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ABSTRACT

This paper presents the formulation of a general power law failure criterion expressed in terms of principal
stresses, and normal and shear stresses on the failure plane. The Mohr-Coulomb and Hoek-Brown failure
criteria are shown to be particular cases of the general power law failure criterion. The Griffith failure cri-
terion for intact rock, and the generalization of this criterion proposed by Fairhurst in 1964, are also shown
to be particular cases of the general power law failure criterion. A scaling rule for the mathematical ex-
pressions conforming the power law failure criterion is presented, and its application in the interpretation of
triaxial tests results in samples of intact rock that obey the Hoek-Brown and Fairhurst criteria is discussed.
A power law failure criterion for uncemented rockfill originally proposed by de Mello, and later generalized
by Indraratna et al. in 1993, are also shown to be particular cases of the general power law failure crite-
rion proposed in this paper. Scaling of these failure criteria for rockfill shear interfaces is discussed and
illustrated with the analysis of triaxial test results of large rockfill samples. The paper addresses then the
problem of assessing damage around boreholes in intact rock by estimation of extent of plastic failure and
wall convergence of the borehole. Application of the scaled form of the Mohr-Coulomb, Hoek-Brown and
Fairhurst failure criteria is shown to lead to compact dimensionless representations of the extent of plastic
failure and borehole wall convergence. Finally the paper addresses the problem of determining the factor of
safety of slopes made of uncemented rockfill, showing again how the scaled form of the general power law
failure criterion leads to compact dimensionless representations of the slope stability solution. By provid-
ing transformation equations and benchmark problems, this paper also intends to contribute to the needed
implementation of new material constitutive models in finite element and finite difference software used in
practical geomechanics, in particular a power law failure criterion for modelling cemented and uncemented
rockfill.

KEYWORDS

Failure criterion; power law; borehole damage; rockfill slope

1. INTRODUCTION

One of the first failure criteria proposed for intact rock is the Griffith criterion —Griffith (1921; 1924);
Murrell (1958). The Griffith failure criterion is based on the assumption that the combination of principal
stresses defining failure of the rock is such that the maximum tensile stress at the tip of an open crack oriented
in the least favorable direction will reach some limiting critical value. After reaching this critical value, the
crack will begin to propagate, leading to failure of the rock.



When expressed in terms of major and minor principal stresses, σ1 and σ3, respectively, the Griffith failure
criterion is a power law function of the form (see, for example, Jaeger, Cook, & Zimmerman 2007)
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In equations (1) and (2), σc is the unconfined compressive strength of the rock (a positive quantity, since in
the equations above and in all equations that follow, compression will be assumed positive).

Also, when expressed in terms of shear and normal stresses on the failure plane, τs and σn, respectively, the
Griffith failure criterion is a power law function of the form
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The tensile strength of the rock, σ t (a negative quantity according to the assumed sign convention), can be
obtained by making σ1 = 0 and σ3 = σ t in equation (1), or τs = 0 and σn = σ t in equation (3). This gives
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8

(4)

Therefore, according to the Griffith failure criterion, the absolute value of the ratio of unconfined compressive
strength and tensile strength of the rock is equal to 8.

Experimental testing of intact rock samples shows that the ratio −σ t/σc is not necessarily equal to 8 and it
can be lower or more typically larger than the value 8 predicted by the Griffith failure criterion. Different
failure criteria have been proposed to account for this variability of the ratio −σ t/σc . A popular failure
criterion is the Hoek-Brown failure criterion (Hoek & Brown 1980a; 1980b) which was derived based on
triaxial, unconfined compression, and tensile strength test results for intact rock samples, taking as a basis
the Griffith failure criterion and the linear Mohr-Coulomb failure criterion. Another failure criterion is the so
called Fairhurst criterion (Fairhurst 1964, Hoek & Martin 2014). This criterion is basically the generalization
of the Griffith criterion in which the ratio −σ t/σc is a variable.

As it will be shown in this paper, all mentioned failure criteria have two main features: 1) they can all be
written in terms of two material parameters, these being the unconfined compressive strength of the rock, σc,
and the ratio of tensile and compression strength; −σ t/σc; 2) they can all be written as power law functions,
involving principal stresses or stresses on the failure plane.

