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Abstract

Producer-consumer (predator-prey) systems have been studied for
many years in terms of energy flow or mass balance of the system. In
recent years related models have been adjusted to take into account
not only food quantity, but also food quality. In other words, the
nutrient content, or equivalently, the stoichiometric ratio of nutrient
to biomass, as well as the biomass, is of interest. In this paper we
start from a version of the Rosenzweig-MacArthur [11] model of a
producer-consumer system and modify it by introducing stoichiome-
try. The model considered here includes a sediment class in addition
to the producer and consumer classes. The model is open for both car-
bon and the nutrient. It sets “target” structural ratios for both the
producer and consumer, who eliminate carbon or nutrient, whichever
appears in excess. This introduction of stoichiometry allows for dif-
ferent bifurcation sequences and corresponding dynamics than those
that appear in the Rosenzweig-MacArthur model. The stoichiomet-
ric mechanisms we use are also in contrast to those presented in the
Loladze, Kuang, Elser model [9] which has become a standard start-
ing point for stoichiometric models. Especially notable is a parameter
range where we observe the coexistence of an attracting equilibrium
and an attracting periodic limit cycle.

Keywords: Population model, bifurcation, producer-consumer, predator-
prey, Stoichiometry
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1 Introduction

Population interactions in a food chain have been studied extensively for
many years. A specific interaction is the behavior of a producer which is
consumed by a consumer. Such “predator-prey” systems have usually fo-
cused only on the flow of a single currency, such as energy stored in carbon
compounds or biomass. This point of view is analogous to considering only
food quantity, but not food quality, as affecting the growth of a consumer.
One measure of food quality is the nutrient to carbon ratio of the species
which is being consumed: if this ratio differs from that of the consumer,
then either carbon or nutrient will be deficient relative to the consumer’s
needs. The nutrient to carbon ratio, however, is typically lower in producers
than it is in consumers (Sterner and Elser 2002 [12]), meaning that carbon
may be in excess and nutrients may be deficient in food relative to the con-
sumer’s needs. Because of this mismatch, researchers have recently been
including stoichiometry – the ratio of nutrients to carbon – in their models
[1, 4, 6, 7, 8, 9, 10, 12, 14, 15]. Many of these models exhibit the following
“paradox”: increasing the food quantity available for a consumer does not
necessarily benefit the consumer. Especially in nutrient-limited systems, the
consumer can even be driven to extinction by a concomitant decrease in food
quality.

The Loladze, Kuang, and Elser model [9] (hereafter referred to as the LKE
model) has, in particular, become a standard reference model for population
systems with stoichiometry. It starts with the version of the Rosenzweig-
MacArthur [11] (hereafter referred to as the R-M model) predator-prey sys-
tem as given in eq. (1), but adds effects on the growth of both producer and
consumer due to a single limiting nutrient for which the system is closed. The
nutrient limitation is assumed to reduce both the natural carrying capacity
of the producer, and the efficiency of the consumer’s conversion of producer
biomass to its own biomass.

The elimination model we develop and investigate in this paper is also
a generalization of the R-M model. Like the LKE model, we consider the
effects of a single nutrient which is coupled to carbon in species-specific ratios.
We keep track of both carbon as a surrogate for energy or biomass, and the
nutrient. The mechanisms used here to introduce the stoichiometry, however,
are different from the LKE mechanisms in three significant ways. First,
primarily for nutrient cycling, we include a sediment class along with the
consumer and producer classes. (See also [4, 8, 14, 15] for models including a
free nutrient class, but in pelagic systems, and with different stoichiometric
mechanisms.) This leads to a six-dimensional model: carbon and nutrient in
each of the consumer, producer, and sediment. Second, we assume that the

2



system is open to nutrient flow, whereas the LKE model assumes a closed
nutrient system. Third, the assumed stoichiometric mechanisms are different:
instead of fixing the nutrient to carbon ratio of the consumer, a target ratio is
set, and either carbon or nutrient is eliminated, whichever appears in excess.
We do the same for the producer.

We compare our model to the R-M and LKE models with a numerical bi-
furcation analysis of all three using matching parameter values. We compare
one-parameter cuts obtained by varying the birth rate of the producer. The
behavior of all three models is the same for low birth rates: as the birth rate
increases, a stable “no-life” equilibrium gives way to a producer monoculture,
which gives way to a stable coexistence equilibrium. This coexistence equi-
librium then destabilizes in a Hopf bifurcation, spawning a stable coexistence
limit cycle. Behavior of the three models differs beyond this. The limit cycle
in the R-M model grows in amplitude, but undergoes no further qualitative
changes [13]. For the choice of parameter values in both [9] and this paper,
the limit cycle in the LKE model grows until a saddle-node bifurcation on the
limit cycle destroys the cycle. The attracting coexistence equilibrium born
in this bifurcation persists, but its consumer value decreases as the producer
birth rate increases, finally driving the consumer extinct in a transcritical
bifurcation.

