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Abstract

This paper is primarily a numerical study of the fixed-point bifurcation
loci — saddle-node, period-doubling and Hopf bifurcations — present in the
family:

z— foa(z,2) =2+2° +C+ Az

where z is a complex dynamic (phase) variable, Z its complex conjugate,
and C and A are complex parameters. We treat the parameter C as a
primary parameter and A as a secondary parameter, asking how the bifur-
cation loci projected to the C plane change as the auxiliary parameter A
is varied. For A = 0, the resulting two-real-parameter family is a familiar
one-complex-parameter quadratic family, and the local fixed-point bifur-
cation locus is the main cardioid of the Mandlebrot set. For A # 0, the
resulting two-real-parameter families are not complex analytic, but are
still analytic (quadratic) when viewed as a map of R”?. Saddle-node and
period-doubling loci evolve from points on the main cardioid for A = 0
into closed curves for A # 0. As A is varied further from 0 in the complex
plane, the three sets interact in a variety of interesting ways.

More generally, we discuss bifurcations of families of maps with some
parameters designated as primary and the rest as auxiliary. The auxiliary
parameter space is then divided into equivalence classes with respect to a
specified set of bifurcation loci. This equivalence is defined by the existence
of a diffeomorphism of corresponding primary parameter spaces which
preserves the specified set of specified bifurcation loci. In our study there
is a huge amount of complexity added by specifying the three fixed-point
bifurcation loci together, rather than one at a time.

We also provide a preliminary classification of the types of codimension-
one bifurcations one should expect in general studies of families of two-
parameter families of maps of the plane. Comments on numerical contin-
uation techniques are provided as well.
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1 Introduction: Background and Motivation

This paper is primarily a numerical study of certain properties of the family of
maps of the complex plane

fea(z) =22+ 2+ C + Az, (Model)

where z is a complex dynamic (phase) variable, Z its complex conjugate, and C
and A are complex parameters. In particular, we study the loci of the bifurca-
tions of the fixed points present in this family: the saddle-node, period-doubling
and Hopf bifurcations.

For A = 0, the family is equivalent to the complex quadratic family, Q(é :

2 — 22+ C, but for nonzero A, our family is non-complex-analytic. So it makes
more sense to view the whole family as maps of R? rather than as maps of
C. This is done by considering as real variables both the real and imaginary
parts of z. Similarly, we view all complex parameters as two real parameters.
Our family can then be considered as a four-real-parameter family of maps of
the real plane. We prefer, however, for reasons discussed below, to consider it
as a two-parameter family of two-parameter families of maps of the plane. In
this context C' codes the two real primary parameters and A codes the two real
auxiliary parameters.

Our model family is of interest for a variety of reasons. Not the least is that
it contains the family f(c o) which is equivalent to the quadratic family, Q(é. See
subsection 1.1 for details on the equivalence. The family f(c ) demonstrates a
fascinating richness on its own. This is evident in particular in the Mandelbrot
set M in the C plane, defined as the set of C values for which the orbit of
the critical point under f(c ) stays bounded. Many facts about the intricate
structure of M are known. For example, the interior of M contains an infinity
of bulbs (hyperbolic components), each bulb corresponding to maps with an
attracting periodic orbit of a given period. That the union of the bulbs gives the
whole interior of M is widely conjectured, but to our knowledge still unknown
(Carleson and Gamelin [1993], for example). As such, a complete bifurcation
study of our model family, which includes the complex quadratic family, is
necessarily impractical. Some restrictions are necessary in order to design a
more practical study.

One possibility is to restrict our auxiliary parameter A to be small and/or
real. Studies in this direction include Bielefeld, Sutherland, Tangerman and
Veerman [1993] (r2*¢%* 4+ C), Drexler [1996] (22 +C + az), and Peckham [1998]
(22 + C+ az). In all three studies, the parameter « is real, and for a = 1,0, 0,
respectively, each corresponding family is the quadratic family 22 + C.

Our choice, however, was to restrict the types of bifurcations we considered.
The natural first choice for us was to restrict to local fixed-point bifurcations:
saddle-nodes, period doublings, and Hopf bifurcations. This drastic restriction
still left us with an incredible number and complexity of phenomena to study.
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With regard to the Mandelbrot set, this restricts our attention to only its main
cardioid. Inside this cardioid, each corresponding map has an attracting fixed
point. On the cardioid itself, each corresponding map has a fixed point with
neutral linear stability. As A is perturbed from zero, the cardioid undergoes
an interesting evolution, largely as the Hopf bifurcation curve of the perturbed
families. The bifurcation evolution (as A varies from zero) in a neighborhood
of each C' value on the cardioid is fascinating, but by restricting to only fixed-
point phenomena, two points are distinguished from the rest: the cusp point at
C =0(C =1in22+0C), which we call the saddle-node point in this paper,
and the point halfway around the cardioid at C' = —1 (CNY = —% in 22 + C’),
called the period-doubling point. These two points are distinguished because
fixed-point bifurcations grow from them as A is perturbed from zero: a fixed-
point saddle-node curve evolves from the saddle-node point and a fixed-point
period-doubling curve evolves from the other (period-doubling) point. It is the
interaction of these three bifurcation curves: saddle-node, period-doubling, and
Hopf, that occupies most of this paper.

Interest in the saddle-node point in particular led to the form of our model
family: z+224+C+ Az is obtained from 22+C+ AZ by translating the saddle-node
point (in both C and z) to the origin. The AZ perturbing term was chosen as the
simplest one which breaks the complex analyticity of the family. The complex
parameter A was deemed necessary because our early numerical studies showed
that several bifurcation scenarios which were obtained for complex values of A
were not obtainable for real values of A. This was true even when we considered
phenomena which were restricted to a neighborhood of the saddle-node point.
That is, the numerics indicated the real codimension of the cusp point was at
least two (in the auxiliary parameter space). This is also consistent with the
fact that the linearization at the saddle-node fixed point, being the identity, is of
codimension four (in the total parameter space — primary plus auxiliary). Thus
a four-total-parameter unfolding, which we have via the complex parameters C'
and A, was for us, necessary.

Separating our parameters as primary vs. auxiliary coincides with the treat-
ment adopted by Golubitsky and Schaeffer [1985], where they identify a single
primary bifurcation parameter and view all other parameters as auxiliary pa-
rameters. In our work it seems more natural to designate two primary parame-
ters. This is largely because of the original motivation: studying maps which are
non-complex-analytic perturbations of one-complex-parameter families, such as
22 4+ C. The original complex parameter (C in 22 + C) gives a natural choice
for the two real primary parameters.

The general goal of the study of our family f(¢, 4) is to understand how bifur-
cation diagrams in the C plane change as the auxiliary parameter A is varied.
More precisely, we would like to divide the A plane into equivalence classes,
where equivalence of two A values A and A is defined by having equivalent
corresponding C' plane bifurcation diagrams. There are, however, many ways
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to define equivalence of C' plane bifurcation diagrams. Our notion of equiv-
alence with respect to specified bifurcation phenomena is further described at
the beginning of section 2. The loci we deal with are fixed-point saddle-nodes,
fixed-point period-doublings, and fixed-point (extended) Hopf bifurcations. We
first treat each of these sets individually, then together. There is a huge amount
of complexity added to the study when loci are grouped together.

What we believe to be new in this paper are the use of a complex rather
than real auxiliary parameter, the idea of equivalence with respect to specified
bifurcation loci, the numerical results for our family, including a global division
of the auxiliary parameter space (we consider all A values in the plane), the
classification of types of bifurcations present in more general families of two-real-
parameter-families of maps of the plane, and the relationship between certain
codimension-one phenomena in the space of two-real-parameter-families of maps
of the plane to codimension-three phenomena, in the space of maps of the plane.
Some of the continuation techniques may also be new.

The rest of the paper is organized as follows. In the rest of the introduction,
we relate our model to the quadratic family (sec 1.1), and then present a few
of the results of a previous study [Peckham, 1998] to better explain the setting
and the context of the current study (sec 1.2). In sec 2, we present our case
study of the model family. We derive explicit formulas for our three bifurcation
loci, and we use these formulas to determine certain bifurcation curves in the A
plane. Other A-plane bifurcation curves are located and computed numerically.
In sec 3 we classify the bifurcations which are codimension-one in the auxiliary
parameter space. In sec 4 we comment on the continuation algorithms used to
compute the bifurcation diagrams in the paper.

1.1 The complex quadratic family

Note that when A = 0 our family fic 4)(2) = 2* + z + C + Az, is equiva-
lent (conjugate) to what is usually referred to as the complex quadratic family
Q(é,o)(w) = w? + C via a change of parameter: fco) = Q(C+%,0), where the
equivalence is given by the translation w = z + % The form z + 2% + C' is more
suited to our purposes because it moves a primary point of interest, the “saddle-
node point” of the complex quadratic family, to the origin in both variables z
and C.