Power law functions are also used to predict the shear strength of rockfill interfaces. For example, for the
case of uncemented rockfill, de Mello (1977) proposed the following failure criterion in terms of shear and
normal stresses on the failure plane, τs and σn, respectively,

τs = aσ
b

n (5)

In equation (5), a and b are constants.

Also for uncemented rockfill interfaces, Indraratna, Wijewardena, & Balasubramaniam (1993) proposed a
similar expression as equation (5), but scaling the stresses with a representative average of the unconfined



compressive strength of the rock fragments, σcF , i.e.,
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In equation (6), A and B are constants, that can be related to the constants in equation (5) using the following
relationships

A =
a

σ
1−B
cF

and B = b (7)

Although the use of numerical modelling tools based on finite element or finite difference methods has
become a standard practice in rock engineering design, it is somehow surprising that these numerical tools do
not implement constitutive models for rockfill according to the power law models by de Mello or Indraratna
et al.; the explanation may be related to the difficultly of expressing the mentioned failure criteria in terms
of principal stresses. With this in mind, this paper presents the equations needed to recast the failure criteria
by de Mello and Indraratna et al. in terms of principal stresses.

Considering the relevance that power law material models have in the prediction of the shear strength of
intact rock and rockfill interfaces, the main objective of this paper is to present a general power law failure
criterion for intact rock and rockfill interfaces that has the failure criteria mentioned above —i.e., the Griffith,
Hoek-Brown, Mohr-Coulomb and Fairhurst failure criteria for intact rock, and the de Mello and Indraratna
et al. for uncemented rockfill— as particular forms of the general criterion. In doing so, the paper will
introduce a rule for scaling the proposed general power law failure criterion, and as a result, for scaling the
mentioned failure criteria. The advantages of using the scaled form of power law failure criteria will be
illustrated with two rock engineering examples, namely, the analysis of damage in boreholes in intact rock
that obeys the Mohr-Coulomb, Hoek-Brown and Fairhurst failure criterion; and the analysis of stability of
rockfill embankments, when the rockfill obeys the Indraratna et al. failure criterion.

2. POWER LAW FAILURE CRITERIA FOR INTACT ROCK

2.1. General form of the power law failure criterion

The first form of the general power law failure criterion applies to intact rock, and involves the major and
minor principal stresses, σ1 and σ3, respectively. The failure criterion is as follows
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In equation (8), C, D and E are constants, σc is the unconfined compressive strength and σtBx is the so called
biaxial tensile strength of the intact rock.

The failure criterion is schematically represented in Figure 1a. Noticing that the axes represent principal
stresses divided by σc, point Uc corresponds to the unconfined (or uniaxial) compressive strength of the
rock, σc, and point Bt corresponds to the biaxial tensile strength of the rock, σtBx.

Because the ordinate of point Uc in Figure 1a must be one, the following relationship between the parameters
in equation (8) must hold
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Figure 1. General power law failure criterion expressed in terms of a) minor and major principal stresses and
b) normal and shear stresses on the failure plane.

The failure criterion given by equation (8) can be recast as an equivalent failure criterion expressed in terms
of shear and normal stresses on the failure plane by a set of parametric equations of the form
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The explicit form of the equations above are presented in Appendix A.

Figure 1b represents the same failure criterion given by equation (8), expressed now in terms of shear and
normal stresses on the failure plane (divided by σc), after application of equations (10) and (11). Mohr-
circles constructed based on the principal stresses had been added to the diagram, so the points of tangency
of the circles with the failure envelope in Figure 1b define the same points indicated in Figure 1a.

Besides the points Bt and Ut discussed earlier on, other points representing particular stress states are indi-
cated in Figure 1a. For example, point P corresponds to the general case of confined compression. Point
Pcr, coordinates of which can be obtained from equations (10) and (11) by making σn = 0, corresponds the
case of zero normal stress acting on the failure plane (it can be argued that this stress state is a limiting case



for which the Mohr failure model loses validity, as friction requires the normal stress on the frictional sur-
face to be compressive —see, for example, Jaeger et al. 2007). Point Ut corresponds to the uniaxial tensile
stress state, associated with the uniaxial tensile strength, σtUx —which can be obtained from equation (8),
considering that σtUx = σ3 when σ1 = 0.