In the elimination model we present in this paper, numerical continuation
experiments using AUTO [3] suggest that, for our choice of auxiliary param-
eters, beyond the first Hopf bifurcation, there is a second Hopf bifurcation,
this time restabilizing the coexistence equilibrium and spawning an unstable
limit cycle. This new limit cycle (and its stable manifold) appears to sepa-
rate the basin of attraction of the attracting limit cycle from the basin of the
restabilized equilibrium. Later (with increasing producer birth parameter)
the two limit cycles coalesce and disappear in a saddle-node bifurcation of
limit cycles, apparently leaving the coexistence equilibrium as a global at-
tractor. No further bifurcations appear to exist for further increase of the
birth rate b. We explain in more detail in the rest of the paper.

This paper is organized as follows. In Section 2, we begin by reviewing
the Rosenzweig-MacArthur predator-prey model (eq. (1)). We summarize
the model’s dynamical behavior and related bifurcations. Next we briefly
review the LKE model (eq. (2)). In Section 3 we develop our six-dimensional
stoichiometric elimination model(eq. (3)). We discuss the corresponding dy-
namics and bifurcations in Section 4. We discuss general stoichiometric issues
which have come up in the process of writing this paper, including those for
experimental design, in Section 5, and summarize in Section 6.

Portions of the work presented in this paper overlap with the Master’s
project of the first author [16], under the supervision of the other three
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authors.

2 Background

2.1 Consumer-Producer without Stoichiometry

Rosenzweig and MacArthur [11] performed a conceptual study of predator-
prey interactions. One realization of their geometric model is

dP

dt
= bP − lP 2 − dP P − f(P )C

dC

dt
= ef(P )C − dCC (1)

where P is producer density and C is consumer density. The system param-
eters are

• b = per capita birth rate of the producer without self limitation

• l = coefficient of self limitation of the producer

• dP = per capita death rate of the producer

• e = consumption efficiency; 0 ≤ e < 1

• dC = per capita death rate of the consumer

The predation function f is assumed to be monotonic and non-decreasing.
We further assume the specific form to be a saturating Michaelis-Menten (or
Hollis type II) function: f(P ) = rmaxP

1+hP
. We illustrate the general behavior of

the system with the choice of parameter values l = 0.2, dP = 0.1, rmax = 1,
h = 2, e = 0.8, and dC = 0.2, and various b. These parameter values were
chosen to match corresponding parameter values in the other two models of
the paper: the LKE model of eq. (2) and the elimination model of eq. (3),
introduced in Sec. 3.

Analysis. This system can be analyzed explicitly for equilibria and their
stability in terms the system parameters. There are three possible equi-
libria: (P, C) = (0, 0) where neither the producer nor the consumer exist,

(P, C) = ( (b−dP )
l

, 0) where there is a producer monoculture at its carrying
capacity without a consumer, and a coexistence equilibrium at (P, C) =
(P ∗, C∗), where P ∗ is determined by the unique solution to f(P ) = dC

e
,

and C∗ = (b−dP )P ∗−l(P ∗)2
f(P ∗) . This coexistence equilibrium will exist as long
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as the maximum predation rate rmax is greater than dC

e
. Equilibrium bi-

furcations as the birth rate b is varied are determined by computing the
Jacobian and evaluating at the three equilibrium points. There is a tran-
scritical bifurcation from a stable no-life equilibrium to a stable producer
monoculture at b = dP = 0.1. A second transcritical bifurcation occurs
at b = dP rmaxe+dC lh−dCdP

rmaxe−dC
≈ 0.23333, where the stable monoculture is sup-

planted by a stable coexistence equilibruim. By evaluating the Jacobian at
the coexistence equilibrium and solving for the b value which results in pure
imaginary eigenvalues, we can determine bH , which we use to denote an ap-
parent Hopf bifurcation. For b > bH ≈ 0.76667, the system has a coexistence
limit cycle which we believe to always be stable [13]. The amplitude of the
limit cycle continues to grow as b is increased, but no qualitative change in
system behavior has been observed.

The bifurcations involving these equilibria are illustrated in the top panel
of the bifurcation diagrams of Fig. 2 in Section 4. The bifurcation diagram
was computed using the continuation software AUTO [3].

2.2 Loladze, Kuang, and Elser Model

Loladze, Kuang, and Elser [9] introduced a model that has become a standard
reference model for most recent stoichiometric population models. They
began with the same Rosenzweig-MacArthur predator prey model as eq. (1).
Stoichiometry is introduced to the model under the following assumptions:

1. The system is closed for nutrient: there is a fixed total nutrient content,
N .

2. The nutrient to carbon ratio in the consumer is fixed at θC .

3. The nutrient to carbon ratio in the producer varies, but never falls
below a minimum ratio q.

4. All nutrient in the system is divided into two pools: nutrient in the
producer and nutrient in the producer. (There is no sediment com-
partment.) The underlying assumption is that once the nutrient is
released through the death of the consumer, it is immediately recycled
back to the producer.

5. The carrying capacity of the producer has a maximum of K = (b −
dP )/l (depending on system parameters such as light). This maximum
K is reduced to N−θCC

q
, the maximum producer population that can

be supported with the available producer nutrient N − θCC at the
minimum nutrient to carbon ratio q whenever N−θCC

q
< K.
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6. The production efficiency has a maximum value of e, which is propor-
tionately reduced whenever the average nutrient to carbon ratio of the
food (the producer) is less than the fixed ratio θC of the consumer.