Furthermore, when either quadratic family, f(c) or Q(c",o): is perturbed
with the simplest possible non-complex-analytic term, AZ (resp. Aw), the re-
sulting families f(c,4)(2) and Q& 4)(w) = w? +C + AW, are conjugate, again by
the translation w = h(z) = z + 3. That is, ho fic,a) = Q(CJF%_%’A) o h. Thus,
for any fixed A, the geometry of the C' plane bifurcation sets for the f(c 4) is a
translation of the bifurcation sets for Q(é, A)-
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1.2 Points to regions

We now recall a few of the results of previous work [Peckham, 1998] to better
describe the setting and context of the current study. More complete expla-
nations are included in that reference. Figure 1 summarizes the results of that
work. Figures 1a and 1b show partial C-plane bifurcation diagrams for the fam-
ily Q(c,4) for A =0and A = —0.1, respectively. By the above subsection, these
bifurcation diagrams are translates of those for the family f(c, 4)(2) studied in
this paper.

Place Figure 1 near here.

The primary C-plane bifurcation diagram for A = 0 are the boundaries of the
bulbs (i.e., hyperbolic components) of the Mandlebrot set. When considered as
a two-real-parameter family of maps of the plane, the bulb boundaries are Hopf
bifurcation curves. Some of these bulb boundaries are shown in Fig. 1la. When
A # 0, these bulb boundaries evolve into much more interesting bifurcation
scenarios. More specifically, certain bifurcation points in the Mandlebrot set
(the cusp H°/' of the main cardioid and the contact points between bulbs such
as H'/?) evolve into bifurcation regions. An example, with A = —0.1, is shown
in Fig. 1b. All curves shown are local periodic-point bifurcations: saddle-nodes,
period-doublings, or Hopfs. They are determined by the following equations,
respectively, where Q(C, 4) is the four-real-parameter family of maps of the plane
defined above in sec 1.1 (interpreting the complex plane as equivalent to R?)
and DQ ¢ 4) s its two-by-two Jacobian derivative matrix. Recall that A is fixed
in each part of Fig. 1.

Q?G,A) (':C7 y) - ('7:7 y) =

1= tx(DQfs 4 (2,1)) +det(DQ;  (@,y) = (SN,)

I
o o

I
o o

Q?C’,A) (IL', y) - (iE, y)

1 + tr(DQ?C",VA) (xa y)) + det(DQ?c"v’A) ('Z.: y))

?C't’A)(x;y) - (xay)
det(DQ?é’A)(a:,y)) -1 =0
|tr(DQ?C'v,A) («T;y))l < 2.

The first vector equation for all three loci is equivalent to two scalar equations
and requires (z,y) to be a period-n point of @ &, 4)- The remaining equations are
restrictions on the eigenvalues. They are obtained by recalling that an eigenvalue
A of a 2 x 2 matrix B satisfies A2 — tr(B)\ + det(B) = 0. Thus the period-n
saddle-node (SN,) requires an eigenvalue of one for DQ ¢, 4), the period-n
period-doubling (PD,,) requires an eigenvalue of negative one for DQ((;’ A)> and
the period-n Hopf (H,,) requires DQ(G, 4y to have complex conjugate eigenvalues

(PDy)

(EHp) (H.)
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on the unit circle. Nondegeneracy conditions which would ensure nodegenerate
bifurcations are not considered here. Note that the Hopf condition can be
reformulated by requiring the product of the two eigenvalues to be one and
the trace to be less than two in magnitude. Without the trace restriction, the
product of the eigenvalues equalling one would extend the true Hopf set to also
include nonbifurcation points which are saddles with eigenvalues such as 2 and
1/2. The label (EH,) stands for this period-n Fztended Hopf locus. It is the
algebraic closure of the Hopf locus.

As explained, for example in Peckham [1998], saddle-node and period-doubling
loci are points in generic one-complex-parameter families of complex analytic
maps of the complex plane, but curves in generic two-real-parameter families of
analytic (or C* or C*) maps of the real plane. One of the primary differences
between Fig. la and Fig. 1b is the presence in the latter figure of saddle-node
and period-doubling curves. For example, there is a circle of fixed-point period-
doubling points (PD;) in Fig. 1b which has grown out of the period-doubling
point (the contact point H'/? between the main cardioid and the period-two
bulb in Fig. 1a). Similarly, there is a triangular curve of saddle-node points
(SNy) in Fig. 1b near where the cusp, H%/! of Fig. 1a’s main cardioid was. The
triangular saddle-node curve is barely visible, but if it were enlarged, it would
be topologically equivalent to the triangular saddle-node curve and nearby ex-
tended Hopf curve displayed in C-plane 1 in Fig. 9b. All other period-n bulbs
in Fig. 1b have been deformed from Fig. 1a, and the bulb contact points of 1a
have evolved into period-n saddle-node curves, SN,,. Details are in Peckham
[1998].

In one sense this paper narrows the focus of Peckham [1998] by restricting
attention to only the fixed-point bifurcations. That is, of the bifurcations in
Fig. 1a, this paper deals only with the fixed-point (extended) Hopf curve EHy,
the saddle-node point H%/', and the period-doubling point H'/?; of the bifur-
cations in Fig. 1b, this paper deals only with the fixed-point extended Hopf
curve EH,, the fixed-point period-doubling curve PD;, and the fixed-point
saddle-node curve SN;. On the other hand, this restriction to local fixed-point
bifurcations allows us to more easily broaden the consideration of the auxiliary
parameter: we consider all values of the complex auxiliary parameter A rather
than merely values which are real and close to A = 0.

2 Equivalence w.r.t. specified bifurcation loci

In this section, we study the model family of maps fc,a) : R? = R2, recopied
from the Introduction:

fiea)(z) =2 +2+C + Az

We describe the evolution of the three principal local fixed-point C-plane
bifurcation loci: saddle-nodes, period-doublings, and (extended) Hopfs as the
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auxiliary parameter A is varied. Of course restricting to these three bifurca-
tions ignores many bifurcation aspects of the problem, but as we shall see, the
information contained in these sets includes much more than one might at first
suspect.

Note that any one of our bifurcation points is really associated to a single
point in the six-real-dimensional space coded by (z,C,A). It is the ways in
which, for fixed values of the auxiliary parameter A, these bifurcation points
project to the C' parameter plane that we wish to now classify. We will view
two A values as equivalent with respect to a specific collection of bifurcation loci
if the collection of bifurcation loci projected to the C' plane “looks the same.”
The following definition makes “looks the same” more precise, although we
use it only as a guide for our bifurcation study. We don’t actually prove that
bifurcation diagrams which we view as equivalent are, in fact, equivalent.

Definition 2.1 Let g(c,a)(x) be an k+1 parameter family of maps of R™ where
C e RF, Aec R, and x € R*. Assume C codes the primary_parameters
and A codes the auziliary parameters. Two auziliary parameters A and A are
equivalent with respect to a specific collection of bifurcation loci if there is a
diffeomorphism h : RE — RE which maps the C space for A to the C' space
for A and maps the corresponding bifurcation loci in the C' plane for A to their
respective counterparts in the C plane for A.

We remark that our definition of equivalence is of course only one of many
possible notions one might employ. At one end of the spectrum would be the
establishment of a diffeomorphism h for which f 4 and f(,(c) 4, are topo-

logically conjugate. That is, f 4)(2) = ¢5" © fey, 4y © ¢c(2), with ¢c a
two-real-parameter family of homeomorphisms of R? which varies at least con-
tinuously with C. Of course, establishing topological conjugacy for even one
pair of maps of the plane is in general a difficult problem, so doing this for pairs
of whole two-parameter families of maps, except in special cases, is not very
practical.

Note that if two families f o 4) and f;cy, 4) were shown to be topologically
conjugate, then the dlffeomorphlsm h would necessarlly map bifurcation sets in
the C plane for A to corresponding bifurcation sets in the C plane for A. For
example, the set of fixed-point saddle-node bifurcations in the H(C) plane for
A would map to the fixed-point saddle-node bifurcations in the C' plane for A.
One way to weaken the equivalence defined by topological conjugacy would be to
merely require that h map all corresponding bifurcation sets to each other, but
not require that the corresponding maps, f(c, A) and f(h(C), Ay be topologically
conjugate.

Since a typical family has an infinity of bifurcation curves: saddle-nodes,
period-doublings and Hopf bifurcations for all periods, not to mention a multi-
tude of global bifurcations, requiring h to map all corresponding bifurcation sets
to each other is still an impractical requirement. Instead, we restrict attention
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to a specified set of bifurcation loci. Note that the larger the set of bifurcation
loci specified, the finer the division of the A plane into equivalence classes.