Two observations must be made regarding the failure criteria representations in Figure 1. The first is with
regard to the points Bt and Ut , representing the biaxial tensile strength, σtBx, and the uniaxial tensile strength,
σtUx, respectively. From a mechanical point of view, there is no reason to expect σtBx to be different from
σtUx (i.e., points Bt and Ut not to be aligned vertically). The fact that they are different, as indicated in Figure
1, is that a tension cut-off needs to be introduced for the failure criterion. This will become evident later on,
when the different failure criteria introduced in Section 1 are analyzed in more depth.

The second observation is with regard to the constant D in equation (8). The maximum value for this constant
is one, otherwise the failure envelope in Figure 1a will be concave upwards, and therefore will not conform
to a fundamental postulate of the theory of plasticity —Davis & Selvadurai (2002). The minimum value of
the constant D is such that once the failure criterion given by equation (8) is recast in terms of stresses on
the failure plane (i.e., with equations 10 and 11) the curvature of the resulting failure envelope allows the
Mohr circle construction at every point of the envelope, with a the circle touching the envelope at the point
of tangency only.

The second form of the general power law failure criterion for intact rock, adapted version of which will be
applied to rockfill interfaces later on, involves the shear and normal stresses on the failure plane, τs and σn,
respectively. The failure criterion is as follows
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In equation (12), A and B are constants, σc is the unconfined compressive strength and σtBx is the biaxial
tensile strength.

The maximum value for the constant B in equation (12) is one, for the same reason stated for the constant
D above. The minimum value is 0.5, because otherwise the failure envelope does not allow a Mohr circle
construction —i.e., the construction of a circle that is tangent to the curve, and that touches the curve at the
point of tangency only (see Jiang et al. 2003, Baker 2004).

The failure criterion given by equation (12) can be recast as an equivalent failure criterion expressed in terms
of principal stresses by a set of parametric equations of the form
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Equations (13) and (14), which are basically the inverse of equations (10) and (11), can be combined into
a single equation that defines the failure criterion in terms of principal stresses σ1 and σ3. The equation is
provided in Appendix A.

In the following sections, the Mohr-Coulomb, Hoek-Brown and Fairhurst failure criteria are discussed in
more depth, and are shown to be particular cases of the general power law failure criteria given by equations
(8) and (12).



2.2. The Mohr-Coulomb failure criterion

The Mohr-Coulomb failure criterion expressed in terms of principal stresses σ1 and σ3 can be written as
follows (see for example, Goodman 1989; Davis & Selvadurai 2002)
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In equations (15) and (16), φ is the internal friction angle and c is the cohesion.

The ratio of unconfined compression strength and biaxial tensile strength, to be designated as ri, is written
as follows,
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The relationship between the ratio ri and φ can be obtained by making σ1 = σ3 = σtBx in equation (15),
which together with equation (17) gives
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Combining equation (17) and the first equation (18), and replacing into equation (15), the Mohr-Coulomb
failure criterion expressed in terms of principal stresses can also be written as follows

σ1

σc
= (ri +1)

σ3

σc
+1 or

σ1

σc
=

σ3

σc
+ ri

(
σ3

σc
− σtBx

σc

)
(19)

Comparing the second equation (19) with equation (8), the Mohr-Coulomb failure criterion is found to be a
particular case of the general power law failure criterion given by equation (8) when

C = ri D = 1 and E = 0 (20)

It should be noticed that the constants C, D and E given by equation (20), satisfy the equation (9).

The Mohr-Coulomb failure criterion given by equations (19) is represented graphically Figure 2a. The dia-
gram includes failure envelopes corresponding to different values of the ratio ri. As a reference, the Griffith
failure envelope that according to equation (4) corresponds to a ratio of compressive-to-tensile strength equal
to 8, is also represented in Figure 2a. Considering that the Griffith failure criterion and the Mohr-Coulomb
failure criterion corresponding to ri = 8 are equivalent (in that the mentioned ratio is the same), it is notice-
able from Figure 2a that the strength predicted by the Mohr-Coulomb failure criterion in the compressive
confining stress regime is significantly larger than the one predicted by the Griffith failure criterion —and
the opposite is true in the tensile confining stress regime.

