. In this paper,
we provide a connection between the two areas by studying how bifurcation sets
for a one-complex-parameter complex analytic family change when modified
with a perturbation which is not complex analytic. See Drexler [1996] for a
related study. See Bielefeld, Sutherland, Tangerman and Veerman [1993] for
a study of a similar spirit—involving a different perturbation of the complex
quadratic family but with some related results. It turns out that since this
study and previous studies of forced oscillator systems [Peckham 1988, Vance
and Ross 1989, Peckham 1990] both involve Hopf bifurcations, the bifurcation
diagrams in the two settings have many similarities.

The model family we study is

F(C,α)(z, z) = z2 + C + αz. (1)

where z is a complex dynamic (phase) variable, z its complex conjugate, C =
C1 + iC2 is a complex parameter, and α is a real parameter. In cartesian
coordinates, this is

F(C1,C2,α)

(

x
y

)

=

(

x2 − y2 + C1 + αx
2xy + C2 − αy

)

. (2)

The most striking phenomenon that occurs is that bifurcation points in the C
plane for the complex quadratic family (α fixed at 0) evolve into fascinating
bifurcation regions in the C plane for small nonzero fixed α. Such bifurcation
points for the complex analytic family are cusps of cardioids of the Mandelbrot
set and the contact points of neighboring “bulbs” in the Mandelbrot set. Look
ahead to Fig. 4a for a typical nonzero α C plane bifurcation diagram. Compare
it with the Mandelbrot set bulb boundaries of Fig. 2. This paper can largely be
thought of as an attempt to understand these two figures and their relationship
to each other.

In the next two subsections of the introduction, we recall basic facts about
the bifurcations in generic one-complex-parameter families of complex analytic
maps of the plane, including the complex quadratic family (subsection 1.1), and
bifurcations in generic two-real-parameter families of maps of R2 (subsection
1.2). We then compare and contrast the two settings in subsection 1.3, empha-
sizing basic differences. Of particular note is the view of the bulb boundaries
in the Mandelbrot set as Hopf bifurcation curves. Understanding the contrast
between generic bifurcations emanating from a Hopf curve: bulb tangencies in
the complex setting vs. Arnold resonance tongues in the real setting, was the
original motivation behind this study.

1



With the possible exception of subsection 1.1.3, all of the results stated
in this Introduction are well-known. Most even exist in standard graduate
textbooks [Arnold 1983, Devaney 1989, Guckenheimer and Holmes 1983, Ruelle
1989] or research surveys [Blanchard 1984]. They are included here to enable us
to more easily compare and contrast the complex analytic dynamics with the
real dynamics.

The new results in this paper are the details of the bifurcation diagrams in
the perturbed cases (Sec. 2) and the theorems in Sec. 3. The theorems give
sufficient conditions under which complex analytic bifurcation points evolve into
bifurcation regions upon perturbation. They also give a characterization of some
of the bifurcation sets that evolve.

1.1 Complex analytic families: the Mandelbrot set and its

bulbs

We begin by recalling some definitions, properties, and bifurcations for the
complex quadratic family

QC(z) ≡ F(C,0)(z) = z2 + C. (3)

The local bifurcations of this classic family are expected to behave as generic
bifurcations in one-complex-parameter families of complex analytic maps of the
plane.

The most basic parameter plane “bifurcation diagram” for the complex
quadratic family is the Mandelbrot set (Fig. 1), most easily defined as M ≡ {c ∈
C|Qn

c (0) 6→ ∞ as n → ∞}. This set provides a (parameter space) dichotomy
for all the of the complex quadratic maps. Maps corresponding to parameter
values outside the Mandelbrot set all have similar dynamics. Maps correspond-
ing to parameter values inside M also have similarities in their behaviors under
iteration, but M is further subdivided into “bulbs,” defined as the connected
components of the interior of M. All maps corresponding to parameter values
in a single bulb of M have an attracting periodic orbit of the same period, say
n. Thus these bulbs are often labelled according to their period as “period-n
bulbs.”

The fixed-point bulb is the interior of the main cardioid of the Mandelbrot
set. The period-two bulb is the disk bounded by a geometric circle with radius
1/4 centered at z = −1. For n > 3 there exist multiple bulbs of the same
period. Except for the cusp of the main cardioid and the cardioids of all “baby
Mandelbrot sets,” all bulb boundaries are smooth.

Bifurcations thus occur when the parameter value is varied to either cross
from inside to outside the Mandelbrot set (or vice versa) or as we pass from one
bulb to another. Both cases involve passing through the boundary of a bulb.
When crossing a period-n bulb boundary, a period-n orbit changes from being
attracting for C values inside a period-n bulb to (linearly) neutral for C values
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Figure 1: Aproximation of the Mandelbrot Set.

on the boundary of the bulb, to repelling for C values outside the bulb. Thus,
a point on the boundary of a period-n bulb has a period-n orbit with derivative
on the unit circle. Moreover, when traveling once around the boundary of any
period-n bulb, the corresponding derivative travels once around the unit circle
[Douady and Hubbard 1982]. By analogy with the real case, we shall refer to
these bulb boundary curves as Hopf bifurcation curves.

Hopf bifurcation points are classified as rational or irrational. We deal
mainly with the rational period-n bulb boundary point here (fn′

(z) = e2πip/q,
p/q ∈ (0, 1) reduced). At each such point is attatched a bulb of period qn. The
bulb boundary points corresponding to a derivative of one fall into two classes:
either there is a bulb attatched at the derivative one point or there isn’t. In
the latter case, the derivative one point is the cusp of a cardioid (either the
main cardioid or a cardioid of a “baby Mandelbrot set”). In the former case,
the attatched bulb is of lower period. In fact, at any bulb tangency, the lower
period bulb is the parent, say period-n, and the higher period bulb its p/q child
for some p/q ∈ (0, 1). The child is then a period-qn bulb. The contact point
is a derivative e2πip/q point for the parent and a derivative one point for the
child. We prefer to classify it as a p/q point of the parent. The cardioids are
the only bulbs without a parent. See Fig. 2 for a labelled picture of the main
cardioid and some of its descendents. A ( p1

q1

, ..., pk−1

qk−1

, pk

qk
) bulb is the pk

qk
child of

the (p1

q1

, ..., pk−1

qk−1

) bulb.

In preparation for comparison with the analogous bifurcations in subsection
1.2, we distinguish the eigenvalue one points (cardioid cusps) as well as the
negative one eigenvalue points (period-doublings).
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Figure 2: Some numerically computed bulb boundaries of which the Mandelbrot set
boundary is comprised (α = 0.0).