Our definition requires h to be a diffeomorphism rather than a homeomor-
phism because we want cusps in the primary parameter plane (the C plane) to
be preserved. The smoothness of h should in general match the smoothness of
the maps under consideration. Orientation preservation for h may desirable in
some cases, but we do not require it in our definition. The idea of the defini-
tion is motivated by wanting g (C,4) and I(n(c é ),A) to have the same number and
stability of period-n points when the speci ed collectlon of bifurcation loci in-
cludes all three local period-n bifurcations: saddle-nodes, period-doublings and
Hopfs. This correspondence is not guaranteed in general by the definition, but
is satisfied when A and A are in the same connected component of equivalence
classes of the auxiliary parameter space.

In our model family, the dimensions of the phase space (n), the primary
parameter space (k), and the auxiliary space (1) are all two. Note that with
this heierarchical approach for four real parameters coded by the two complex
parameters C' and A, curves such as the saddle-node, period-doubling and Hopf
bifurcations in the C' plane will describe bifurcations which are codimension-one
in the traditional sense (with no distinguished parameters), while curves in the A
plane will describe codimension-one phenomena in the space of two-parameter
families of maps (that is, codimension-one in the auxiliary parameter space).
These codimension-one phenomena in two-parameter families, when they cor-
respond to traditional bifurcations, are typically codimension-three phenomena,
in the traditional sense.

Because the quadratic family admits explicit calculation, we provide many
explicit formulas for bifurcation sets in the this section. In particular, we pro-
vide both the equations defining our bifurcation sets and explicit parametric
representations of their solutions.

We first treat each bifurcation locus separately; then we treat them as a
group. Specifically, we discuss A-plane bifurcation diagrams for projections of
the following loci to the C-plane: Saddle-node (sec. 2.1), Period-doubling (sec
2.2), Extended Hopf (sec 2.3), Hopf (sec 2.4), Saddle-node—Period-doubling—
Extended Hopf (sec 2.5), and Saddle-node—Period-doubling—Hopf (sec 2.6). In
sec 2.7, we “zoom in” on a special point in the Saddle-node—Period-doubling—
Hopf A plane: the local “saddle-node” bifurcation.

Preliminary calculations. Since all of our bifurcations involve fixed points,
we first describe that locus. The map f(¢,4)(z) = z + 2° + C + Az has a fixed
point z if

fo)(z) =22+ C+ Az =0, (FP)

The fixed points in R? x R? x R? can thus be parametrized by (4, z) € R? x R?:

(zaA)H(Z>C7A)=(z7_z2_AE>A)7 (FPIJGT)
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and so defines a 4-dimensional submanifold of R2 x R? x R2.

For each value of A, the fixed point set is a 2-dimensional manifold (surface),
parametrized by z. For A = 0 the projection of this surface from (z, C) space to
the C plane is two-to-one, except at C = 0 where it is one-to-one. For any fixed
nonzero A, the projection of the surface to the C-plane is two- three- or four-
to-one. We will see in sec 2.1 that for nonzero A there is a triangular deltoid
curve of saddle-nodes in the C plane. The projection of the fixed-point surface
is four-to-one for C values inside the deltoid, two-to-one outside the deltoid,
two-to-one at the three cusp points of the deltoid, and three-to-one on the rest
of the deltoid.

To describe the three bifurcation sets, it is useful to have the expression for
the differential of f(c, a):

Dfon = |22 HTH4 —2+4
A= | 25+ A 2e+1—-A |’

where z = x +1iy, A = A; +iA45 and C = Cy +iCs. This is most easily obtained
by writing our map f(c, 4) in rectangular coordinates:

(,y) = (z+2° —y> + C1 + A1z + Aoy, y + 22y + Co + Asx — Ary)

and computing the Jacobian derivative matrix. We will also use z = r,e®> and
A = ae'fa,

2.1 Saddle-node locus.

A fixed point of f(c 4) with an eigenvalue of one is generally referred to as a

saddle-node point, and corresponds to a degenerate zero of f(c, 4)- Such points
satisfy
22+C+A4z = 0
{ 422 AR = o. (SN)
The first equation ensures that z is a fixed point of f(¢ 4). The second ensures an
eigenvalue of one; it is derived from setting 1 — tr(D f(c, 4)) + det(D f(c, 1)) = 0.
Compare (SN) to (SNy) in sec 1.2. We ignore any conditions which would
ensure the nondegeneracy of the saddle-node bifucation.

For A = 0, the only saddle-node point is at (z,C) = (0,0). If A # 0, the
second equation describes a circle in the 2z plane with center at the origin and
radius |A|/2. See the projection to the z plane in Fig. 2. It can be parametrized
by 6, € [0,27) ~ S. In the full phase x parameter space the saddle-node set is
parametrized by (A4,6,) € R? x S, identifying all angles 0, at A = 0:

Al . A2 .. A )
(4,0 (.0, 4) = (e Ao 41 gy (o)

Place Figure 2 near here.
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Place Figure 3 near here.

The saddle-node curve projected to the C' plane is equivalent for all nonzero
values of A. It is a hypocycloid of three cusps. Its size depends on |A| and its
rotational orientation depends on arg(A). The only distinguished A value, as
illustrated in Fig. 3a, is thus the origin. For all nonzero values of A, we can find
a diffeomorphism h which maps the saddle-node set for f(c 1) (the arbitrarily
chosen equivalence class representative) to the saddle-node set for f(c 4). In
fact, the diffeomorphism can be explicitly expressed as

h(C) = azCe%,

where A in polar coordinates is aeis These statements can be verified by con-
sidering the parametric expression SNy, above. It indicates that, for any fixed
value of A, the projection of the saddle-node set to the C' parameter plane is

|A|2 240 Al g
= —— =AW=
C 4 e 9 € )

6. € [0,2m), which is a classical parametrization of a deltoid curve (a hypocy-
cloid of 3 cusps). Note that the full saddle-node set as determined by (SN) is
invariant under the two substitutions

(2,C, A) — (ze%, C’e%, Ae?), feS,

and . _ _
(2,C, A) = (aze?, a>Ce*? | aAe®™), a € [0,00).

The first invariance implies that as the origin in the A plane is circled once, the
saddle-node deltoid makes 2/3 of a complete rotation in the C' plane. This is
illustrated in Fig. 3b, C planes 2 and 3. The corresponding C' plane figure has
rotated by 1/12 of a full rotation while the argument of A has changed by 1/8
of a full rotation. Together, the two invariant substitutions imply the formula
given above for h.

Saddle-node Cusps. The two invariances above, along with the observation
that for A real and positive (A = |A|) a cusp occurs at 0, = 0, lead to the set of
saddle-node cusps being a topological disk, parametrized by (a,0,) € [0,00) XS,
identifying all angles 8, at a = 0:

aei?> —3q2e2i9- )
(a,0,) — (T, ﬁ,aemoz) (SNcusppar)
Note that there are three cusps in the C plane for each fixed nonzero A. Since
the cusps persist as the auxiliary parameter A is varied, they are classified as

codimension-zero in the auxiliary parameter space. This is consistent with the
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traditional no-distinguished-parameter classification of a cusp as a codimension-
two phenomenon: an eigenvalue one and a higher order degeneracy. We will see
later that, in contrast, cusps on the period-doubling and Extended Hopf curves
are codimension-one in the auxiliary parameter space.

2.2 Period-doubling locus.

A fixed point of a map f : R? — R? is a period doubling point if one of the

eigenvalues of D f(c, 4) is equal to —1. Thus we define the period doubling locus
to be,

Z2+C+A4z = 0

40z + 112 — |A)? 0.

Compare (PD) to (PD;) in sec 1.2. The second equation, derived from 1 +
tr(D f(c,a)) + det(D f(c,4)) = 0, ensures an eigenvalue of negative one. Nonde-
generacy conditions are not considered. The second equation implies that for
each fixed value of A, the period-doubling points project to a circle in the z
plane with center —1 and radius |A|/2, as illustrated in Fig. 2. Labelling the
angle of this circle p € [0,27) ~ S, we can parametrically represent these
points for (A,0p) € R? x S, identifying all angles §p at A = 0, as:

|A| —i0p

Al Al
(4,0p) = (2,C, A) = (—1+|2—|e’0D,—(—1+u629D)2—A(—1+76 ), A).
(PDIJGT)

(PD)

2

Place Figure 4 near here.