The result, with the introduction of the two minimum functions to satisfy
items 5 and 6 above, reads

dP

dt
= bP − (b− dP )P 2

min(K, (N − θCC)/q)
− dP P − f(P )C

dC

dt
= e min

(
1,

(N − θCC)/P

θC

)
f(P )C − dCC (2)

where P is the density of the producer, and C is the density of the consumer.
System parameters are

• b = per capita growth rate of producer

• dP = per capita death rate of producer

• dC = per capita death rate of consumer

• f(P ) =consumer’s ingestion rate

• θC = consumer’s nutrient to carbon ratio (assumed fixed)

• N = total amount of nutrient in system

• q = minimum nutrient to carbon ratio in producer

• K = producer’s carrying capacity based on light intensity without re-
gard to stoichiometry

• e = maximal production efficiency (for sufficiently nutritious food)

We note that the system of eq. (2) is equivalent to the original equations
presented in Loladze, Kuang, Elser [9]. We have rewritten it in a slightly
more complicated form to simplify its comparison to the R-M model and to
the elimination model developed here. Specifically, the logistic growth for
the producer is split into birth bP − lP 2 and death −dP P , the coefficient l
is adjusted according to the LKE stoichiometric assumptions (assumption 5
above).

Loladze, Kuang and Elser studied their system in [9]. There are up to five
equilibria: the origin (no life), a producer monoculture, and three coexistence
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equilibria. Depending on parameters, there can exist zero, one, two or three
coexistence equilibria in the open first quadrant. In order to illustrate the de-
pendence of system dynamics on the parameter b, we performed a numerical
bifurcation analysis using AUTO [3]. The remaining parameters were fixed
at: dP = 0.1, dC = 0.2, f(P ) = P

2+P
, θP = 0.020, θC = 0.0275, N = 0.15, q =

0.0038. These parameter values were chosen to match the parameters in the
elimination model which follows, rather than the original parameters in the
LKE paper [9].

The resulting bifurcation diagram varying b is almost identical to the
bifurcation diagram obtained in LKE [9] by varing K. The only difference is
that in LKE [9], the saddle equilibrium and the repelling equilibrium do not
disappear, at least in the parameter range displayed in Figure 4 of [9].

We find the following dynamical behavior. For 0 < b < 0.1 neither the
producer nor the consumer can survive. For 0.1 < b < 0.23333 the system
has a stable producer monoculture. For 0.23333 < b < 0.76667, the system
has a stable producer-consumer coexistence equilibrium. The bifurcations at
b = 0.1 and b ≈ 0.23333 are both transcritical bifurcations.

At b ≈ 0.76667, the coexistence equilibrium undergoes a supercritical
Hopf bifurcation, spawning an attracting coexistence limit cycle. The ampli-
tude of the limit cycle increases as b increases, accompanied by an increase
in the period of the limit cycle. At b ≈ 1.53893, the limit cycle is destroyed
when a saddle-node bifurcation of equilibria causes two equilibria – one sad-
dle and the other a stable node – to appear on what was formerly the periodic
limit cycle. The stable node which appears in this bifurcation becomes an
attractor.

As b increases further, the producer’s equilibrium density also increases
(not shown) while the consumer’s density decreases. At b ≈ 2.18333, the
equilibrium source and saddle come together and eliminate each other in a
nonsmooth version of a saddle-node bifurcation. This bifurcation is the only
qualitative difference between this modified LKE bifurcation scenario in b and
the original bifurcation scenario in K presented in [9]. Finally at b ≈ 4.06364,
there is a third transcritical bifurcation after which the consumer is not able
to survive. The consumer dies out beyond this third transcritical bifurcation
because while there is sufficient quantity (carbon) in the food (producer), the
food quality (phosphorus to carbon ratio) is diluted by the excess carbon.

These bifurcations are illustrated below in the middle panel of Fig. 2
in Section 4. Not surprisingly, since AUTO is not intended for nonsmooth
systems, it was not able to continue through the nonsmooth saddle-node
bifurcation, but it was able to approach the bifurcation from both sides.
It is more surprising that AUTO [3] was able to perform continuation on
the rest of this system. Some continuations did fail, but we were able to
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adjust parameter values to find combinations for which the continuation did
proceed.

3 A Stoichiometric Elimination Model

We develop here a new stoichiometric model for a producer-consumer system.
We include a sediment compartment, with the goal of modeling nutrient
cycling. We have in mind a terrestrial system, with a plant for a producer
and an animal for a consumer. Examples might be cows feeding on grass, or
moose feeding on brush. We keep track of carbon and one limiting nutrient,
such as nitrogen, or possibly phosphorus, in each of the three compartments.
Carbon can be thought of as a surrogate for biomass or energy.

The resulting state variables are as follows, with upper-case variables
referring to carbon and lower-case variables referring to nutrient.

• P = density per unit area of producer carbon

• p = density per unit area of producer nutrient

• C = density per unit area of consumer carbon

• c = density per unit area of consumer nutrient

• S = density per unit area of sediment carbon

• s = density per unit area of sediment nutrient

Model assumptions are described in words below, flowcharts in Fig. 1,
and in equations eq. (3).

We make the following assumptions for the flow of carbon and nutrient.
The related terms in the differential equations are in parentheses.

1. Carbon input to the system is entirely due to photosynthesis by the
producer. (bP − lP 2). (See item 2 following eq (3) below.)