Figure 2a includes failure envelopes for two limiting cases of the ratio ri, namely ri = 0 and ri = ∞.

For the first case, the resulting failure criterion is obtained by making ri = 0 in the first of equations (19),
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Figure 2. Mohr-Coulomb failure criterion for different compression-to-tension strength ratios, ri, expressed in terms
of a) principal stresses and b) stresses on the failure plane. The Griffith failure criterion is included for comparison.

i.e.,
σ1

σc
=

σ3
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+1 (21)

which corresponds to the failure criterion of a frictionless (cohesive only) material —and therefore to a
failure envelope parallel to the bisector line σ1 = σ3 in Figure 2a.

For the second case, the resulting failure criterion is obtained by taking the limit when ri tends to ∞ in the
first of equations (19), i.e.,

σ1

σc
→ ∞ (22)

which means that when the ratio of biaxial tensile strength and compressive strength is zero, the predicted
major principal stress at failure is unbounded —and the failure envelope becomes a vertical line, as repre-
sented in Figure 2a.

Figure 2a shows the points Bt and Ut (see also Figure 1a) for the failure envelope corresponding to ri = 8.
According to the first observation made in Section 2.1, for the Mohr-Coulomb failure criterion these points
do not align vertically, and the uniaxial tensile strength (σtUx) associated with point Ut is smaller, in absolute
value, than the biaxial tensile strength (σtBx) associated with point Bt . Indeed, making σ3 = σtUx and σ1 = 0



in the first of equations (19), the uniaxial tensile strength (divided by σc) is

σtUx

σc
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Considering that σtBx is related to the ratio ri according to equation (17), the ratio of uniaxial-to-biaxial
tensile strength results to be

σtUx
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ri +1
< 1 (24)

Since the uniaxial tensile strength (or a mesure of this strength) can be obtained by indirect Brazilian splitting
tests or direct tensile strength tests, the Mohr-Coulomb failure criterion requires a tension cut-off at point Ut

or at a point to the right side of point Ut in Figure 2a —see, for example, Goodman (1989).

The Mohr-Coulomb failure criterion expressed in terms of normal and shear stresses (divided by the un-
confined compressive strength) is written as follows (see for example, Goodman 1989; Davis & Selvadurai
2002)
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Application of equations (10) and (11) to the first of equations (19), allows the Mohr-Coulomb failure crite-
rion to be written in terms of the ratio ri as follows

τs

σc
=

ri

2
√

ri +1
σn

σc
+

1
2
√

ri +1
(26)

It should be noticed that by making τs = 0 and σn = σtBx in equation (26), the following expression is
obtained

σtBx

σc
=− 1

ri
(27)

which is basically the same equation (17).

The Mohr-Coulomb failure criterion given by equations (26) for the particular case ri = 8 and for negative
values of σn/σc is represented graphically Figure 2b. The Griffith failure criterion is included as a reference.
As mentioned earlier on, the strength predicted by the Griffith failure criterion is larger than the one predicted
by the Mohr-Coulomb failure criterion in the tensile confining stress regime.

Combining equations (26) and (27), the Mohr-Coulomb failure criterion expressed in terms of normal and
shear stresses on the failure place can be written as follows
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Comparing equation (28) with equation (12), the constants A and B in equation (12) result to be

A =
ri

2
√

ri +1
and B = 1 (29)

In view of equations (19) and (28), the Mohr-Coulomb failure criterion is therefore shown to be a particular
case of the general power law failure criteria expressed in terms of principal stresses (equation 8) and in
terms of stresses on the failure plane (equation 12), respectively.



2.3. The Hoek-Brown failure criterion

The origin of the Hoek-Brown failure criterion for intact rock can be traced back to the diagram in Figure
3 (Hoek 1965; Hoek & Bieniawski 1966). In this diagram the dots represent results of triaxial, unconfined
compression and tensile strength tests for a large variety of rock types compiled by Hoek (the dots identified
as Set 2, 10, 11, 15 and 17 are highlighted in the diagram, as these will be discussed in a later section in this
paper). The figure includes the Griffith failure envelope, and Mohr-Coulomb failure envelopes corresponding
to different values of friction coefficients, µ . The Mohr-Coulomb failure criterion was interpreted to be a
modified version of the Griffith failure criterion, when the crack, in the Griffith model, has been assumed to
be closed and to be frictional.