The parametrization implies that for each fixed nonzero value of A, the
period-doubling set in the four-real-dimensional (z,C) space is a topological
circle. This topological circle always projects to a geometric circle in the z plane.
The projection to the C' plane, however, varies greatly with A. It projects as a
topological circle for small values of A, but for larger values of A the projection
can change its topology at points where the curve either develops a cusp, or
a self tangency. The A-plane bifurcation diagram and representative C' planes
are shown in Fig. 4. There is one curve in the A plane corresponding to self
tangent projections of the PD curve (C planes 6,10), and a line in the A plane
corresponding to PD curves with cusps (C planes, 2,8,9). The two endpoints of
the self tangent projection curve, where the curve terminates on the PD cusp
line, are “rhomboid” cusp points — cusp points with an additional higher order
degeneracy (C plane 8). The origin is distinguished because the period-doubling
locus has shrunk to a point (C plane 4). This leaves us with three generic regions,
distinguished by the number of self intersections of the period-doubling locus:
0 (C planes 3,5), 1 (C plane 1), 2 (C plane 7).
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Remarks. The line of period-doubling cusps in the A plane indicates that
this set is codimension-one in the auxiliary parameter space, so it is quite differ-
ent from the saddle-node cusps, which were codimension-zero in the auxiliary
parameter space. It turns out that the period-doubling cusps correspond to a
traditional codimension-three local bifurcation: a one-negative-one eigenvalue
point (ONO) with a specific degeneracy in the quadratic terms of its normal
form. Because of this, we can compute it’s formula directly. We do so below in
sec 3.

The curve of period-doubling self tangencies was located and computed nu-
merically. It has no corresponding traditional bifurcation since it involves two
period-doubling bifurcations which are located at two distinct z values; they
just happen to also have the same C value, so when projected to the C plane,
they “interact.”

2.3 Extended Hopf locus.

A fixed point of a map f : R? — R? is a Hopf point if the eigenvalues lie on the
unit circle, that is, if det(Df(c,4)) = 1 and [tr D f(c,4)| < 2. These equations
become,

2Z2+C+ A4z = 0
4z +1/22 = |A|2+1} (EH) (H)
lz+1/2| < i

As in the Introduction, we call the locus without the inequality the Eztended
Hopf locus. Compare (H) and (EH) here to (Hy) and (EH;) in sec 1.2. For
fixed A, the Extended Hopf set also projects to a circle in the phase plane. It

VIAP+1

has center —% and radius 35— as illustrated in Fig. 2. It is most naturally
parametrized by the angle in this circle, which we label 8. Its parametric
representation, for (4,0m) € R? x S, is (4,0m) = (z,C, A) with

2 .
2 = (-1 4+ VAR gitn
VA2 . /A2 .
C = —(_% + | 2‘ +1619H)2 _A(_% + | 2| +16—2‘9H)‘

(EHpar7 Hpar)
The parametric formulas are identical for both the Extended Hopf and true Hopf
sets, but the parameter A is restricted to two arcs on the circle for the true
Hopf set: 0y € (GTB,W - 0TB) @] (7T +0rp,2m — 9TB); where 0 = arctan(|A|).
More details are in sec 2.4.

Place Figure 5 near here.

The bifurcation diagram and corresponding C' planes are shown in Fig. 5.
There is one curve each in the A plane corresponding to self tangent projec-
tions of the EH curve (C planes 6,10,15), cusps on the EH curve (C planes
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2,8,12,13,14), and triple intersection of EH points (C plane 4). Note that the A
plane’s EH cusp curve goes through the origin. This is consistent with the fact
that that at A = 0 the EH curve is the main cardioid of the Mandlebrot set (C
plane 8), which does include a cusp. There are three labelled codimension-two
points: at A values labelled by numbers 2, 6, and 12. At number 2, the corre-
sponding EH curve in the C plane has two distinct cusps; at number 6, the two
points of the EH curve that are self tangent also have the same curvature; at
number 12, the EH curve has a cusp that also projects to another point on the
EH curve. The bifurcation curves divide the A plane into six generic regions,
partially distinguished by the number of self intersections: 0 (C plane 9), 1 (C
planes 1,7), 2 (C plane 11), and 3 (C planes 3,4). C planes 1 and 7 can be
distinguished by the winding number as one travels around the EH locus, but
the winding number does not distinguish between C planes 3 and 5.

Remarks. Similar to the period-doubling cusp curve, the A plane’s EH cusp
curve corresponds (except at A = 0) to a traditional codimension-three bifur-
cation: a Takens-Bogdanov point with a specific degeneracy in the quadratic
terms of its normal form. More details about this degeneracy are discussed be-
low in sec 3. The other two codimension-one bifurcation curves, the self tangent
projections and the triple projection intersections, do not correspond to tradi-
tional codimension-three bifurcations. The former involves two EH points with
distinct z values; the latter involves three EH points with distinct z values.

2.4 Hopf locus.

The equations for Hopf points were already given by (H) in the previous subsec-
tion. The equivalence classes for true Hopf bifurcations are, of course, related
to the equivalence classes for the Extended Hopf bifurcations, since Hopf points
are the Extended Hopf points that also satisfy the inequality in (H) above. In
order to identify which Extended Hopf points are true Hopf points, we must
first investigate intersections of our three fixed-point bifurcation loci.

Pairwise intersections of bifurcation loci. The intersections of the three
bifurcation loci is most easily seen in their projections to the phase plane. All
three loci are circles and are pictured in Fig. 2 for |A| ~ 0.5. The only feature of
Fig. 2 which depends on the argument of A is the placement of the three points
on the saddle-node curve which are cusp points when projected to the C-plane.

Since the fixed points are parametrized by z and A (recall eqn. (F Pp,,)
before sec 2.1), for any fixed A value intersections in the projection to the z
plane will in fact be true intersections of (z,C,A) € RS. It is obvious from
Fig. 2 that intersections of the saddle-node and period-doubling curves can only
occur if |A| > 1. The z value at any intersection is —%. A short calculation

2
shows that an intersection of the saddle-node set and the Hopf set requires
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z = 0, and the intersection of the period-doubling set with the Hopf set requires
x = —1. Using § = %1 leads to the following parametrizations of simultaneous
solutions.

The intersections of the saddle-node locus with the Extended Hopf locus
are parametrically represented for (4,d) € R? x Z,, with (0,1) and (0,—1)
identified, as:

|Ali |A]? | CAJAi
These points must have both eigenvalues equal to one, and are traditionally
called Takens-Bogdanov points (TB).

The intersections of the period-doubling locus with the Extended Hopf locus
are parametrically represented for (4,d) € R? x Z,, with (0,1) and (0,—1)
identified, as:

(A,9) = (2,C,A) = (

,A). (T Bpar)

(4,8) = (2,C, A) =

; ; ; DNO,,r
(14548 (a0 a1t gy (PNO)

These points must have both eigenvalues equal to negative one, and are called
double negative one points (DNO).

The intersections of the saddle-node locus with the period-doubling locus are
parametrically represented for (4,8) € (R*\{A? + 4% < 1}) x Z,, with (4,1)
and (A, —1) identified whenever |A| = 1, as:

(4,0) = (2,C,4) =
VIAZ—1i VIAPR—1i VIAPR—1i
(=4 + 65— (- § + 052 - A(-f - 05, ),
(ONOpar)
These points must have one eigenvalue of one and the other of negative one,
and are called one-negative-one points (ONO).

Hopf vs. Extended Hopf points. It is now convenient to separate the
Extended Hopf set into true Hopf bifurcation points (defined by (H) above) and
its complement in the Extended Hopf set, the saddle points with real eigenvalues
whose product is equal to one. The inequality in (H), is easy to visualize in
Figure 2. Thus the Hopf points are the Extended Hopf points which lie in the
strip —1 < £ < 0 in the z plane. The two Takens-Bogdanov points, 7B, and
T B,, and the two double negative one points, DNO; and DNQO,, mark the
divisions between the Extended Hopf points which are true Hopfs points and
those that are not true Hopf points. If |A| were greater than one, the period-
doubling and saddle-node curves would intersect at two points we would label
ONO; and ONO,.

As one traverses the EH circle counterclockwise from the T' By, the eigenval-
ues of the corresponding fixed point for the original map start both at +1. As
the circle is followed across the strip —1 < z < 0, the eigenvalues separate, both
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remaining on the unit circle and each being the complex conjugate of the other.
The eigenvalues arrive together at negative one as z arrives at DNO;. Continu-
ing toward DN O-, the eigenvalues separate, but now are real and negative (and
of course still satisfying the property that their eigenvalues multiply to one).
They obtain a maximum separation at some point, then reverse direction back
toward each other, and meet again at negative one as z arrives at DNQO,. The
other half of the trip around the Extended Hopf circle is similar. The eigenvalues
once again separate and run around opposite sides of the unit circle and meet
at one when z arrives at T'Bs. They then separate as real positive eigenvalues,
reach a maximum separation, head back toward each other, and meet again at
one, as z returns to its starting point at T'B;.