2. Nutrient enters the system via the sediment compartment, due, for
example, to rainfall. (IN)

3. Carbon removal from the system is only from the sediment, for example
being washed away with rain runoff. Linear outflow is assumed. (dSS)
(See item 3 following eq (3) below.)

4. As with the carbon, nutrient removal from the system is only from the
sediment. (dSs) (See item 3 following eq (3) below.)
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Figure 1: Carbon and nutrient flowcharts of the elimination model. The
dashed lines illustrate the stoichiometric elimination of excess carbon or nu-
trient.
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5. Carbon and nutrient are taken together from the producer when the
consumer eats. Only a fraction (ef(P )C, ef(P )Cp/P ) gets transferred
to the consumer; the remainder ((1 − e)f(P )C, (1 − e)f(P )Cp/P ) is
assumed to go to the sediment due to inefficient consumption by the
consumer.

6. Carbon and nutrient are transferred together from the producer or
consumer to the sediment when either dies. Linear death rates are
assumed. (dP P, dP p, dCC, dCc)

7. Nutrient uptake is assumed to be proportional to the density of the
producer, and the density of the nutrient in the sediment. (µPs)

8. Stoichiometry assumption. Both the producer and consumer are
assumed to have target structural nutrient-to-carbon density ratios
(θP , θC). When these target ratios are not matched, the element that
is in excess is eliminated, by excretion, for example. The elimination
rates are assumed to be proportional to the difference between the ac-
tual densities present and the densities which would be present if the
producer (or consumer) were exactly at its target ratio. This results
in four stoichiometric elimination terms. Only two of them can be ac-
tive at any instant – either the elimination of excess carbon from the
producer, or the elimination of excess nutrient from the producer. Sim-
ilarly, only one of the two elimination terms for the consumer is active
at any instant. Specifically,

• m1(P− p
θP

)+ is the excretion rate of excess producer carbon, active
when p : P is below θP

• m2(C − c
θC

)+ is the excretion rate of excess consumer carbon,
active when c : C is below θC

• m3(p − θP P )+ is the excretion rate of excess producer nutrient,
active when p : P is above θP

• m4(c − θCC)+ is the excretion rate of excess consumer nutrient,
active when c : C is above θC .

We have used the notation

x+ =

{
x if x ≥ 0
0 if x < 0

to denote the “positive part” of the quantity x.
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The full six-dimensional system reads

dP

dt
= bP − lP 2 − f(P )C − dP P −m1(P − p

θP

)+

dC

dt
= ef(P )C − dCC −m2(C − c

θC

)+

dS

dt
= dP P + dCC − dSS + (1− e)f(P )C + m1(P − p

θP

)+ + m2(C − c

θC

)+

dp

dt
= µPs− dP p− p

P
f(P )C −m3(p− θP P )+

dc

dt
= ef(P )C

p

P
− dCc−m4(c− θCC)+

ds

dt
= dCc + dP p + IN − dSs− µPs + (1− e)f(P )C

p

P
+ m3(p− θP P )+

+ m4(c− θCC)+ (3)

There are several simplifying assumptions made in the construction of
this model that should be pointed out.

1. We note the the producer birth rate bP−lP 2 does not explicitly depend
on the nutrient available in the soil. However, if the producer is growing
in a nutrient-limited environment, it will soon eliminate the excess
carbon to the sediment. So the effect is similar (but not identical, as
we point out in the next item) to reducing net growth – especially since
the sediment carbon does not affect the rest of the compartments.

2. In the model we are explicitly separating producer birth and death
terms. This split was unnecessary in the R-M and LKE models because
both models depended only on the difference b − dP of the birth and
death rates of the producer. In our model, however, because reduction
in producer birth reduces only the producer carbon (P ), while producer
death causes transfer of nutrient as well as carbon to the sediment (P
to S and p to s), reduction of birth and increase of death are not
equivalent. Consequently, one might take the positive part of the birth
term bP − lP 2, or use a more process based birth term such as in [4].
It is clear, however, from the first equation of the system (3) that the
producer carbon levels cannot leave the region bP − lP 2 ≥ 0. Hence, it
suffices to proceed under the assumption that bP − lP 2 ≥ 0, rendering
restriction to the positive part unnecessary.

3. There is no explicit carbon loss term in either the producer or consumer
due to respiration. For the producer, this can be justified by viewing
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the birth term bP − lP 2 as representing net production: photosynthesis
minus respiration. For the consumer, respiration is neglected purely for
simplicity. The system appears to have the same qualitative behavior
with or without an explicit respiration term. (See, however, item 1 of
Section 5.)

4. In contrast to the LKE study [9], we have explicitly elected to vary
the producer per capita birth rate rather than its carrying capacity. It
seems to be more process oriented to have the birth rate determine the
carrying capacity, rather than the other way around.

5. The nutrient uptake term, µPs, is the same as in simple foraging mod-
els. Alternatively, one might assume this uptake term to be propor-
tional to the birth of the producer, bP − lP 2 rather than its current
density P . Additionally, the uptake might plausibly depend on the
stoichiometry of the sediment, s

S
, rather than merely on the sediment

nutrient s. (Limited numerical simulations show the same bifurcation
sequences in both cases.)