1.1.1 Cardioid cusp points (saddle-node points)

We look first at the bifurcation point at the cusp of the main (or any) cardioid.
It is sometimes labelled a saddle-node because of the analogous bifurcation in
the real plane, but the name is not at all descriptive of the complex bifurcation.
(The name cusp point is also used in real bifurcation to indicate a saddle-node
bifurcation with a higher order degeneracy; this is distinct from the cardioid cusp
discussed here.) A cardioid cusp point requires a periodic point with eigenvalue
one. The conditions which need to be satisfied are thus:

fn
C(z) − z = 0,

fn′

C (z) − 1 = 0.
(4)

The model local unfolding of such a point, for n = 1, is

fC : z 7→ C + z + z2. (5)

This model is exactly the same as the quadratic family z2 +C, after translating
the cardioid cusp point to the origin in both the z and C variables. The set of
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parameter values where this map has a fixed point with a derivative of norm one
forms a cardioid curve in the C plane, a translate of the cardioid in Fig. 2. The
fact that the full curve is a cardioid is not as important to the local analysis as
is the fact that there is a cusp at the origin. For C values outside the cardioid,
the corresponding maps have two repelling fixed points; for C values inside the
cardioid, the corresponding maps have an attracting and a repelling fixed point.
On the cardioid curve, the maps have one linearly neutral and one repelling fixed
point. The two fixed points coalesce, resulting in a single linearly neutral fixed
point at z = 0 as C arrives at the cusp. These properties are well-known and
easily verified by solving Eq. (6) for the model map in (5). Note in particular
that saddle-node points are determined in the two-complex-dimensional (z, C)
space by two complex equations. We therefore expect solutions to be isolated
points. This is in contrast with the real case, discussed in subsection 1.2.1 below,
where the saddle-node set generically is a curve.

1.1.2 Period-doubling points

A period-doubling point is one such as the contact point between the main car-
dioid and its period-two bulb. It turns out that in the complex case such points
are treated exactly as any other bulb-to-bulb contact point. These contact
points are treated in the next subsection as resonant Hopf points. We include
the separate subsection here only to emphasize that the period doubling case
will be distinct for α 6= 0. As with the saddle-nodes, period-doublings are gener-
ically points in the complex phase × parameter space C × C, but curves in the
real space R2 ×R2.

1.1.3 Hopf curves, resonant Hopf points, and bulb tangencies

A fixed or periodic point changes stability as its derivative crosses the unit
circle. Thus at bifurcation, we have a derivative of e2πiω, ω ∈ (0, 1). (The ω = 0
case was already treated in subsection 1.1.1 above.) We are labelling such a
bifurcation a Hopf bifurcation, unless ω = 1

2 , when it is labelled a period-
doubling bifurcation. The required equations are

fn
C(z) − z = 0,

|fn′

C (z)| = 1,

fn′

C (z) 6= 1.

(6)

Generically, bulb tangencies occur at every rational value of ω. The model local
unfolding for a fixed point with neutral rational derivative, which we call a p/q
resonant Hopf point, is

fC : z 7→ e2πip/q(z + Cz + zq+1). (7)

This model agrees, after standard changes of coordinates, up through degree
2q, with a generic p/q resonant Hopf bifurcation. The set of parameter values
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where the map fC has a fixed point with a derivative of norm one forms a circle
in the C plane: center at −1, radius of one. This is the parent bulb. The set
of parameter values for which the maps have period-q orbits with derivative
of norm one forms a circle with center 1/q and radius 1/q. This is the p/q
child bulb. Thus, locally, the two circles are tangent at the origin. There is
a single fixed point and a single period-q orbit for all parameter values except
C = 0. Inside the larger circle, the fixed point is attracting; it is neutral on
the boundary and repelling outside. Similarly, the period-q orbit is attracting
inside its circle. The period-q orbit collapses onto the fixed point z = 0 as C
approaches zero. These facts can be verified directly from Eqs. (6) and (7). The
only computational trick is to use the symmetry of the model family in order
to solve for the period-q points (n still is one) via fC(z) = e2πip/qz instead of
fq

C(z) = z.
The collective result along a single Hopf curve is schematically depicted in

Fig. 3a. Figure labels are more fully explained at the beginning of Sec. 2. Note
that if one passes from a bulb to its p/q child via a path nearby, but not directly
through the contact point, the net result is the same, but the fixed point loses
its stability before the period-q point gains its stability. Of course, as one passes
through the region exterior to both the parent bulb and the p/q child bulb, the
parameter value will typically pass through a multitude of other bulbs. This
illuminates both the advantage and disadvantage of considering only a single
parent-child pair at a time.

EH3

Bulbs

H
2/5

H
3/8

H
1/3

H
2/7

H
1/4

EH5

EH1

a)

Arnold resonance horns
H

3/8

H
2/5

H
1/3

H
2/7

H
1/4

SN5

SN3

EH1

b)

Figure 3: Generic Hopf bifurcation phenomena a)Bulb tangencies in the complex
setting b) Arnold tongues in the real setting.
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1.2 Maps of R2: saddle-node, period-doubling, and Hopf

bifurcations

We will now recall some of the basic bifurcation facts for two-parameter families
of maps of the plane.

Consider the two-parameter family of maps of the plane given by:

(x, y) 7→ RC(x, y) (8)

where the phase variables (x, y) ∈ R2 and the parameter C ∈ R2. A bifur-
cation analyst trained to study real maps of the plane will analyze a map by
first locating fixed points and determining their stabilities. In a two-parameter
family of maps, the codimension-one bifurcation curves in the parameter plane,
where changes in number or stability of the fixed points occur, will be then
located. Both changes require a fixed point with at least one eigenvalue on the
unit circle. These split into three generic cases: eigenvalue one (birth/death of a
pair via saddle-node bifurcation), eigenvalue negative one (stability change via
period-doubling bifurcation), and complex conjugate eigenvalues on the unit
circle (stability change via Hopf bifurcation). After the local fixed-point bi-
furcations, one locates the same three local codimension-one bifurcations for
period-two orbits, then period-three orbits, and so on. See Guckenheimer and
Holmes [1983], Arnold [1983], and Ruelle [1989], for example. (These curves
typically intersect at codimension-two points.)

We are interested in the loci of bifurcation points in the Cartesian product
of the phase and parameter spaces, and in the projection of these loci to the
parameter space. For all three loci, the first vector equation below is equivalent
to two scalar equations and requires (x, y) to be a period-n point of RC . The
other equations are eigenvalue conditions. They are arrived at by recalling that
an eigenvalue λ of a 2 × 2 matrix A satisfy λ2 − tr(A)λ + det(A) = 0. DRn

C is
the two-by-two Jacobian derivative matrix of Rn

C , the nth iterate of RC .

1.2.1 Saddle-node curves

The loci of period-n saddle-nodes for Eq. (8) is determined by the following
formulas.

Rn
C(x, y) − (x, y) = 0

1 − tr(DRn
C(x, y)) + det(DRn

C(x, y)) = 0
(SNn)

The second equation requires an eigenvalue of one. This locus is generically a
collection of curves in the four-real-dimensional phase × parameter space.

The model of such a bifurcation is
(

x
y

)

=

(

C1 − x2

y/2

)

.
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The bifurcation set is {(x, y, C1, C2) : x = y = C1 = 0}. For negative C1 values
there are no fixed points; for positive C1 values, there are two fixed points, one
attracting node and one saddle. The two fixed points approach each other as
C1 approaches zero from above.

1.2.2 Period-doubling curves

The loci of the period-n period-doubling points is determined by

Rn
C(x, y) − (x, y) = 0

1 + tr(DRn
C(x, y)) + det(DRn

C(x, y)) = 0
(PDn)

The second equation in (PDn) requires an eigenvalue of negative one. Like the
saddle-node locus, the period-doubling locus is generically a collection of curves.

The model of such a bifurcation is
(

x
y

)

=

(

−(C1 + 1)x + x3

y/2

)

.