The parametric representation of the true Hopf points is the same as for
the Extended Hopf points, except that the argument fp is restricted to trace
out only the part of the circle that projects to the strip —1 < z < 0: gy €
(GTB,ﬂ' — eTB) U (7r +0rp, 27 — 0TB), where 01 = arctan(|A|).

Back to the Hopflocus. We now know that the true Hopf locus for any fixed
(nonzero) A value is a pair of curve segments, each segment having a Takens-
Bogdanov point at one end and a double-negative-one point at the other. The
A-plane bifurcation diagram and corresponding Hopf curves in the C plane are
shown in Fig. 6. In going from Fig. 5 to Fig. 6, we have eliminated parts
of the Extended Hopf A-plane bifurcation curves that involve saddle points
(rather than true Hopf points). None of the EH-EH-EH triple intersection
curve survived; none of the EH cusp curve survived; only a small portion of the
EH-EH tangency curve survived to become the H-H tangency curve: from A
plane location 11 to 7 and its complex conjugate in the upper half plane. But
we added curves where the endpoints of the Hopf curves project to the same
C value as some other Hopf point (TB-H-projection-intersections (C planes
5, 9,11,12) and DNO-H-projection-intersections (C planes 2,12)). Most of the
phase portraits corresponding to the numbered points on A-plane bifurcation
curves actually correspond to A values which are codimension-two points in the
auxiliary parameter space: 2 — C plane intersection of a a DNO point with
another DNO point (instead of just a DNO point with a Hopf point), 5 — C
plane intersections of two separate TB points with Hopf points, 7 — C plane
self tangent intersection with curvature matching as well (same as C plane 6
in Fig. 5), 11 — C plane intersection of a TB point with a Hopf point with the
further degeneracy that it is an endpoint of a curve of C plane self tangencies
of Hopf points, and 12 — C plane intersection of a TB point and a DNO point.

The division of the A plane leaves us with six generic regions. We list them
according to how many intersections there are of the two Hopf segments: 0
(C planes 1,10), 1 (C planes 3,8), 2 (C plane 4 and its conjugate), 3 (C plane
6). C planes 1 and 10 are equivalent; C planes 3 and 8 are distinguished by
the orientation of the crossing, assuming that the DNO endpoints of the Hopf
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segments are mapped to DNO endpoints and TB endpoints are mapped to TB
endpoints.

Place Figure 6 near here.

2.5 Saddle-node, Period-doubling, and Extended Hopf loci
together (SN-PD-EH).

We now view equivalence classes of C-plane bifurcation diagrams for diagrams
which include all three bifurcation loci at once. Not surprisingly, the A-plane
divisions are much finer than when each locus was considered individually. The
result, along with only a few of the representative C-plane bifurcation diagrams,
is shown in Fig. 7. There are thirty-three distinct regions, numbered in Fig. 7a,
along the real A axis. Not numbered on the diagram are 300 regions we counted
in the upper half A plane and 300 “conjugate” regions in the lower half plane.
This gives 633 distinct A-plane regions. This doesn’t count points on the bi-
furcation curves. To get a feel for the information contained in the bifurcation
diagram, a more legible enlargement of path points 15 through 24 is shown in
b, with corresponding C planes in Fig. 7c.

Between A values numbered 15 and 16, the left-hand saddle-node cusp
pushes through the right-hand part of the period-doubling (curve s, SNcusp-
PD projection intersections). Between 16 and 17, the part of the EH curve
between the two Takens-Bogdanov points pushes through the right-hand part
of the period-doubling curve (curve o, EH-PD tangent projection intersections).
Between 17 and 18, the left-hand saddle-node cusp pushes through the left-hand
part of the Extended Hopf curve (curve j, SNcusp-EH projection intersections).
Between 18 and 19, the two Takens-Bogdanov points cross from outside the
period-doubling curve to inside it (curves v and 7, TB-PD projection intersec-
tions). Between 19 and 20, three curves are crossed simultaneously on the real
A axis at A=1. The left hand saddle-node cusp pushes through the left-hand
part of the period-doubling curve (a different part of the same SNcusp-PD curve
s which is between A values 15 and 16); two parts of the Extended Hopf curve
become tangent and push through (curve d, EH-EH tangent projections); and
a pair of one-negative-one points is born (curve t, double ONO points). By
Fig. 20 the two ONO points have separated from the real C axis where they
were born at A=1 and have travelled — one up and one down — along the
right-hand side of the saddle-node deltoid toward the top and bottom cusps
respectively of the deltoid). Between 20 and 21, the left-hand parts of the Ex-
tended Hopf and period-doubling curves have become tangent (curve |, PD-EH
tangent projections). The bifurcation between 21 and 22 is difficult to see: the
two one-negative-one points are to the right of the right-hand part of the Ex-
tended Hopf curve in C plane 21, but to the left of the right-hand part of the
Extended Hopf curve in C plane 22. In between are curves w and w, ONO-EH
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projection intersections. Between 22 and 23, the right-hand part of the period-
doubling curve has pushed through the right-hand part of the Extended Hopf
curve, crossing curve 0, the PD-EH tangent projection. Between 23 and 24, we
again cross three curves simultaneously at A=2. Two of them are part of the
same SNcusp-PD intersection curve labelled q; this bifurcation is difficult to see
at the scale of Fig. 7c, but the two one-negative-one points are on the right-hand
edge of the saddle-node deltoid in C plane 23, but on the top and bottom edges,
respectively, in C plane 24. The third bifurcation, corresponding to A values
for which two parts of the C-plane period-doubling curve are tangent, is easily
understood by comparing the period-doubling curves in C planes 23 and 24.

We realize that more regions would need to be enlarged and a complete
set of C-plane bifurcation diagrams provided to fully explain the bifurcations.
But a full explanation is not our goal. We have merely tried to illustrate the
kinds of bifurcations and complexity of bifurcation diagrams one would expect
to encounter in such a study. Those interested in more details are encouraged
to contact the authors.

Place Figure 7 near here.

2.6 Saddle-node, Period-doubling, and Hopf loci together
(SN-PD-H).

This combination of three bifurcation loci is possibly the one of most relevance
for understanding the dynamics of our model family. This is because, for this
specified collection of bifurcation loci, families which have equivalent auxiliary
parameters A, have the same qualitative dependence on the primary parameter
C with respect to the fixed points. That is, if A and A are in the same connected
equivalence class component with respect to fixed-point saddle-nodes, period-
doublings and Hopfs, then there is a diffeomorphism h with maps the C-plane
bifurcation loci for A = A to the bifurcation loci for A = A, and each pair of
individual maps f C,A) and f(h(c ), 4) has the same number and corresponding
stability of the respectlve fixed points.

Place Figure 8 near here.

It turns out that the SN-PD-H bifurcation diagram is obtained from the
SN-PD-EH bifurcation diagram by removing portions of A-plane bifurcation
curves for which the corresponding C-plane bifurcation curves involve EH points
which are saddles rather than true Hopf points. In all cases, the A-plane bi-
furcations with “H” are contained in the corresponding A-plane bifurcations
with “EH.” More specifically, we remove all of curves e and [, and portions
of curves d, h, j,m,m,n,o,w, and w. No new curves are added in going from
the SN-PD-EH diagram to the SN-PD-H diagram because the A-plane curves
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for SN-PD-EH already include intersections of Hopf curve endpoints (Takens-
Bogdanov and double-negative-one points) with other curves when projected to
the C plane. Our count was 380 distinct regions: 26 on the real A axis, 177 in
the upper half A plane and 177 conjugate regions in the lower half A plane. The
result is diaplayed in Fig. 8. For comparison with Fig. 7, we have included the
same 33 marked points on the real A axis in Fig. 8. Several of the A values that
corresponded to distinct equivalence classes in Fig. 7 are in the same equiva-
lence classes in Fig. 8. See, for example, A values numbered 16-18, 20-21, and
22-23 in Fig. 8b. The corresponding C-plane bifurcation diagrams are the same
as pictured in Fig. 7c. We merely ignore the cyan portions of the EH curve. For
example, from C plane 17 to 18, the left-hand (green) saddle-node cusp pushes
through a cyan portion of the EH curve. Numbers 16 and 17 appear in the same
equivalence class in Fig. 8b, but were in distinct equivalence classes in 7b.

As was the case for Fig. 7, we have tried to make the bifurcation diagram in
Fig. 8 as complete as possible but make no claims as to its completeness. We
also have not made any attempt to fully explain the diagram to the reader. We
have only attempted to communicate the type of information one might obtain
from such a bifurcation diagram.