Since we are comparing the elimination model with the LKE model, some
comments about the dimensionality of the two models are of interest. Be-
cause the stoichiometric mechanisms in the two models are different, the six-
dimensional elimination model does not appear to directly reduce to the two-
dimensional LKE model. One could, however, start with the two-dimensional
LKE model, and track assumptions from the elimination model to see which
ones lead to the extra four dimensions:

• two dimensions are added with the inclusion of the sediment class, one
for carbon and one for nutrient,

• one additional dimension is necessary to allow the consumer nutrient
to carbon ratio to float,

• a final additional dimension is necessary to allow the nutrient system
to be open.

There is, of course, a tradeoff between the extra dimensions and the flexibility
of the model. Our experience suggests that the most critical difference in the
two models is that the elimination model is open to nutrient flow, while the
LKE model is closed. The inclusion of the nutrient sediment class appears
to be significant to model nutrient cycling as well. We note that because the
carbon sediment population (S) does not affect any of the other five popu-
lations (see eq. (3)), it could easily be ignored. Constraining the consumer
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nutrient to carbon ratio at a constant would likely not change the qualitative
behavior of the model. In summary, we could have fixed the consumer ratio,
and ignored the S population and worked with a four-dimensional system.
However, since the system can be numerically investigated just as easily with
six dimensions as with four, and since any dimension beyond three is impos-
sible to visualize, we have elected to proceed with the full six-dimensional
model.

4 Model Analysis

We now proceed to analyze the elimination model (3). Because of the num-
ber of cases to consider (due to the four stoichiometric terms which can be
turned on or off according to the stoichiometric ratios of the producer and
consumer), performing an analytic equilibrium analysis is not straightfor-
ward. In our numerical exploration, we found three equilibrium points: one
with nutrient but no life, one producer monoculture without any consumer,
and one coexistence equilibrium with positive values for both producer and
consumer. However, all three equilibria are not always physically relevant –
some components can be negative, depending on the parameter values cho-
sen.

4.1 Numerical Results

The primary parameter we vary in our numerical experiments is the producer
birth rate b. We also vary a secondary parameter, the nutrient input level
IN . As we will show, when IN is very small, there is not enough nutrient in
the system to support a consumer. At the other end of the spectrum, when
IN is large, the system essentially reverts to the Rosenzweig-MacArthur
predator-prey system, at least for small to moderate values of b. The most
interesting dynamics happens for midrange values of IN , illustrated by our
choice of IN = 0.01.

Parameter values were chosen carefully to simultaneously satisfy the fol-
lowing five conditions:

1. All parameter values for terms which corresponded in the LKE and
elimination models were the same (l, f(P ), dP , e, dC , θC),

2. AUTO continuation worked on the nonsmooth LKE system (eq. (2)),

3. AUTO continuation worked on a “mimimally smoothed” version (de-
scribed below) of the nonsmooth elimination model (eq. (3)),
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birth rate b.
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4. the behavior of the LKE model along our one-parameter cut in b
qualitatively matched the behavior of the LKE model along the one-
parameter cut in K presented in [9],

5. the behavior of the elimination model along the one-parameter cut in
b matched the (interesting) behavior observed in [16].

Note that parameter q in the LKE model is a minimum nutrient-to-carbon
ratio for the producer, while θP in the elimination model is a target ratio,
which should be larger than the minimum. Indeed, our θP = 0.02 > q =
0.0038. The other parameters were fixed as follows: l = 0.2, dP = 0.1,
e = 0.8, dC = 0.2, dS = 0.3, µ = 0.2, m1 = m3 = .0001, m2 = m4 = 1.0,
θP = 0.020, θC = 0.0275, and f(P )= P

1+2P
. Note that the elimination rate for

excess carbon or nutrient is much higher for consumers (m1 = m3 = 1) than
it is for producers (m2 = m4 = .0001). This is consistent with herbivores
being able to eliminate excess carbon or nutrient much more quickly than
the plants they eat.

4.1.1 One-parameter cut in b for IN = 0.01

We used the continuation software AUTO [3] to compute a one-parameter
bifurcation diagram in b. Many of the initial continuation attempts, however,
failed. We speculate this failure was for at least two reasons. First, the system
of differential equations, because of the elimination terms, is continuous, but
not smooth. AUTO is not designed to handle nonsmooth systems. This is
especially a problem with periodic solution continuation because the periodic
solution may (and often does) pass across boundaries of the phase space
where the vector field is not smooth. Second, the periodic solutions that
are born in the first Hopf bifurcation grow in both amplitude and period.
Portions of the periodic orbits often are forced close to the P = 0 hyperplane.
Since several terms in the system (eq. (3)) are divided by P , this results in
possible division by a number close to zero.

We did not try compensate for the latter problem (such as converting to
the “stoichiometric form” by keeping track of Q = p/P instead of P ), but we
did compensate for the nonsmoothness as follows. First note that from small

β > 0, a smooth approximation to x+ is sβ(x) =

{
0 if x ≤ 0
xe−β/x if x > 0.

Fur-

thermore, the smooth functions sβ(x) → x+ uniformly as β → 0. We used
this smooth approximation and replaced m1

θP
(θP P − p)+ with m1

θP
sβ(θP P − p).