The bifurcation set is {(x, y, C1, C2) : x = y = C1 = 0}. For negative C1 values
there is an attracting fixed point but no period-two orbit; for positive C1 values,
the fixed point is unstable and there is a stable period-two orbit. The period-two
orbit collapses on the fixed point as C1 approaches zero from above.

1.2.3 Hopf curves, resonant Hopf points, and Arnold tongues

A fixed or periodic point changes stability as its eigenvalues cross the unit circle.
Avoiding the eigenvalues +1 and −1, which correspond respectively to saddle-
node and period-doubling bifurcations, this requires eigenvalues at bifurcation
of e±2πiω, ω ∈ (0, 0.5). Such a bifurcation is called a Hopf bifurcation. The
required equations for a period-n Hopf point are







{

Rn
C(x, y) = (x, y) = 0

det(DRn
C(x, y)) − 1 = 0

}

(EHn)

| tr(DRn
C(x, y))| < 2.

(Hn)

The second equation of (EHn) requires the product of the eigenvalues to be 1;
the inequality in (Hn), along with the product of the eigenvalues being one, re-
quires the eigenvalues to be complex conjugates on the unit circle. The notation
(EHn) is used to stand for the Extended Hopf locus. The extended Hopf locus
is a collection of curves which includes Hopf points as well as saddle points with
real eigenvalues, such as 2 and 1/2.

Generically (assuming n = 1 for simplicity), for parameter values on one
side of the Hopf bifurcation curve and away from ω = p/q with q = 1, 2, 3, 4,
the corresponding maps have an invariant circle. This circle shrinks down onto
the fixed point as the parameters approach the Hopf curve.
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The Hopf bifurcation for maps of R2 is much more subtle than the saddle-
node or period-doubling bifurcations. This is because on the side of the Hopf
bifurcation curve where the invariant circle exists, the parameter plane must be
further divided in order to account for the births and deaths of periodic orbits of
different periods that live on the invariant circle. Now classic results of Arnold
[1983] and Takens [1974] guarantee that in a generic two-parameter family of
maps of the plane (certainly not the case for a complex analytic family) the
parameter space on the side of the Hopf curve with the invariant circles has
a horn-shaped resonance region emanating from each point on the Hopf curve
corresponding to a linearly neutral fixed point with rational eigenvalues. More
precisely, the fixed point has eigenvalues e±2πiω with ω = p/q and q ≥ 5.

The model local unfolding for fixed points with neutral rational derivatives,
which are called resonant Hopf points, is most conveniently presented in (z, z)
coordinates as:

RC : z 7→ e2πip/q(z + Cz + Az2z + Bzq−1). (9)

The complex parameter C is the unfolding parameter; A and B are fixed com-
plex constants; q ≥ 3. This map has a neutral fixed point for C values on the
circle with center at −1 and radius 1. Inside the circle, the corresponding maps
have an attracting fixed point; outside the fixed point is repelling. The side
with the invariant circle is the side to which −A points from the origin.

For q ≥ 5, a resonance tongue, with tip at the origin, emanates from the
origin in the direction of −A. The tip of the p/q tongue is called a p/q resonant
Hopf bifurcation point. Inside a p/q resonance tongue, the corresponding map
has a pair of periodic orbits of period q and rotation number p/q when restricted
to the invariant circle. Restricted to the circle, one of these orbits is attracting
and one is repelling. The two side boundaries of a p/q resonance tongue are
period-q saddle-node bifurcation curves (except where they meet at the resonant
Hopf bifurcation point at the tip of the tongue).

When q = 3, a so-called strong resonance case, a similar resonance tongue
exists, but it does not have a tip on the Hopf curve. Instead, it swings “around”
the parameter value of the 1/3 Hopf point. When q = 4, depending on the
relative sizes of two coefficients in the normal form, the bifurcation diagram can
resemble that of either q = 3 or of q ≥ 5. See Fig. 3b for a schematic depiction
of the Hopf bifurcation diagram. In Fig. 3b we arbitrarily assume the period-4
tongue resembles the q ≥ 5 tongues.

For further insight into the resonant Hopf bifurcations, see McGehee and
Peckham [1994] for a geometric presentation of the period-q surface which exists
in the neighborhood of a p/q resonant Hopf point and period-q saddle-node
curves which run along the surface.

As with the saddle-node and period-doubling bifurcations, Hopf bifurcations
of period-n orbits can occur as well. They require the nth iterate of the map to
have complex conjugate eigenvalues on the unit circle.
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1.3 Complex vs. Real

Although any one-complex-parameter family of complex-analytic maps of the
complex plane can be thought of as a two-real-parameter family of maps of
the real plane, it is worth emphasizing some of the major differences between
real families which come from complex families and generic two-real-parameter
families of maps of the plane.

1.3.1 No births/deaths of orbits vs. births/deaths

Since the complex numbers are a complete field, the number, counting multi-
plicity, of local roots of fn

C(z) − z cannot change with the parameter C. Thus,
the only way for the number of roots to change is to have roots coalesce. This
is what happens at the cusp of M and at the contact points between bulbs, as
described in subsection 1.1 above. Note that for any family of constant degree
polynomials, or of constant degree rational maps of the Riemann sphere, the
global number of solutions of fn

C(z) − z also remains constant.
This local persistence of orbits is drastically different from what happens in

generic real maps of R2. The saddle-node, period-doubling, and Hopf bifurca-
tions all involve the births or deaths of new orbits.

1.3.2 No saddles vs. saddles

Any complex analytic map of the complex plane z 7→ f(z) can be viewed as a
map from R2 → R2 via (x, y) 7→ (Re(f(x + iy), Im(f(x + iy)). Note that the
linear part of a complex map, z 7→ f ′(z)z then becomes

(

x
y

)

7→

(

γ − β
β γ

)(

x
y

)

where f ′(z) = γ + iβ.
When viewed as a map of R2, this requires a complex analytic map with a

real derivative to have a scalar multiple of the identity as its linear part. This
is a nongeneric occurrence for two-parameter families of maps of R2. Also, it
precludes having saddle points. Although we do not treat the subject much in
this paper, this also has major consequences for the study of the dynamics of
maps in the two settings. The stable and unstable manifolds of saddles often
obviate the dynamics of a map of the plane, but complex analytic maps have
no saddles.

The existence of saddles is related to subsection 1.3.4 as well.

1.3.3 Bulb boundaries vs. Hopf curves

We have already alluded to this earlier in the paper, but the relationship between
the derivative of a complex map and the eigenvalues of the induced map of R2
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makes it clearer why bulb boundaries would be considered as Hopf bifurcation
curves by a “real” bifurcation analyst: a derivative of eiω for the complex map
implies eigenvalues of e±iω for the real map.

1.3.4 Extended Hopf but not Hopf locus. Points vs. curves

With our definition of the Hopf and Extended Hopf loci in subsection 1.2.3,
the complex quadratic family would have only two points in the fixed point
Extended Hopf locus that are not Hopf points: the cusp of the main cardioid
and the period-doubling point. The cusp point has both eigenvalues at one; the
period-doubling point has both eigenvalues at negative one. In the real setting,
two-real-parameter unfoldings of points with double one eigenvalues (Takens-
Bogdanov points [Bogdanov 1976],[Takens 1974]) result in a curve of Hopf points
which terminates at the bifurcation point and continues as an Extended Hopf
curve. The same is true for unfoldings of points with double negative one
eigenvalues [Arnold 1983, Takens 1974]. Note that in the real case, the linear
part of a double one eigenvalue point is generically a single Jordan block, while
the linear part of the map induced from a complex map with eigenvalue one is
the identity. A similar statement is true for the double negative one points.