2.7 The local saddle-node unfolding.

There are many points in the SN-PD-EH and SN-PD-H A-plane bifurcation
diagrams that would be interesting to investigate in more detail. We treat
only one such point, the local saddle-node point, here. More specifically, we
investigate the bifurcations of the SN-PD-EH (resp. SN-PD-H) curves near
(2,C,A) = (0,0,0). This point is of interest because at A =0, (z,C) = (0,0)
is the cusp of the main cardioid of the Mandelbrot set (point H°/! in Fig.
la). This point is often called the saddle-node point of the Mandelbrot set.
By considering the fixed-point bifurcations for A values near zero, we are in-
vestigating what happens to these sets as a complex analytic family (A = 0)
is perturbed with a non-complex-analytic term. In Peckham [1998] we showed
that for A # 0 the saddle-node set was a topological circle in the (z,C) vari-
ables. It projected to a three-cusped triangular shape in the C plane. We did
not consider in that paper the EH curve or its interaction with the saddle-node
triangle. The period-doublings play no role in this bifurcation since there are
none in the neighborhood of (z,C, A) = (0,0,0). (There are period-doublings
in the neighborhood of (z,C, A) = (-1,-1,0).)

The bifurcation diagram, an enlargement of Fig. 7 near A = 0, is shown in
Fig.9. The numbering of the regions does not match that of Fig.7.

Place Figure 9 near here.

As one approaches A = 0 along any one of the six bifurcation curves that
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runs through the origin, the phase (z) and primary parameter (C) value of any
point involved in the bifurcation approaches (z,C) = (0,0). These six curves
therefore are the bifurcation curves for a two-real-parameter (A) local unfolding
of the saddle-node point (z + 22 + C near (z,C) = (0,0)). Because the A-plane
bifurcation diagram has more than one bifurcation curve passing through the
origin it must be of codimension at least two in the space of local two-real-
parameter families of maps of the plane. We conjecture that the codimension
is exactly two. In contrast, when considering either the saddle-node locus or
the Hopf locus by itself, the saddle-node bifurcation appears to be of real codi-
mension one in the sense that all equivalence classes of local primary parameter
plane bifurcation diagrams for nearby auxiliary parameter values are present in
a typical (transversal) one-auxiliary-parameter family.

The bifurcation sequences are best understood via Fig. 9. For the details of
the transition between C-planes 1-2-3-4 look at the blowup of C-plane number
2 in the inset. Label the two branches of Hopf points as upper and lower
according to the Takens-Bogdanov point from which they come. As the A value
progresses from locations 1 through 4 in Fig. 9a, the lower branch of the Hopf
bifurcations (the closer to vertical in the insert of Fig.9b) moves from right to
left. Bifurcations occur when this lower Hopf branch crosses through the three
points indicated by the arrows: the saddle-node cusp point, the point where
the upper Hopf branch intersects the right-hand side of the saddle-node triangle
(labelled H-SN proj. int.), and the Takens-Bogdanov point. We note that the
bifurcation diagram is the same whether we consider Extended Hopf or Hopf
points. In all cases except along the EH cusp curve, this is relatively obvious
since the EH point in question is always a true Hopf point. The EH cusp curve
is more subtle. This curve was included in the EH-only bifurcation diagram of
Fig. 5, but not in the H-only bifurcation diagram of Fig. 6 since on either side of
the bifurcation curve, the corresponding Hopf curve was merely a line segment
with an endpoint. Here, however, we are considering all three sets together.
In particular, the intersection of the (lower) Hopf segment with the lower left
side of the saddle-node triangle changes orientation as A passes through a value
for which the EH curve has a cusp: the lower Hopf branch approaches the
lower Takens-Bogdanov point tangent to the saddle-node curve from below in
C-plane 5, but from above in C-plane 6. On the dividing line, the Hopf curves
approaches transverse to the saddle-node curve (where the full EH curve forms
a cusp). Between C-planes 6 and 7 the saddle-node triangle rotates roughly
one-sixth of a full rotation in the clockwise direction. In the process, the TB
point on the right in C-plane 6 passes through the saddle-node cusp and ends
up on the lower left leg of the triangle in C-plane 7.
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3 Classification of codmension-one bifurcations

In the previous section we discussed bifurcation curves in the auxiliary A plane
that separated equivalence classes of C-plane bifurcation diagrams. These curves
are all codimension-one in the auxiliary parameter plane. We now classify these
bifurcation curves. More generally, we are classifying bifurcations for families
with two real primary parameters. The statements below assume two auxiliary
parameters although analogous statements hold for any number of auxiliary
parameters. We divide the classification into two primary groups: those that
involve bifurcation points which are local in the six-dimensional (z, C, A) space,
and those that are not. Actually, the only variable which is allowed to be “non-
local” is the phase variable z. This is because we are considering local features
of the primary (C) plane that change as the auxiliary parameter (A) is varied
(by an arbitrarily small amount). We treat the nonlocal group first.

3.1 Bifurcations which are nonlocal in 2

Conjecture 3.1 Consider a region of auziliary parameter space where the spec-
ified primary plane (traditional codimension-one) bifurcation curves are in fact
curves — immersed one-manifolds in the full six-dimensional space, either with
or without endpoints. The only nonlocal codimension-one bifurcations in the
space of two-real-parameter families of maps of the plane are of the following
three types:

1. Tangent projection of two traditional codimension-one curves.
2. Triple projection intersection of traditional codimension-one curves.

3. Projection intersection of a traditional codimension-one curve
with a distinguished point on a traditional codimension-one curve.

Note that the assumptions of our hypothesis are satisfied for the fixed-point SN,
PD, EH, and H curves except at A = 0, where the SN and PD points degenerate
to a point. For A # 0 the first three are closed curves and the H set is a pair of
line segments.

3.1.1 Tangent projection of two traditional codimension-one curves.

Two bifurcation curves which are traditionally codimension-one (saddle-nodes,
period-doublings, and Hopfs, for example) live in the four-dimensional (z,C)
space for fixed auxiliary parameter values. These curves, or different parts of
the same curve, can have points which have distinct z values but a common
C value. When the curves are also tangent in their C' plane projection, the
local topology of their intersection in the C' plane is unstable with respect to
perturbation by the auxiliary parmeter: the curves can either push through each
other or separate from each other. Such bifurcations include those labelled in
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this paper as PD-PD, EH-EH, H-H, SN-EH, SN-H, PD-EH, PD-H and SN-PD
tangent projection intersections.

3.1.2 Triple projection intersection of codimension-one curves

If three points are on traditional codimension-one curves and have distinct z
values but a common C' value, then the local topology of the projection to the
C plane can change as the auxiliary parameter is varied. Such bifurcations in
include those labelled in this paper as EH-EH-EH, EH-EH-SN, H-H-SN, EH-
EH-PD, H-H-PD, PD-PD-EH and PD-PD-H projection intersections.

3.1.3 Projection intersection of a traditional codimension-one curve
with a distinguished point on a traditional codimension-one
curve

If two points, one a distinguished point of a specified bifurcation curve (a tra-
ditional codimension-two point) and the other on a specified bifurcation curve,
have distinct z values but a common C' value, then the topology of their pro-
jection to the C' plane can change as the auxiliary parameter is varied. The
distinguished point can either be interior to the specified bifurcation curve, as is
a saddle-node cusp on a saddle-node curve, or a ONO point on either a saddle-
node or period doubling curve, or it can be an endpoint of a specified bifurcation
curve, as is a TB point or a DNO point on a Hopf curve. Such bifurcations in-
clude those labelled in this paper as TB-EH, SNcusp-EH, SNcusp-H, DNO-PD,
DNO-EH, DNO-H, ONO-PD, SNcusp-PD, DNO-SN, TB-PD, ONO-EH and
ONO-H projection intersections.

3.2 Bifurcations which are local in R

The codimension-one A-plane bifurcation curves which in this paper involve
points which are local for (z,C,A) € RS all correspond to traditional local
codimension-three bifurcations. There are five such bifurcations present in our
study, each related to a traditional codimension-two point with an additional
degeneracy. The codimension-two points are either Takens-Bogdanov points or
one-negative-one points, so we first recall the model normal form unfoldings
for these two traditional codimension-two points. We note that although the
universal unfolding and corresponding dynamics of a Takens-Bogdanov for a
differential equation has been established ([Ta, 1974], [Bo 1976]), results for the
TB and ONO points for maps are less complete. This is not an issue for us,
however, since we are only considering fixed points and bifurcation sets but not
the full dynamics of the maps.
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Takens-Bogdanov points. A model normal form unfolding of a Takens-
Bogdanov point is

('Ta y) - (m +y, €1+ €y + b20.’E2 + bllxy)- (TBnormal)

A generic two-parameter family of maps of the plane which has a fixed point with
a double one eigenvalue but only a one-dimensional corresponding eigenspace
can be put into this form up through its quadratic terms by standard local
changes of variables (phase variables and parameter variables). The unfolding
parameters are €; and €. The higher order terms have been dropped. The
unfoldings are divided into cases, depending on the signs of byy and by; — 2bg.
These two quantities being nonzero are nondegeneracy conditions.