The seven other nonsmooth terms in equation (3) were similarly replaced.
This resulted in AUTO being able to compute both the one-parameter bi-
furcation diagram in Fig. 2 as well as the two-parameter bifurcation dia-
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grams in Fig. 4. The numerical b values of the bifurcations changed signifi-
cantly with the smoothing parameter β. Consequently, a significant amount
of experimenting was required to find a minimal value of β for which the
one-parameter continution in AUTO worked. The reported results used a
smoothing parameter of β = .0005.

We found the following behavior. For 0 < b < 0.1 neither the producer
nor the consumer can survive. For 0.1 < b < 0.199995 the system possesses a
stable producer monoculture. For 0.199995 < b < 0.354296, the system pos-
sesses a stable producer-consumer coexistence equilibrium. The bifurcations
at b = 0.1 and b ≈ 0.199995 are both transcritical bifurcations.

At b ≈ 0.354296, the coexistence equilibrium undergoes a supercritical
Hopf bifurcation, spawning an attracting coexistence limit cycle. The am-
plitude and period of the limit cycle both increase as b increases. The next
bifurcation distinguishes the behavior of our model from both the R-M and
LKE models. At b ≈ 0.715174, the coexistence equilibrium undergoes a
second Hopf bifurcation, this time restabilizing the coexistence equilibrium
and spawning a second (unstable) limit cycle. This bifurcation results in
a bistable regime: the restabilized equilibriuim along with the stable limit
cycle which already existed. The stable manifold of the unstable limit cycle
presumably separates the respective basins of attraction. This second peri-
odic limit cycle grows in amplitude with increasing b until b ≈ 0.9562, where
it coalesces with the attracting limit cycle and both limit cycles disappear
in a saddle-node of limit cycles. For b values beyond this, the coexistence
equilibrium appears to be globally attracting. See the resulting bifurcation
diagram in the bottom panel in Fig. 2. Compare these bifurcations with
Fig. 2 of Diehl [4] as well; that model is similar because it has a second Hopf
bifurcation, but it differs because it has no bistable region, and it has the
extinction of the consumer with high light levels, as is common for closed
nutrient systems.

Since the bistable behavior appears to be a unique feature among the
stoichiometric models withwhich we are familiar, we numerically illustrate
— using a representative parameter value of b = 0.81 — in Fig. 3.

4.1.2 Two-parameter bifurcation diagram in b and IN

In order to better understand the context of our single one-parameter cut
described in the previous subsection, we computed a two-parameter bifurca-
tion diagram in b and IN . The remaining parameters were unchanged from
those used the in one-parameter cut and listed above. Results are summa-
rized in Fig. 4. The bifurcations corresponding to the original IN = 0.01
one-parameter cut are indicated on the figure for reference. The accompany-
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Figure 3: Bistability: attracting equilibrium and attracting limit cycle. Pa-
rameters: b = 0.82, IN = 0.01, no smoothing. Solutions were numerically
generated with Mathematica. Top-left: time series without initial transients
for the three carbon variables for both the attracting periodic orbit and the
attracting equilibrium. Top-right: same as top-left, but showing the nutrient
values instead of the carbon values; Bottom-left: same as top-left and top-
right, but for the three stoichiometric ratios p : P , c : C and s : S. Compare
with the target ratios for producer (0.02) and consumer (0.0275). Bottom-
right: projection of phase space to P -C plane for three orbits, starting at
(P, C) = (0.6, 1.5), (0.65, 1.5), and (4.0, 1.5), respectively; the green and blue
orbits start almost together, but the green approaches the attracting equilib-
rium, while the blue approaches the attracting (red) limit cycle; the orange
orbit also approaches the limit cycle, but from the “outside”. The crossing
of orbits is a reminder that this is a projection from the full six-dimensional
phase space.
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ing “phase portraits” are conceptual only. They represent possible behaviors
when projected from the six-dimensional phase space to the two-dimensional
(P, C) plane.

There is a transcritical bifurcation curve at b = 0.1 independent of IN .
This can be analytically verified as the parameter value where the origin
changes from an attracting node to a saddle. Schematic phase portrait 1
gives way to schematic phase portrait 2. The producer monoculture be-
comes attracting as the origin becomes repelling. The second transcritical
curve is parallel to the first: the attracting producer monoculture equilib-
rium is supplanted by an attracting coexistence equilibrium: phase portrait
2 changes to phase portrait 3. Phase portraits 3a and 3b are topologically
equivalent, but are geometrically distinguished by the “straight” approach
to the attracting equilibrium corresponding to real eigenvalues (3a) versus
the spiral approach corresponding to complex eigenvalues (3b). The two are
separated by a curve (not shown) corresponding to equal eigenvalues of the
coexistence equilibrium. The Hopf bifurcation curve is the most interesting.
It is roughly “V” shaped. The left-hand branch, roughly vertical, corresponds
to a supercritical bifurcation. There is a codimension-two degenerate Hopf
bifurcation point at approximately (b, IN) = (0.542, 0.0091), where the Hopf
bifurcations change from supercritical to subcritical. Consistent with the
unfolding of this degenerate Hopf bifurcation point [5], the curve of saddle-
nodes of limit cycles emanates from this point, tangent to the Hopf curve.
Inside the “V” (region 4) there is a single attracting limit cycle. Below the
right-hand branch of the Hopf curve and above the saddle-node of limit cycles
curve is the bistable region 5. Passing the saddle-node of limit cycle curve
from region 5, the two limit cycles coalesce and disappear, leaving only an
attracting coexistence equilibrium corresponding to phase portrait 3 again.