1.3.5 Bulb tangencies vs. Arnold tongues

Compare again the Hopf bifurcation curves depicted in Fig. 3. The fixed point
behavior is the same for each: there is a change from attracting to repelling as
we cross the Hopf bifurcation curve. (This is also consistent with the fact that
Eqs. (7) and (9) have the same linear part.) The p/q bulbs in Fig. 3a and
the p/q tongues in Fig. 3b share the property that, inside each, there exists an
attracting period-q orbit while outside each, there is does not. The boundary
of a p/q bulb, however, is a Hopf curve, while the boundary of a tongue is a
saddle-node curve. An extra pair of period-q orbits, born in the saddle-node
bifurcation, exists inside the tongue; there is only one period-q orbit which is
present in the deleted neighborhood of the bulb tangency.

1.4 Intuition for blowup

It is relatively obvious that bifurcation points for the complex analytic families
should evolve into bifurcation regions after perturbation: period-doubling and
saddle-node loci, including the sides of Arnold tongues, are generically curves in
the real setting. How and under what conditions these blowups occur, however,
is not so obvious. The rest of the paper addresses these issues. In Sec. 2,
we describe for the model family partial bifurcation diagrams in the C plane
for three values of α. In Sec. 3, we prove theorems about the evolution of
bifurcation points into regions after perturbation.
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2 Numerical Investigation

The numerical investigation in this paper was done on the model family defined
in (1). We recall it here:

z 7→ F(C,α)(z, z) = z2 + C + αz.

The cartesian coordinate version is in Eq. (2). We have numerically computed
many bifurcation sets in the C parameter plane for the following fixed values of
α: 0,−0.1,+0.1. All bifurcation curves in Figs. 2, 4, and 5 were computed using
continuation software developed by the author [Peckham 1985-1997]. These are
necessarily incomplete diagrams since each diagram has an infinity of bifurcation
curves associated with it. Because all bifurcation diagrams are symmetric about
the Re{C} axis (F(C,α) is conjugate to F(C,α) via z 7→ z), we have avoided

computing most curves which lie completely below this axis.
We also indicate partial phase portraits in several regions through which the

main cardioid passes. Paths through these regions are chosen so that the phase
portraits at the ends of the paths are the same for α = 0 and α 6= 0, but the
intermediate portraits are more interesting when α 6= 0. The phase portraits
are partial because we consider only the existence and stability of the orbits
corresponding to the parent and its p/q child. Furthermore, we consider only
one child at a time, even though the dynamics for the parameter regions we
describe include higher period orbits as well.

Compare Figs. 8-11 in Bielefeld et. al. [1993] with our Figs. 4b, 5, 6; there
are some common features.

Figure labels. In Figs. 4 and 5, saddle-node curves are colored green, period
doubling curves are colored blue, and extended Hopf curves are colored red or
magenta: red for the main cardioid region and its grandchildren, magenta for
its children. In all figures, the saddle-nodes, period doublings and extended
Hopf curves are labelled SNn, PDn , and EHn, respectively, with the subscript
denoting the period of the lowest period orbit involved in the bifurcation. Lines
with an arrowhead point to codimension-two bifurcation points, labelled Cn

for a cusp point (saddle-node with a higher order degeneracy), Bn for Takens-
Bogdanov point (double one eigenvalue point), Dn for a degenerate period-
doubling point (period-doubling point with a higher order degeneracy), Nn for

a double negative one eigenvalue point, and H
p

q for a p/q resonant Hopf point.
See the following references for descriptions of these codimension-two points:
Arnold [1983], Bogdanov [1976], Guckenheimer and Holmes [1983], Peckham
and Kevrekidis [1991], Ruelle [1989], Takens [1974].

In Figs. 6–8, circles are fixed points; squares are period-2 points in Fig. 7,
period-5 points in Fig. 8. Open symbols indicate repelling, plusses or x’s inside
other symbols indicate saddles, and filled symbols indicate attracting orbits.
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Region 1

Region 0

Region 5

Region 2

EH1

a)

d)

e)

g)

h)

b)

Region 0

Figure 4: Numerically computed C plane bifurcation diagrams for α = −0.1. a) all
computed curves, b,d,e,g,h) enlargements of (a), c) enlargement of (b), f) enlargement
of (e).
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Figure 4 continued.
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Figure 4: Numerically computed C plane bifurcation diagrams for α = −0.1. a) all
computed curves, b,d,e,g,h) enlargements of (a), c) enlargement of (b), f) enlargement
of (e).
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Figure 4: Numerically computed C plane bifurcation diagrams for α = −0.1. a) all
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SN1

EH1

II’

Figure 5: Enlargement of parameter plane near the cardioid cusp for α = +0.1.

2.1 α = 0: Figure 2

We have computed several bulb boundaries. These are contained in the bound-
ary of the Mandelbrot set. The local dynamics is consistent with that described
in subsection 1.1.

Cardioid cusp point. As one crosses from region 1 inside the main cardioid
to region 0 outside the main cardioid through the cusp H

0

1 (C passing through
1/4 on the real axis), two real fixed points, one attracting and one repelling,
come together. As C grows to be greater than 1/4, the fixed points separate
as complex conjugates, both repelling. This is as described in subsection 1.1.1.
See the region 1 and region 0 phase portraits in Fig. 6.

Period-doubling point. As the period-doubling point H
1

2 is approached
from inside the main cardioid (region 1), a repelling period-two orbit collapses
on the attracting fixed point. Inside the period-two bulb (region 2), the period-
two orbit separates from the fixed point. It is now stable and the fixed point is
unstable. The repelling fixed point on the right plays no role in the transition.
See the region 1 and 2 phase portraits in Fig. 7. Except for the orientation of
the bulbs, this is as described in subsection 1.1.3.

Resonant Hopf points. Some discussion of this case was already given in
subsection 1.1.3. The bulb-to-bulb transitions are all similar to the transition
through the period-doubling point. For example, as H

2

5 is approached from
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Figure 6: Fixed-point phase portraits near the cardioid cusp.
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Figure 7: Fixed and period-two point phase portraits near the period doubling point.

inside the main cardioid (region 1), a repelling period-5 orbit collapses on the
fixed point. Inside the 2/5 bulb (region 5), the period-5 orbit separates from
the fixed point, stability having been transferred from the fixed point to the
period-5 orbit. See the region 1 and 5 phase portraits in Fig. 8. Note that there
are a repelling fixed point and several other period-5 orbits that play no role
in the local bifurcation. These orbits are not represented in the Fig. 8 phase
portraits.

2.2 α = −0.1 : Figure 4

For α 6= 0, the resulting two-parameter family of maps is no longer complex
analytic, and we expect that it is a generic two-real-parameter family of maps
of the real plane. Thus we no longer expect to see bifurcations which are of
codimension above two (codimension defined as in the real setting). In partic-
ular, the cusp point of the main cardioid, and the period-doubling point of the
main cardioid are now nongeneric. A partial picture is illustrated in Fig. 4a.
Rectangles are drawn around regions whose enlargements are shown in other
parts of the Fig. 4.