One-negative-one points. The model normal form unfolding of a one-negative-
one point is

(ZU, y) — (61 +x + a20x2 + aozyz, €Yy —y+ bnxy + b03y3). (ONOnormal)

A generic two-parameter family of maps of the plane which has a fixed point with
eigenvalues of one and negative one can be put into this form by making standard
local changes of variables and dropping higher order terms. The unfoldings are
divided into cases depending on the signs of by; and asg. These two coefficients
being nonzero are nondegeneracy conditions.

We are now able to state, in the following proposition, the relationship be-
tween the five codimension-one auxiliary parameter bifurcations and their cor-
responding traditional codimension-one bifurcations.

Proposition 3.2 The following auxiliary parameter space codimension-one bi-
furcation loci correspond to the respective traditional codimension-three bifurca-
tions:

Auziliary parameter space Traditional codimension-three
codimension-one bifurcation  bifurcation (in normal form)

1. EHC’U,S]) TB point with b11 - 2b20 =0

2. FEH-SNcusp TB point with byg = 0

8. PDcusp ONO point with by; =0

4. PD-SNcusp ONO point with azg =0

5. Double ONO ONO point with a parametric degeneracy*

*Explained further below

ProoF  (Sketch.) The most interesting observation in this proof is the fact
that cusps on Extended Hopf curves or on period-doubling curves are possible
only when these points also have an eigenvalue of 1. The rest of the details are
relatively straightforward computations, albeit not trivial.

1. We note from eq. (EH,,,) in sec 2.3 that for A fixed, the Extended Hopf
curve in R* ((z,C)-space) is a smooth curve parametrized by
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1 A2 +1 . 1 AP +1 . 1 AZ+1 _,
O = “5*%6”"’ ‘(‘5*%6”’*)2‘A(‘5+%€_”H”-

(The derivative with respect to 6y in the z-component is nonzero, so the curve
is smooth even if the C-component has zero derivative.) Moreover, this curve
lies on the smooth surface of fixed points given by C + 2% + Az = 0.

Thus, we have a smooth curve lying on a smooth surface in R*. Moreover,
the projection of this surface to the C-plane is a local diffeomorphism away
from the branch points, or the saddle-node points. It follows that away from
the saddle-node curve the projection of the Extended Hopf curve into the C-
plane is non-singular. Thus singular points of the Extended Hopf curve can only
occur when the Extended Hopf curve intersects the saddle-node curve. Being
on both the Extended Hopf and saddle-node curves forces both eigenvalues to
be one. Such a point is (generically in two-parameter families) a nondegenerate
Takens-Bogdanov point.

Further, at a nondegenerate Takens-Bogdanov point, the Extended Hopf
bifurcation curve and the saddle-node curve both are smooth curves whose pro-
jections to the (e1,€2) parameter plane intersect at the origin with quadratic
tangency. More specifically, from the Takens-Bogdanov normal form of eq.
(T'Brormai), one can calculate that if the quantities byg and by; — 2byg are both
nonzero, the saddle-node curve projects to the €2 axis in the (€1, €2) parameter
plane, and the Extended Hopf curve projects to the parameter plane as the
parabola (2bsg — b11)?€1 = —bages. Thus, a cusp on the Extended Hopf curve
can only occur when the Takens-Bogdanov point has an additional degeneracy.
That the cusp corresponds to the degeneracy b1 — 2byg = 0 rather than byy = 0
is a calculation.

Instead of performing that calculation here, we provide Fig. 10. The Fig. 10
sequence was computed using eq. (T'Brormai) With by = 1, by; taking on the
three values 1,2,3, and some higher order terms (z® + 2*), chosen to make the
family generic when the nondegeneracy condition by; — 2bsg # 0 fails, added to
the second component.

Place Figure 10 near here.

In all three parts of Fig. 10, the fixed-point surface, the green saddle-node
curve along the surface “folds,” and the projection of the saddle-node curve to
the (€1, €2) parameter plane are similar. The projection of the Extended Hopf
curve to the parameter plane, however, changes. When b7 = 1, 2byg — b11 > 0
and the Extended Hopf curve (including both the red branch labelled H and the
cyan branch labelled EH) is tangent to the saddle-node curve when projected
to the parameter plane, shown at the bottom of the box. When b1; = 2,
2by9—b11 = 0 the projected Extended Hopf curve forms a cusp where it intersects
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the saddle-node curve. When by; = 3, 2by9 — b1; < 0 the projected Extended
Hopf curve is again tangent to the saddle-node curve, but the true Hopf and
Extended Hopf branches have switched sides.

2. This correspondence will be relatively obvious to those who are familiar
with the two-parameter unfolding of the cusp bifurcation for maps of the line:
T — T + € + e2x + x3. Tt is straightforward to calculate from eq. (T'Brnormat)
that the saddle-node curve can only have a cusp if by = 0.

3. This proof is similar to the proof of part 1. For the same reasons, a cusp
on a period-doubling curve must also have an eigenvalue of one. Consequently,
it must be a ONO point. The PD curve and SN curve typically have a tangent
intersection in the (e1,€) parameter plane, but when b;; = 0 in the period-
doubling curve has a cusp.

4. This proof is similar to the proof of 2. Details are omitted.

5. This (traditional) codimension-three bifurcation is somewhat different
from the other four. Two degeneracies are the one and negative one eigenvalues.
The third is not a degeneracy in the normal form at the bifurcation point, but
rather a degeneracy in the unfolding. It would be modelled by a three-parameter
family obtained from eq. (ONOpormar) by replacing ez with €3 + €3. The third
(auxiliary) parameter €3 in the model corresponds to |A| in the paper’s model.
When €3 is fixed negative (|A| is fixed greater than one), the resulting two-
parameter family has two ONO points; when €3 is fixed positive (|A| is fixed
less than one), the resulting two-parameter family has no ONO points.

O

Explicit Calculations. The above proposition, especially for cases 1 and 3,
changes the task of the explicit computation of the bifurcation loci for each of
the 5 cases listed above from nearly impossible to merely tedious. For example,
to compute the EHcusp points, we know from the proposition that they occur
when we have a Takens-Bogdanov point with a higher order degeneracy. So
we start with the parametrization for a Takens-Bogdanov point, convert it to
normal form, and set the combination bj; — 2byg = 0. We include only the
results but not the intermediate calculations here. Note in 1,3, and 4, the C
values are not explicitly written out, but are given by the fixed-point condition
C=-22- Az
Parametric versions are, respectively:

1.

64+ (2,0, A) = (- CFQ0-0 0, 520t 6y € S (BHeusppar)

(which is equivalent to the nonparametric cubic curve:

A+ (24 A1)(A2 + A3) = 0). (EH cusp)
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2.
y = (2,0,4) = (yi,3y°, —2yi),y € R\{0}  ((EH — SNcusp)par)

3.
Ay (2,C,A) = (% +iy,C, -1 —i2y),y € R. (PDcusppar)

4. )
04— (Z,C, A) = (_% +y7’707 _(% + y2)§e3iarctan(2y))7y €R.

((PD — SNcusp)par)

5.

64 (2,C,A) = (-1, -1 + Let ¢04) 0, € S. ((double — ONO)pq,)

27

4 Continuation Comments

The five bifurcation curves whose explicit formulas were just presented above
in sec 3.2 were computed using those formulas. All other bifurcation curves
were computed via numerical continuation using the dynamical systems software
package To Be Continued ... [Peckham, 1988-present]. Previously developed
software allowed computation of traditional codimension-one C-plane curves
such as saddle-nodes, period-doublings and Hopfs. New routines were written
to handle the bifurcation curves in the A plane.

For example, for the triple intersections of the extended Hopf locus, we solved
for (01,02,03,14) ESXS XS x R2:

C(A: 01) = C(A: 02)a C(Aa 02) = C(A: 03)

where C'(4,0) was explicitly defined by the middle coordinate of eqn. (EHp,,)
in sec 2.3. This is equivalent to four real equations in five real variables, resulting
in a curve. Projecting to the A plane gave us our A-plane bifurcation curves.