The two-parameter bifurcation diagram illustrates the possible bifurca-
tion sequences for one-parameter cuts in b for fixed values of IN . If IN
is less than (approximately) 0.005, then the cut misses the Hopf curves al-
together. If IN is above that, it appears that any one-parameter cut in b
will cross in succession the two transcritical bifurcations, the supercritical
Hopf bifurcation, and then the subcritical Hopf bifurcation. Without further
continuation of the saddle-node of limit cycles curve, it is difficult to predict
whether horizontal cuts will cross this curve or not. It is clear, however, that
the larger IN , the larger the parameter range (of b values) corresponding
to an attracting limit cycle - as we see in the R-M model. This is consis-
tent with the observation that if there is a sufficient supply of nutrient, the
stoichiometric models should approach the non-stoichiometric R-M model
behavior.
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5 Discussion

In the process of working on this paper, several issues which are related to
stoichiometry have surfaced. We point them out here.

1. Paradox of energy enrichment. Many stoichiometric population
models refer to the paradox of energy of enrichment: increase in en-
ergy (birthrate of the producer in our elimination model) does not nec-
essarily result in a corresponding increase in the consumer populations
[9, 4]. The LKE [9] and Diehl [4] models exhibit a strong version of
this paradox: energy increase eventually results in the extinction of the
consumer. Both these models assume closed nutrient pools. The differ-
ence between systems that are open versus closed for nutrient appears
to be critical. In nutrient-closed systems, the increase in energy results
in an increase in producer biomass. Since there is a fixed amount of
nutrient, this results in a decrease in food quality, which, in turn, re-
sults in a decrease in the consumer population which can be supported.
Eventually, the food quality is too low to support the consumer at all.
Our elimination model is open to nutrient, and while the stoichiometry
restricts the parameters for which a limit cycle can exist, the value of
the consumer at the coexistence equilibrium appears to grow roughly
linearly with the producer birth rate b. (See the bottom panel of fig. 2.)

We note that [16] did include an explicit respiration term for the con-
sumer. Numerical continuations in b revealed exhibited qualitatively
similar bifurcation phenomena, but the asymptotic value of the con-
sumer equilibrium seemed to approach an asymptotic value with in-
crease in b. We elected to leave this respiration term out because it
kept the model as simple as possible, while retaining the same qualita-
tive bifurcation structure. It is not clear which model is most appro-
priate for natural systems, or to what extent natural systems exhibit
the paradox of energy enrichment.

2. Range of stoichiometric variation. An interesting behavior of the
model is the failure of either the consumer or the producer to equilibrate
to its target stoichiometric ratio (Fig. 5). Moreover, the producer equi-
librium ratios vary more than the consumer ratios. For example, as b
increases in Fig. 5, the producer ratio seems to be approaching approx-
imately 57% of its target value, while the consumer ratio is approacing
approximately 80% of its target ratio. In addition, the stoichiomet-
ric ratio of the producer varies over a much larger range than that
of the producer during transient dynamics and along periodic orbits

20



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  1  2  3  4  5

p:
P

 (
P

ro
du

ce
r 

ra
tio

)

b (producer birth rate)

Stable coexistence eq.
Unstable coexistence eq.

Stable monoculture eq.
Unstable monoculture eq.

Target p:P
Hopf pt.

Transcritical pt.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  1  2  3  4  5

c:
C

 (
C

on
su

m
er

 r
at

io
)

b (producer birth rate)

Stable coexistence eq.
Unstable coexistence eq.

Target c:C
Hopf pt.

Figure 5: Top: Plant stoichiometric ratio along the producer monoculture
and coexistence equilibriua versus b; Bottom: Consumer stoichiometric ratio
along the coexistence equilibrium versus b. Compare with the bottom panel
of fig 2.

21



(Fig. 3, lower-left). Producers typically have lower stoichiometic ratios
and their nutrient concentrations vary much more widely than those of
consumers (Sterner and Elser 2002 [12]), as is the case in our model.
We surmise this is because the producer elimination rate is several or-
ders of magnitude lower than that of the consumer, so it is less able
to adjust its stoichiometry by the excretion mechanism we model. The
qualitative similarity of the model predictions with the stoichiometric
behavior of real producers and consumers is encouraging, and suggests
that large differences between producers and consumers in elimination
rates may be one reason for their wide differences in stoichiometric
ratios.

3. Stoichiometric model compartments. When stoichiometry is con-
sidered in a model, the decisions about what compartments are nec-
essary, as well as when carbon and/or nutrient is to be considered
in a certain compartment, is not always clear. For example, do we
need to separate sediment nutrient into mineralized and nonmineral-
ized compartments as in nutrient decomposition and recycling models
[2]? When a consumer eats food, when is it considered as consumer
biomass: when it is bitten, when it is swallowed, or when it is converted
to structural biomass? Ingested food and structural biomass might
need to be separated into distinct compartments. Similarly, urine and
fecal matter might need to be considered separately: excess nutrient
is typically excreted in urine, while excess carbon is typically excreted
as fecal matter. When biomass is assumed to be homogeneous, these
issues are not necessary to deal with because it is assumed that carbon
and nutrient are cycled together. Whether or not the introduction of
any of these additional classes results in new and/or changed dynamics
remains to be seen.