Cardioid cusp point blowup. Look first at the region near where the
cusp of the main cardioid was for α = 0. Enlargements are shown in Figs. 4b
and 4c, with corresponding phase portraits in Fig. 6. The cusp on the Extended
Hopf curve has simultaneously evolved into a smooth loop and grown a trian-
gular curve of saddle-node points. There are two points in the four-dimensional
(z, C) space where the Extended Hopf and saddle-node curves intersect. Their
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Figure 8: Fixed and period-five point phase portraits near period-5 2/5 resonant Hopf
point.

projections to the C parameter plane are the indicated Takens-Bogdanov points.
The top one is labelled B1 in Fig. 4c. Such points have both eigenvalues
equal to one but a one-dimensional associated eigenspace. In between the two
Takens-Bogdanov points, the Extended Hopf curve is not a true Hopf curve:
the eigenvalues of the corresponding fixed point are real. Thus, there is no lo-
cal bifurcation between regions Ia and Ib. Recall that we are ignoring global
bifurcations in this study, although such bifurcations certainly do play a role.
See Peckham [1988] or Vance and Ross [1989] for bifurcation studies which do
include global bifurcations. Although those two bifurcation studies are of forced
oscillator systems, they have features similar to this study because both settings
include generic two-real-parameter Hopf bifurcation phenomena.

Consider a path in Fig. 4b from region 1 to Ia to Ib to III to 0. For C
parameter values in region 1 and region 0, the fixed-point phase portraits are
the same as for the α = 0 case: one attracting and one repelling fixed point
exist in region 1, while two repelling fixed points exist in region 0. But the path
from region 1 to region 0 is now much more complicated. As one enters region
Ia from region 1, a new pair of fixed points is born in a saddle-node bifurcation
(a pitchfork bifurcation if one passes through the cusp C1 on the Re{C} axis);
one new fixed point is a saddle and the other an attracting node. As one passes
from region Ib to region III, the saddle and the unique repelling fixed point
coalesce and disappear, again at a saddle-node bifurcation. The two attracting
fixed points that exist in region III then change to repelling, simultaneously if
we restrict C to its real axis, leaving us with two repelling fixed points by the
time we enter region 0. The end result is that a fixed point has changed from
attracting to repelling, just as happened as we passed from region 1 to region 0
in the α = 0 case.

Note that the cusps on the saddle nodes are necessary features: that is what
enables the saddle to be born with one fixed point (an attracting one) and die
with another (the repelling one). The saddle “changes partners” at the cusp

18



point.
If one passes through region II, shown in Fig. 4c, or II, its conjugate in the

C plane, the sequence indicated in Fig. 6 is slightly more complicated, but the
net result of going from region 1 to region 0 is, of course, the same.

Period-doubling point blowup. See the parameter space enlargement
in Fig. 4d and corresponding phase portraits in Fig. 7. The period-doubling
point has evolved into a period-doubling circle, PD1. The extended Hopf curve
EH1 passes through the circle, intersecting it in the two double-negative-one
eigenvalue points, the lower one only labelled, as N1. Remember the bifurcation
diagram is symmetric about the Re{C} axis, so labels have been made either in
the top or bottom half only. In between the two double-negative-one eigenvalue
points, the extended Hopf curve corresponds to saddle points, so there is no local
bifurcation between regions Ia and Ib. A variety of scenarios is possible in going
from region 1 to region 2. The most direct route is region 1 to Ia to Ib to 2.
It involves the birth of a single attracting period-two orbit in a period-doubling
bifurcation (region 1 to region Ia), and a death of the repelling period-two orbit
in a second period-doubling bifurcation (region Ib to region 2). This pair of
bifurcations changes the attracting fixed point first to a saddle and then to a
repeller. Thus we end up in region 2 as we did for the α = 0 case, with an
attracting period-2 orbit and two repelling fixed points. Other scenarios can
be seen from the figures. If we enlarged the region of Fig. 4d containing a
period-two Takens-Bogdanov point (B2) and a period-two cusp point (C2), the
diagram would resemble the period-one scenario in the Fig. 4c enlargement.

Resonant Hopf points: growth of Arnold tongues. Except for the
period doubling bifurcation just described above, the description of the bifur-
cations which have evolved from the points which were tangencies between the
main cardioid and some other bulb for the α = 0 case are all roughly similar.

First consider the bifurcations near the 2/5 bulb: from region 1 to II to Ia

to Ib to 5, in Figs. 4e and 4f. This bulb was chosen because the 2/5 Arnold
tongue conecting the main cardioid and the 2/5 bulb is oriented in the simplest
possible way. The accompanying phase portraits are in Fig. 8. The bifurcation
diagram is similar in some ways to the diagram described above for the cardioid
cups point blowup. There is a triangular region of saddle-node curves (the golf
tee, according to Rick Moeckel) inside which there exists an “extra pair” of
period-5 orbits. As one enters the triangular region from either side (and below
B5 on the left side), an extra saddle orbit and an extra attracting node orbit

are born. When close enough to the resonant Hopf point H
2

5 tip of the tongue,
the two new period-5 orbits live on an invariant circle. This is suggested in
phase portrait Ia. There is no change in stability between regions Ia and Ib,
but the invariant circle breaks and the orbits reallign themselves in preparation
for the saddle-node bifurcation at the top of the sadd-node triangle. As one
passes out the top of the triangular region (and to the left of B5 near the right
corner), the saddle period-5 orbit dies with a repelling period-5 orbit. In region
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5, the dynamics are similar to being in the period-5 bulb of the Mandelbrot set:
there is an attracting period-5 orbit and all other periodic orbits are (appear to
be) repelling. The main difference between this case and the saddle-node point
blowup case is that the in the saddle-node point blowup, the three corners of
the saddle-node triangle are all cusps (C1 in Fig. 4b), while in this case the

corners are two cusps (C5) and one resonant Hopf bifurcation point (H
2

5 ).
Now consider the enlargement of the region near the 1/3 bulb shown in Fig.

4g. We do not describe the phase portraits since they can largely be inferred
from the phase portraits we have already described. We do, however, make
the following observations. The period-three saddle-node curve has two cusp
points C3, but does not contain the resonant Hopf point H

1

3 . This is consistent
with the generic Hopf bifurcation picture of figure 3b. Another interesting
observation is the relative positions of the two period-doubling circles: PD3

and PD6. The period-six period-doubling circle has moved, as α has increased
from zero, from a position necessarily above the period-three period-doubling
circle to the position shown in Fig. 4g, completely inside the period-three period
doubling circle. This has been accompanied by the flattening of the extended
Hopf curve EH6, which used to be the period-six bulb boundary. This suggests
the formation of a nested sequence of period-doubling circles and possibly the
formation of a period-doubling route to chaos.

Finally, consider the enlargement Fig. 4h near the 1/5 resonant Hopf point.
The Arnold tongue is not so nicely oriented as is the 2/5 tongue in Fig. 4f. The
1/5 tongue suggests nearby Hopf bifurcations are subcritical. We include no
more phase portraits for the 1/5 region, but only point out that the bifurcation
scenario there is more complicated than in the 2/5 region.