Figure 3 shows that the major principal stress at failure predicted by the Griffith model is significantly lower
than measured from tests; it also shows that the major principal stress at failure predicted by the Mohr-
Coulomb model, with expected values of friction angle for the crack wall, is higher than measured from
tests, particularly as the confining stress increases. All this probably led Hoek and Brown to propose a failure
criterion with a similar form as the Griffith criterion (i.e., with a square root affecting the minor principal
stress), that predicted higher values of major principal stress at failure than the Griffith failure criterion, and
that adjusted better to the test results.

The Hoek-Brown failure criterion for intact rock was first published in Hoek & Brown (1980a; 1980b) .
Expressed in terms of principal stresses, σ1 and σ3, the failure criterion is written as follows

σ1

σc
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σ3

σc
+

√
mi

σ3

σc
+1 (30)

where σc is the unconfined compression strength of the intact rock and mi is a rock parameter.

Considering that the biaxial tensile strength, σtBx, corresponds to the case, σ1 = σ3 in equation (30), then

mi =− σc

σtBx
or
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=− 1
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Replacing the second equation (31) into equation (30), and factoring terms, the Hoek-Brown failure criterion
can be written as follows
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Comparing equation (32) with equation (8), the Hoek-Brown failure criterion is found to be a particular case
of the general power law failure criterion given by equation (8) when

C =
√

mi D =
1
2

and E = 0 (33)

with these constants also satisfying the equation (9).

The Hoek-Brown failure criterion given by equations (30) is represented graphically in Figure 4a. The
diagram includes different failure envelopes corresponding to different values of the parameter mi. As a
reference, the Griffith failure envelope and the Mohr-Coulomb failure envelope for ri = 8 are also represented
in Figure 4a. Considering that the Hoek-Brown failure envelope for mi = 8 is comparable to the mentioned
Griffith and Mohr-Coulomb envelopes (in that the compressive-to-tensile strength ratio is the same), Figure
4a shows that the Hoek-Brown failure envelope is an intermediate failure envelope that lies in between the
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Figure 3. Triaxial test results on samples of various rock types compiled by Hoek (1965) —see also Hoek &
Bieniawski (1966). The table at the bottom includes the relationship between represented values of friction

coefficient, µ , and the ratio ri given by equation (18).

mentioned Griffith and Mohr-Coulomb failure envelopes, in both, compression and tension confining stress
regimes.

Figure 4a also includes failure envelopes for two limiting cases of the ratio mi, namely mi = 0 and mi = ∞.
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For the first case, the resulting failure criterion is obtained by making mi = 0 in equation (30), i.e.,

σ1

σc
=

σ3

σc
+1 (34)

which corresponds to the failure criterion of a frictionless (cohesive only) material —and therefore to a
failure envelope parallel to the bisector line σ1 = σ3 in Figure 4a.

For the second case, the resulting failure criterion is obtained by taking the limit when mi tends to ∞ in
equation (30), i.e.,

σ1

σc
→ ∞ (35)

which means that when the ratio of biaxial tensile strength and compressive strength is zero, the predicted
major principal stress at failure is unbounded —and the failure envelope becomes a vertical line, as repre-
sented in Figure 4a.

Figure 4a shows the points Bt and Ut (see also Figure 1a) for the failure envelope corresponding to mi = 8.
According to the first observation made in Section 2.1, for the Hoek-Brown failure criterion (as well as for



the Mohr-Coulomb failure criterion discussed in Section 2.2) these points do not align vertically, and the
uniaxial tensile strength (σtUx) associated with point Ut is smaller, in absolute value, than the biaxial tensile
strength (σtBx) associated with point Bt . Indeed, making σ3 = σtUx and σ1 = 0 in equation (30), the uniaxial
tensile strength divided by σc is

σtUx

σc
=−

√
m2

i +4−mi

2
(36)

and therefore, considering the second equation (31),

σtUx

σtBx
< 1 (37)

In view of equation (37), the Hoek-Brown failure criterion requires a tension cut-off at point Ut or at a point
to the right of Ut in Figure 4a. The need of a tension cut-off in the Hoek-Brown failure criterion has been
suggested in recent publications (Hoek & Martin 2014; Hoek & Brown 2019).