4. Nonsmooth models. Many stoichiometric mechanisms are modelled
by systems that are not smooth, as is implicit in the widespread use
of a minimum function in both the elimination model presented here,
as well as the LKE model and others [4, 7, 9] How these nonsmooth
models behave and whether they are realistic demands further study.

5. Experimental Implications. The two-parameter bifurcation dia-
gram for birth rate and nutrient input (Fig. 4) suggests some possible
experimental tests of our model. The experiments could vary either
birth rate (b) or nutrient input (IN) or both to see if an experimental
system can be pushed across one or more of the bifurcations. Varying
birth rate could be done by using different species, each with its own
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intrinsic birth rate. However, differences in birth rates could also be
confounded with differences in other species parameters, so such exper-
iments may not be straightforward. Varying nutrient input rate is far
easier and, because nutrient input is independent of species, it would
not be confounded with other parameters. The most interesting region
to explore would be the bifurcations between regions 3 and 4 with re-
gion 5 of Fig. 4, where our model predicts a bistability of equilibria
depending on initial amounts of C and P . For our parameter values,
this would happen between values of 1.0 and some value greater than
1.5 for b. In this region, low nutrient inputs (below 0.01) result in a
stable fixed point equilibrium of C and P (region 3). Higher nutri-
ent inputs (above about 0.015) results in a stable limit cycle (region
4). Either increasing nutrient inputs from low values or decreasing it
from high values should cause the system to enter a bistable regime
(region 5). The eventual behavior of the system would either be a co-
existence equilibrium or a stable coexistence limit cycle, depending on
initial amounts of C and P . Therefore, the experiment should consist
of a gradient of nutrient inputs crossed with various initial values of
C and P in a complete factorial design. Many ecological experiments
are designed to vary one or more parameters and do not often test the
effect of different initial conditions. However, testing for the presence
of bistable regions, as in region 5, requires that initial conditions also
be varied. If bistability is a general property of stoichiometric models,
then experimenters need to be aware of this possibility when setting
up and interpreting their experimental results.

6 Summary

We have constructed and numerically analyzed a simple producer-consumer
stoichiometric model, keeping track of carbon (biomass) and one limiting
nutrient in producer, consumer and sediment compartments. The system is
open for both carbon and nutrient. Stoichiometry is effected in a mecha-
nistically simple manner: the producer and consumer populations each have
target structural ratios of nutrient to carbon. Whenever either population’s
stoichiometry is out of balance, the chemical substance in excess is elimi-
nated.

The resulting six-dimensional model behaves differently from the basic
R-M producer-consumer model which keeps track of only biomass (carbon),
and from the LKE model in which stoichiometric ratios are acheieved by a
different mechanism, and in which the system is closed to the nutrient. In
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contrast to the LKE model, the consumer is not driven to extinction at high
productivity. We hypothesize that this is because the influx of nutrients along
with carbon influx prevents the quality of the producer “food” from becoming
prohibitively low for consumer growth. We suggest that the extinction of the
consumer at high productivity in the LKE model is an unrealistically strong
behavior of that model which may be rectified by opening the system to
nutrients as well as carbon, and by incorporating the elimination mechanism
of adjusting stoichiometric ratios as modelled here.

For the elimination model considered here, the primary effect of stoi-
chiometry appears to be to suppress oscillations, especially at high producer
birth rates. Such oscillations in nonstoichiometric models (R-M) typically
have a growth in the producer, followed by a growth in the consumer. With
stoichiometry, the growth of the producer results in lower food quality for
the consumer, so the consumer’s subssequent increase is tempered, either de-
creasing the amplitude of the oscillation, or suppressing it altogether. This
damping effect is most significant when nutrient is input into the system at
moderate levels. Low nutrient input levels don’t even allow a consumer to
persist at all: as producer growth level increases the only bifurcation is from
no life to a producer-only monoculture. A high nutrient input level allows
both producer and consumer to grow without the stoichiometric limitations,
at least up to very high producer birth rates. The system then essentially
reverts to the standard producer-consumer system without stoichiometry: as
producer levels increase the systems transitions from no life, to producer-only
monoculture, to stable producer-consumer equililbrium, to stable producer-
consumer limit cycle.

In the intermediate range of nutrient input levels, however, the stoichio-
metric elimination plays a significant role. For small to moderate producer
birth rates, the system behaves similarly to the nonstoichiometric producer-
consumer model: increase in producer birth rate causes transitions from no
life to producer monoculture to coexistence equilibrium to coexistence limit
cycle. As producer birth rate increases further, however, the system exhibits
bistability – a stable coexistence equilibrium in addition to the stable coexis-
tence limit cycle – and then the loss of the stable limit cycle in a saddle-node
bifurcation of limit cycles. Continued increases in birth rate seem to effect
no further qualitative changes. The producer equilibrium level continues to
increase with its birth rate, while the consumer equilibrium appears to level
off. In conclusion, it is necessary to consider food quality as well as food
quantity to understand the stoichiometric inhibition of large amplitude limit
cycles in a nutrient-limited setting.
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