Cheating for tangent intersections. The tangent intersections of two bi-
furcation curves projected to the C-plane, written parametrically as v;(A,t)
and (4, s), where v; : R2 x R — R? (as in the middle component of egs.
(SNpar), (PDpayr), (EHpqr)), were computed using the following observation.
The direct tangency conditions are:

d d
= — = A— A
71 (A7 t) 72(*'47 S)a dt’yl(Aat) ’\d872( ,8)

where ) is any nonzero real number. They are satisfied precisely at the points
where the related family of maps of the plane:

GA(ta 3) = (t +m (’71 (Aa t) e (A7 S), 5+ 72 (Aa t) - ’72(A: s)
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has a fixed point with eigenvalue 1. That is, G4 has a saddle-node bifurcation.
This meant no new software had to be created for these bifurcations. We merely
entered the appropriate related map “G” and found its saddle-node bifurcation
points. We note that the cusp points (saddle-nodes with a higher order degen-
eracy) for the related map correspond to curves which intersect not only with
matching tangent vectors but also with matching curvature. See C' plane 7 in
Fig.6, for example.

5 Summary

In this paper we have studied the evolution of parameter plane bifurcation dia-
grams as auxiliary parameters are varied. In retrospect, it is not so surprising
that the bifurcation analysis is so complicated since the family has four pa-
rameters, especially because we did not restrict the parameters to some local
neighborhood. Nevertheless, we feel that the evolution of planar bifurcation dia-
grams is of enough general interest to warrant its study. Further, we believe the
particular family we studied, z — z + 22 + C' + Az — being a familiar complex
quadratic map at A = 0 and being perturbed by the simplest non-complex-
analytic term, AZ — is a reasonable prototype for studying parameter plane
evolution. Thus we have worked to obtain complete bifurcation diagrams for
this example. We conjecture that the A-plane bifurcation diagrams of figures 4
through 9 are complete, with respect to the bifurcation loci specified for each
figure.

With this study, global in the parameters C' and A, as a guide, we hope
to return to certain points in our A-plane bifurcation diagrams which seem to
require further study. Neighborhoods of A = 0 are of particular interest since
they represent bifurcation diagrams of maps which are close to complex analytic.
For example, we would like to be able to verify our conjecture that the saddle-
node point (near (z,C, 4) = (0,0,0)) is codimension one with respect to saddle-
node or Extended Hopf points separately, but codimension-two with respect to
both loci together. Similar studies near bulb contact points of the Mandlebrot
set (also near A = 0 but not near (z,A) = (0,0)) require further attention.
They will require looking at additional bifurcation loci beyond the fixed-point
loci considered in this paper. For example, for the period doubling bifurcation,
near (z,C, A) = (—1,—1,0), at least period-two saddle-node bifurcations should
be added to the mix.

Note that while the focus on bifurcation sets allows us to more easily deal
with whole families of maps, it also necessarily ignores many interesting ques-
tions about the dynamics of these noninvertible maps of the plane. For example,
a complete description of the dynamics would necessarily involve the study of
the critical set and its images, such as in Nien [1998]. There is a need for much
additional research in this area.

Ideally, we hope this work will encourage and complement further work on
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8 Figures

Fig. 7 and Fig. 8 labels. The A-space curves that appear for the above sets
of loci have the following common labels. We abbreviate saddle-node as SN,
period-doubling as PD, Extended Hopf as EH, Hopf as H, Takens-Bogdanov
point as TB, double negative one point as DNO, and a one, negative one point
as ONO. Replace all EH labels with H for Fig. 8.

a PD cusp

b PD-PD tangent projection intersection
¢ EH cusp

d EH-EH tangent projection intersection
e EH-EH-EH projection intersection

f SN-EH tangent projection intersection
g SNcusp-EH intersection

h TB-EH projection intersection

i EH-EH-SN projection intersection

j SNcusp-EH projection intersection

k DNO-PD projection intersection

1 PD-EH tangent projection intersection
m DNO-EH projection intersection

n EH-EH-PD projection intersection

o PD-EH tangent projection intersection
SN-PD tangent projection intersection
SNcusp-PD intersection

r ONO-PD projection intersection

s SNcusp-PD projection intersection

t double ONO points (the two ONO points have coalesced)
u DNO-SN projection intersection

v TB-PD projection intersection
w ONO-EH projection intersection

x PD-PD-EH projection intersection
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Figure 1: For Q¢ 4)(2) = 2%+ C + Az: a) Some numerically computed bulb bound-
aries of the Mandlebrot set (A = 0). b) Some numerically computed C plane bifurca-
tion curves for A = —0.1. Period-doubling curves are in blue; saddle-node curves are in
green. Curves of interest to the current paper are wider: EHy, SNi, PD;. Reprinted
from Peckham [1998].
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|- Re{z}=-1 A Im(z)

DNG TB:

PD /

Re(z)
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Figure 2: Projection of the three loci to the phase plane. (0 < |A| < 1). Symbols:
SN: saddle-node, PD: period-doubling, EH: extended Hopf (true Hopf points are the
bold red part of the EH circle), TB: Takens-Bogdanov point (double one eigenvalues),
DNO: double negative one eigenvalue point, ONO: eigenvalues of one and negative
one (present only if |A| > 1), frp: angle of first quadrant TB point. The radii of
the PD and SN circles are both %; the radius of the EH circle is 7(“”2;1)1/2. The

three marked points on the saddle-node curve are the cusps; their location on the
saddle-node circle was determined by assuming arg(A) = 0.

a)
_5]
2 2
b A 2
£ 3
B
by 1 2 3

e

Figure 3: Fixed-point saddle-nodes only. a) The A-value at which the saddle-node
locus bifurcates. The origin (number 1) is the only bifurcation value. Numbers 2
through 10 (arbitrarily chosen on the unit circle), as well as any A value except the
origin, are in the same equivalence class since only fixed-point saddle-node curves are
considered. b) Some of the orresponding saddle-node curves in the C plane.
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Figure 4: Fixed-point period-doublings only. a) The A-values at which the period-
doubling locus bifurcates. b) Corresponding period-doubling curves in the C plane
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c)

Figure 5: Fixed-point Extended Hopfs only. a) The A-values at which the Extended
Hopf locus bifurcates. b) Corresponding EH bifurcation curves in the C plane. True
Hopf curves in the C plane are shown with thick red lines; EH curves which are not

Hopf curves are thin cyan lines. TB points are marked with crosses; DNO points are
marked with plusses. c¢) Enlargements of portions of C planes 3 — 8.
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a)
TB-H
proj. int. H-H tan
J 3. Jo
DNO-H
proj. int.
12
A1 range : -2.500000 to 0.500000
A2 range : -1.500000 to 1.500000
b) /} 2 3 5 6 7
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e

s O.0.

| ) ?j BD{
Figure 6: Fixed-point Hopfs only. a) The A-values at which the Hopf locus bifurcates.
Enlargement in the inset. b) Corresponding Hopf segments in the C plane. Hopf
segments in the C plane are shown with thick red lines; the cyan EH curves which are
not Hopf curves are included only for comparison with C planes in Fig. 5. TB points

are marked with crosses; DNO points are marked with plusses. c) Enlargements of
portions of C planes 4 — 8.
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Figure 7: Saddle-node — Period-doubling — Extended Hopf loci together. a) The A-
values at which the Saddle-node — Period-doubling — Extended Hopf curves bifurcate.
b) An enlargement of (a) along a portion of the positive A axis. ¢) C planes corre-
sponding to (b). DNO points are marked by black plusses, TB points by black crosses,
and ONO points by grey crosses. The ONO points exist only for C planes 20 through
24, since for 15 through 19 the corresponding A values are less than one in magnitude.
See text for further explanation.
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a)cfakgpuv w v X rou

Figure 8: Saddle-node — Period-doubling — Hopf loci together. a) The A-values at
which the Saddle-node — Period-doubling — Hopf curves bifurcate. b) An enlargement
of (a) along a portion of the A axis. Labels are the same as for Fig 7 if all EH labels
are replaced with HS.
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Figure 9: Saddle-node — Period-doubling — Hopf loci together.

a) The A-values

near the origin at which the Saddle-node—Period-doubling-Hopf curves bifurcate. b)

Corresponding (local) C-plane bifurcation diagrams of saddle-nodes

and nearby Hopf

(and EH) curves. The inset is an enlargement of the top right corner of C plane 2.
Saddle-node deltoids are shown with thick green lines; Hopf curves in the C plane are
shown with thick red lines; EH curves which are not Hopf curves are included only for
comparison with C planes in Fig. 5. They are the thin cyan lines. Takens-Bogdanov

points are marked by x’s.
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Figure 10: The formation of the EH cusp at a Takens-Bogdanov point as a normal
form coefficient changes: (z,y) — (z + y,€e1 + €2y + 2> + 2% + 2* + brixy. a) by = 1,
b) b = 2, C) b1 = 3.