2.3 α = +0.1 : Figure 5

The description of the α = +0.1 bifurcations is quite similar to that of the
α = −0.1 bifurcations. The scenario of the saddle-node point blowup is even
simpler than for α = −0.1 because the cusp perturbs to a smooth curve without
a loop. An enlargement of this region in figure 5. This is the only part of the
bifurcation diagram we show for α = +0.1. Corresponding phase portraits are
in figure 6.

The scenario for the α = +0.1 period-doubling point blowup is more compli-
cated than for α = −0.1. It is, however, like the scenario for α = −0.1 period-
doubling point blowup of the period-doubling point between the 1/2 bulb and
its 1/2 child. See Fig. 4d again. Note in particular that the period-two extended
Hopf curve, labelled EH4 has two components, and the two cusped saddle-node
curves, SN4 are attatched on the left and right of the period-doubling circle
PD2 rather than above and below it, as the two saddle-node curves SN2 are
attatched to the period-doubling circle PD1. For both α = −0.1 and α = +0.1
the period-doubling point blowups computed alternate between the simpler and
more complicated types.
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The resonant Hopf point blowups are generally similar to the α = −0.1 case.
No new figures are included for α = +0.1.

2.4 Shrinking back to points

It is useful to view again the bifurcation curves of Fig. 4a or any of its en-
largements and imagine what happens as α is increased toward zero. The green
saddle-node and blue period-doubling sets, and the enclosed regions and curves,
must all shrink back to a point, leaving us with the Mandelbrot set boundary
of Fig. 2.

3 Theorems

In this section we provide sufficient conditions for three types of bifurcation
points in a complex analytic family to evolve into a bifurcation region after
perturbation by a real function which is not complex analytic. The three types
are the cardioid cusp point, the period-doubling point, and the resonant Hopf
bifurcation point.

General setup. For all three theorems, the general form we consider has
F(α,C) : D → C, where D is a neighborhood of the origin in R2, or by the
obvious equivalence, a neighborhood of the origin in C. F(α,C) is defined by

F(α,C)(z, z) = fC(z) + αgα(z, z) (10)

where z = x + iy = reiθ ∈ C, C = C1 + iC2 ∈ C, α ∈ R and z = x − iy is
the complex conjugate of z. We assume that fC(z) is a one-complex-parameter
family of complex analytic maps defined on D and depending complex ana-
lytically on the parameter C. We also assume that gα(z, z) is a C∞ map of
R2 depending smoothly (C∞) on the real parameter α. Thus we can expand
fC(z) = a0(C) + a1(C)z + a2(C)z2 + a3(C)z3 + ... and gα(z, z) = g00(α) +
g10(α)z + g01(α)z + g20(α)z2 + g11(α)zz + g02(α)z2 + ..., where each ak(C) is
complex analytic on some neighborhood of the origin, and each gjk(α) is C∞

in some neighborhood of the origin. We will, by a slight abuse of notation,
sometimes think of z and C as variables in R2 by identifying z with (x, y) and
C with (C1, C2).

Remarks. All results are stated using the more computationally convenient
“(z, z)” coordinates. The “base” map for all three cases has a complex-codimension-
one degeneracy associated with it (a fixed point with a certain neutral eigenvalue
a1(0): f0(z) = a1(0)z+a2(0)z

2+...; fC is a generic one-complex-parameter com-
plex analytic unfolding of the base map; gα : R2 → R2 is the real perturbing
map, and α the perturbing parameter. Although gα is assumed to be C∞, it
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really only needs to be Ck with k large enough so that gα can be expanded in
a power series in z, z, and α up to the order indicated in the theorems. We
consider the two-real-parameter bifurcation diagrams for α fixed. In particular,
we discuss when a bifurcation point in the C plane for α = 0 blows up into a
bifurcation region for α nonzero. All results are local in the variables (z, C, α)
in the five-real-dimensional space C × C × R. The second and third theorems
are stated assuming the expansions of the complex-analytic family fC(z) and
the perturbing family g(z, z) are in normal form.

Theorem 3.1 The cardioid cusp point blowup. Let F(α,C)(z, z) be defined
as above in Eq. (10). Assume the accompanying general setup and

1. Eigenvalue one condition for f0: a0(0) = 0, a1(0) = 1

2. Higher order nondegeneracy condition for f0: a2(0) 6= 0

3. Unfolding nondegeneracy condition for fC : a′
0(0) 6= 0 (The prime indicates

the complex derivative.)

4. Blowup nondegeneracy condition on gα: g01(0) 6= 0.

Then, near (0, 0, 0), {(z, C, α) ∈ R2 ×R2 ×R : z is a fixed point for F(α,C) with
eigenvalue 1} is a topological cone. Each constant α cross section is

• a nondegenerate topological circle if α 6= 0. This circle also projects non-
trivially (not as a point) the C parameter plane.

• a point if α = 0.

The sketch of the proof is as follows. We first make an α and C dependent
translation in z to keep the coefficient of z in our family at one, independent
of the parameters C or α. This is what we consider our normal form for this
bifurcation. Since it is not as well-known as the normal forms for the bifurcations
of Theorems 2 and 3, we include it in Sec. 4 as the Cardioid cusp normal form
lemma. Next we solve, using the implicit function theorem for C as a function
of α and z to ensure that z is a fixed point for F(α,C). Then we substitute
into the eigenvalue one equation and collect the lowest order terms in our small
parameters, α and r (z = reiθ). The result is then obvious. Details are in Sec.
4.

Theorem 3.2 The period-doubling point blowup. Let F(α,C)(z, z) be de-
fined as above in Eq. (10). Assume the accompanying general setup and

1. Eigenvalue negative one condition for f0: a0(0) = 0 and a1(0) = −1

2. Normal form assumption through order three for fC and gα: Coefficients
a0(C), a2(C), g00(α), g20(α), g11(α), g02(α), are identically zero (Any
term with even total power–the sum of the powers of z and z–can be elim-
inated by a near identity change of coordinates.)
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3. Higher order nondegeneracy condition for f0: a3(0) 6= 0

4. Unfolding nondegeneracy condition for fC : a′
1(0) 6= 0 (The prime indicates

the complex derivative.)

5. Blowup nondegeneracy condition for gα: g01(0) 6= 0.

Then, near (0, 0, 0), {(z, C, α) ∈ R2 ×R2 ×R : z is a fixed point for F(α,C) with
eigenvalue −1} is a topological cone. Each constant α cross section is

• a nondegenerate topological circle if α 6= 0. This circle also projects to a
nondegenerate topological circle in the C parameter plane.

• a point if α = 0.

The proof is much simpler than the saddle-node blowup proof because the
unique fixed point is always at the origin in the normal form. Details are in Sec.
4.

It turns out that if g01(0) 6= 0 then the radius of the circular cross sections
is O(α). The theorem is true for a generic base map having a fixed point with
derivative -1 by first converting to the normal form in the statement of the
theorem.

Theorem 3.3 The bulb contact point blowup. Let F(α,C)(z, z) be defined
as above in Eq. (10). Assume the accompanying general setup and

1. p/q resonant Hopf eigenvalue condition: a0(0) = 0 and a1(0) = e2πip/q

2. Normal form assumption through order q + 1: a0(C) = 0, ak(C) = 0 for
k = 2, 3, ..., q, gij(α) = 0 for i, j nonnegative integers whose sum is less
than q + 1 and i − j − 1 is not a multiple of q.

3. Higher order nondegeneracy condition for f0: aq+1(0) 6= 0

4. Unfolding nondegeneracy condition for fC : a′
1(0) 6= 0 (The prime indicates

the complex derivative.)

5. Blowup nondegeneracy conditions for gα: g21(0) 6= 0 and g0,q−1(0) 6= 0.

Then, if q ≥ 5 (to avoid “strong resonances”), near (0, 0, 0), each constant α
cross section of {(z, C, α) ∈ R2 ×R2 ×R : z is a period-q saddle-node point for
F(α,C)} is

• a nontrivial set including at least 2q curves which join at the origin if
α 6= 0. This set projects to a set which includes the sides of an Arnold
resonance tongue in the C parameter plane

• a point if α = 0.

23



The proof is a direct application of results of Arnold [1983]. The hedge is
that these results give only part of the bifurcation picture. The full picture
for nonzero α, and including the strong resonance cases q = 4 or 5, based on
numerical continuations, is conjectured below.

Conjecture 3.4 The bulb contact point blowup conjecture. Assume
the hypotheses of the Bulb contact point blowup theorem. Then, there exists a
neighborhood N of (0, 0, 0) such that each nonempty, constant α cross section
of N ∩ {(z, C, α) ∈ R2 ×R2 ×R : z is a period-q saddle-node point for F(α,C)}
is

• for q ≥ 5:

– a flower with q petals if α 6= 0. This flower projects to a triangle with
three cusps in the C parameter plane. One cusp is the resonant p/q
Hopf point; the other two are cusps which are the standard saddle-
node with a higher order degeneracy.

– a point if α = 0.

• for q = 3:

– a topological circle if α 6= 0. This circle projects to a topological
circle with two cusps in the C parameter plane. The missing cusp
from the q ≥ 5 case is the cusp and the resonant Hopf point. Instead,
the saddle-node curve swings around the resonant Hopf point in a
smooth curve.

– a point if α = 0.

• for q = 4: This case is like the q ≥ 5 case if |g21(0)| > |g03(0)| and like
case q = 3 if |g21(0)| < |g03(0)|.

See the numerically computed projections to the phase space in Fig. 9. The
projections to the parameter space were already shown: SN5 in Fig. 4f and SN3

in 4g.
See McGehee and Peckham [1994] for additional discussion of the geometry

of fixed-point and periodic point surfaces, the saddle-node curves on the periodic
point surface, the intersection of the saddle-node curves at the resonant Hopf
point, and the projection of all these sets from the phase × parameter space to
the parameter space.

4 Proofs

Lemma 4.1 The Cardioid cusp normal form lemma. Let Fβ(z, z) be
a C∞ k-complex-parameter family of maps of R2. Expand F as Fβ(z, z) =
F00(β) + F10(β)z + F01(β)z + F20(β)z2 + F11(β)zz + F02(β)z2 + .... Assume
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Figure 9: Numerically computed saddle-node loci for α = −0.1, projected to the z
phase plane a) 2/5 saddle-nodes, b) 1/3 saddle-nodes.

F0 is complex analytic, F10(0) = 1 and F20(0) 6= 0. Then, there exists a β
dependent translation ω = z−T (β) such that, in the new variables, the resulting
map has its linear coefficient always equal to one. That is, if G is defined
by Gβ(w,w) = Fα(w + T (β), w + T (β)) − T (β), and the expansion of G is
Gβ(w,w) = G00(β)+G10(β)w+G01(β)w+G20(β)w2+G11(β)ww+G02(β)w2+
..., then G10(β) = 1.

Proof Define the translation by ω = z − T . The definitions of F and G in
the statement of the Lemma imply that G has the form:

Gβ(w,w) = F00(β) + F10(β)T + F01(β)T + O2(T, T ) − T
+w(F10(β) + 2F20(β)T + F11(β)T + O2(T, T ))
+w(F01(β) + F11(β)T + 2F02(β)T + O2(T, T ))

+O2(w,w).

Thus G10(β) = F10(β) + 2F20(β)T + F11(β)T + O2(T, T ). Define K(T, T , β) ≡
G10(β) − 1. We want to show that there exists a complex-valued function
T (β) such that K(T (β), T (β), β) = 0. This is equivalent to showing there exist
two real valued functions T1(β) and T2(β) such that K̃(T1, T2, β) ≡ K(T1(β) +
iT2(β), T1(β)−iT2(β), β) = 0. Since F10(0) = 1 by assumption, then K̃(0, 0, 0) =
0, and the functions T1(β) and T2(β) clearly exist by the implicit function the-
orem if

det

(

∂K̃1

∂T1

∂K̃1

∂T2

∂K̃2

∂T1

∂K̃2

∂T2

)

|(T1,T2,β)=(0,0,0) 6= 0,
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where K̃1 = Re(K̃) and K̃2 = Im(K̃) Straightforward differentiation shows this
matrix is

(

2Re(F20(0)) + Re(F11(0)) − 2Im(F20(0)) + Im(F11(0))
2Im(F20(0)) + Im(F11(0)) 2Re(F20(0)) − Re(F11(0))

)

.

Its determinant is 4|F20(0)|
2 − |F11(0)|

2 = 4|F20(0)|
2 6= 0 since F11(0) = 0 (F is

analytic at β = 0), and F20(0) was assumed to be nonzero.
2

Proof of the Cardioid cusp blowup theorem 3.1 We apply the lemma
just proved to F(α,C), with β = (α,C). We can think of α as complex for the
application of the lemma, even though we are only interested in α real. Thus,
we can assume that a1(C) + αg10(α) = 1. Note that there is no translation
at β = (0, 0), so g01(0) is unchanged by the lemma’s translational change of
variables.

The saddle-node set, after changing to polar coordinates z = reiθ is the zero
set of the function G : C2 ×R+ × S → C ×R defined by

G(α,C, r, θ) =

{

F(α,C)(re
iθ, re−iθ) − reiθ

1 − tr(DF ) + det(DF )

The complex part of G being zero is the fixed point condition; the real part
being zero is the eigenvalue one condition. DF is defined by

DF =

(

Fz Fz

Fz Fz

)

.

This matrix is similar to the Jacobian matrix we would obtain if Eq. (10) were
written in cartesian coordinates. In fact it is obtained by standard complexi-
fication and a linear change of variables from the cartesian coordinates to the
(z, z) coordinates. Since we use only the determinant and trace of this matrix,
the eigenvalue one condition is valid with the matrix in either coordinates. The
(z, z) Jacobian is, however, easier to compute than the cartesian coordinate
Jacobian.

Note that for α = 0, (z, C) = (0, 0) is a root of G. That this is the unique
root is most easily seen by replacing the eigenvalue one real expression of G
with f ′

C(z) − 1. This replacement is possible since F(0,C)(z, z) = fC(z) is com-
plex analytic. Now the (complex) implicit function theorem can be applied to

G̃(z, C) ≡

{

fC(z) − z
f ′

C(z) − 1
. Now G̃ : C2 → C2 and is complex analytic in both

variables. The two-by-two complex Jacobian matrix at the origin turns out to
be nonzero because of the assumptions that a′

0(0) and a2(0) are both nonzero.
Thus the theorem is established for α = 0.

The remainder of the proof is to show that for α small but nonzero, the
roots of G are a topological circle in the remaining variables: (reiθ, C) ∈ C × C
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if g01(0) 6= 0. We do this by using the implicit function theorem to solve
the fixed-point equation for C = C(α, r, θ) and then plugging the result into
the eigenvalue one equation. Since G1 depends complex analytically on C,
we save much algebra by treating it as a single complex variable rather than
as two real variables. Then the hypotheses of the implicit function theorem
require the nondegeneracy condition a′

0(0) 6= 0, since ∂G1

∂C |(0,0,0,θ) = a′
0(0). Since

∂G1

∂α |(0,0,0,θ) = g00(0) and ∂G1

∂r |(0,0,0,θ) = 0, we can further use the implicit

function theorem to obtain C = C(α, r, θ) = −g00(0)
a′

0
(0) α + O2(α

2 + r2 + αr).

There is θ dependence only in the O2 terms. Moreover, we can use aj(C) =

aj(0) + a′
j(0)C + O(C2) to obtain aj(C) = −a′

j(0)
g00(0)
a′

0
(0) α + O2(α

2 + r2 + αr).

We are now ready to attack the eigenvalue one part of G. We first note

that DF is of the form DF =

(

1 + A B
B 1 + A

)

, where A = 2a2(C)reiθ + O(r2) +

α(2g20(α)reiθ+g11(α)re−iθ+O(r2)) and B = α(g01(α)+g11(α)reiθ+g02(α)re−iθ+
O(r2)). Recall that we have used the lemma to set a1(C) + αg10(α) = 1. After
substituting for aj(C) as at the end of the previous paragraph, the eigenvalue
one equation then “reduces” to

0 = 1 − tr(DF ) + det(DF ) = AA − BB
= 4|a2(0)|

2r2 − |α|2|g01(0)|
2 + O3(αr2 + r3 + α2r + α3)

(11)

If |g01(0)| 6= 0, this is, to lowest order in r and α, apparently a cone in z ×
α variables (recall z = reiθ), with circular cross sections for α constant and
nonzero. (If |g01(α)| ≡ 0 after the translation of the Cardioid cusp normal form
lemma, then Eq. (11) has the form 0 = 4|a2(0)|

2r2 + r2O1(r, α), so r = 0 is
the only local solution to this equation. Thus no blowup would occur as α is
perturbed away from zero. Of course, one would have to perform the translation
in order to check this condition.)

As to the nontrivial projection of the circular cross sections to the C plane,
this is guaranteed by |a2(0)| 6= 0, which ensures that the fixed point surface
(which contains the saddle-node curve) is quadratic near (z, C) = (0, 0) and will
thus project locally at most four-to-one to the parameter plane.

The computer generated saddle-node curves suggest that the projection is 1-
1: a topological circle with 3 cusps. This is also consistent with the singularity
theory unfolding of an elliptic umbillic, of which this saddle-node set is an
example [Zeeman 1977]. 2

Proof of the period-doubling blowup theorem 3.2. We wish to find
the roots of G : C2 ×R+ × S → C ×R defined by

G(α,C, r, θ) =

{

F(α,C)(re
iθ, re−iθ) − reiθ

1 + tr(DF ) + det(DF )
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The complex part of G being zero is the fixed-point condition; the real part

being zero is the negative one eigenvalue condition. DF =

(

Fz Fz

Fz Fz

)

, as in the

previous proof; α can be thought of as either complex or real. We are using polar
coordinates in the z plane: z = reiθ. The use of the normal form means the
unique fixed point is at z = 0 for all values of C and α. This greatly simplifies
the negative one eigenvalue condition because we only need DF at z = 0. We
quickly (compared to the corresponding equation for the saddle-node blowup
theorem) see this condition reduces to

|(a1(C) + 1 + αg10(α)|2 = α2|g01(α)|2.

This describes a geometric circle in the complex variable a1: center −1−αg10(α)
and radius |αg01(α)|. Since our assumptions require a′

1(0) 6= 0, this circle in the
a1 plane corresponds to a topological circle in the C plane as well. If α = 0 or
g01(α) = 0, the circle degenerates to a point. This is stronger than the statement
of the theorem. Certainly if g01(0) 6= 0, then g01(α) 6= 0 for α sufficiently small.

2

Proof of the bulb contact point blowup theorem 3.3. For any nonzero
α, the conditions that |g21(0)| 6= 0 and |g0,q−1(0)| 6= 0 are precisely the condi-
tions required for the Arnold tongues to exist [Arnold 1983]. 2

5 Summary

This paper presents preliminary results on the problem of bifurcations which
evolve when a one-complex-parameter family of maps of the complex plane is
perturbed in a non-complex-analytic way. The bifurcation pictures computed
for this paper tell a fascinating story, but they are certainly not the complete
story. Obviously missing are any curves of global bifurcations – homoclinic
tangencies, for example. Detailed studies including these global bifurcations
are expected to resemble the detailed studies of Peckham [1988] and Vance and
Ross [1989]. These two references are both bifurcation studies of forced oscillator
systems, but both include Hopf bifurcation scenarios, and the details near the
Hopf bifurcations are similar to the details we would expect to add in Figs. 4
and 5.

The analytical results presented here still leave unanswered questions. For
example, we have not treated the period-two saddle-nodes which appear in
Fig. 4d in the period-doubling point blowup. Also the contact point blowup
conjecture remains to be proved. Furthermore, we have treated in our theorems
only one bifurcation locus at a time. Work in progress [Montaldi and Peckham,
in prep.] studies the fixed-point saddle-nodes, period-doublings, and extended
Hopf loci as a single unit. There is a surprising amount of complexity added to
the resulting bifurcation and singularity problem even when we group the three
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loci together. Including higher period phenomena would further increase the
complexity.

We note that all the results we have presented in this paper are local ones.
Since the phenomena we studied are all near Hopf bifurcation curves, where the
Jacobian derivative matrix is necessarily nonsingular, we have not addressed at
all the issue of noninvertibility for these maps. To continue in this direction,
we would be studying what the noninvertible map researchers call a “Z2 − Z4”
map. That is, the number of preimages of points in the plane is either two or
four. We are aware of papers of Bielefeld et. al. [1993] and Nien [preprint,
1996] addressing global dynamics of maps which are close to complex analytic.
A better understanding of the dynamics of such maps, and the relationship to
corresponding complex analytic maps, is still being pursued.
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7 Figure Captions

1. Approximation of the Mandelbrot set.

2. Some numerically computed bulb boundaries of which the Mandelbrot set
boundary is comprised (α = 0.0).

3. Generic Hopf bifurcation phenomena a) Bulb tangencies in the complex
setting b) Arnold tongues in the real setting.

4. Numerically computed C plane bifurcation diagrams for α = +0.1. a) all
computed curves, b,d,e,g,h) enlargements of (a), c) enlargement of (b), f)
enlargement of (e).

5. Enlargement of parameter plane near the cardioid cusp for α = +0.1.

6. Fixed-point phase portraits near the cardioid cusp.

7. Fixed and period-two point phase portraits near the period doubling point.

8. Fixed and period-five point phase portraits near period-5 2/5 resonant
Hopf point.

9. Numerically computed saddle-node loci for α = −0.1, projected to the z
phase plane a) 2/5 saddle-nodes, b) 1/3 saddle-nodes.
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