The Hoek-Brown failure criterion cannot be written in terms of stresses on the failure plane using a simple
power law function as in equation (12) —at least not when the Hoek-Brown failure criterion considers the
coefficient E in equation (8) to be null. This is in contrast with an early postulate that the Hoek-Brown
failure criterion allowed such simple power law form —see Hoek & Brown (1980a). Therefore the Hoek-
Brown failure criterion is not a particular case of the general power law failure criterion expressed in terms
of stresses on the failure plane proposed in this paper.

The recasting of the Hoek-Brown failure criterion expressed in term of stresses on the failure plane can be
done using the set of equations (10) and (11). Figure 4b shows the resulting Hoek-Brown failure envelope for
the case mi = 8 represented in Figure 4a. Figure 4b also includes the Griffith failure envelope and the Mohr-
Coulomb failure envelope corresponding to ri = 8. Figure 4b shows that the Hoek-Brown failure envelope is
an intermediate failure envelope that lies in between the Griffith and Mohr-Coulomb failure envelopes.

2.4. The Fairhurst failure criterion

When discussing the need to apply a tension cut-off to the Hoek-Brown failure criterion, Hoek & Martin
(2014) refer to the so called Fairhurst failure criterion, that has the particularity of points Ut and Bt in Figure
1a being aligned vertically; this means that the uniaxial tensile strength, σtUx, is equal to the biaxial tensile
strength, σtBx.

The Fairhurst failure criterion is the generalization of the Griffith failure criterion for a variable ratio of
unconfined compression strength and tensile strength. The equations conforming the criterion were first
published in Fairhurst (1964). In this section, a rewritten version of the original equations are provided. The
Fairhurst failure criterion includes the unconfined compressive strength, σc, and a parameter designated here
as the ni parameter as the main rock parameters in the failure criterion. The parameter ni represents the ratio
of unconfined compression strength and tensile strength, and therefore it is comparable to the parameter mi

in the Hoek-Brown failure criterion, and the parameter ri in the Mohr-Coulomb failure criterion.

The Fairhurst failure criterion expressed in terms of principal stresses σ1 and σ3 is as follows

σ1

σc
=

σ3

σc
+2

√
ni +1−1
√

ni

√
σ3

σc
+

1
ni
+

(√
ni +1−1

)2

ni
if

σ1

σc
≥ σ1L

σc
(38)



and
σ3

σc
=− 1

ni
if

σ1

σc
≤ σ1L

σc
(39)

As mentioned previously, the parameter ni is

ni =− σc

σtBx
(40)

and the scaled stress σ1L/σc is
σ1L

σc
=

(√
ni +1−2

)√
ni +1

ni
(41)

When the parameter ni is considered to be equal to 8 in equations (38) through (41), these equations become
the very same equations (1) and (2) for the Griffith failure criterion.

In view of equation (40), the Fairhurst failure criterion can also be written as follows

σ1

σc
=

σ3

σc
+2

√
ni +1−1
√

ni

√
σ3

σc
− σtBx

σc
+

(√
ni +1−1

)2

ni
if

σ1

σc
≥ σ1L

σc
(42)

Comparing equation (42) with equation (8), the Fairhurst failure criterion is found to be a particular case of
the general power law failure criterion given by equation (8) when

C = 2
√

ni +1−1
√

ni
D =

1
2

and E =

(√
ni +1−1

)2

ni
(43)

with these constants also satisfying the equation (9).

The Faihrust failure criterion given by equations (38) through (41) is represented graphically Figure 5a. The
diagram includes different failure envelopes corresponding to different values of the parameter ni. As a
reference, the Hoek-Brown failure envelope for mi = 8 is also represented in Figure 5a. As already discussed
in Section 2.3, when compared with the Hoek-Brown failure criterion for mi = 8, the Griffith failure criterion
(or Fairhurst failure criterion for ni = 8) predicts lower values of major principal stresses at failure in the
confined compressive stress regime, and larger values of major principal stresses at failure in the confined
tensile stress regime.

Figure 5a includes the Fairhurst failure envelopes for two limiting cases of the ratio ni, namely ni = 0 and
ni = ∞.

For the first case, the resulting failure criterion is obtained by taking the limit when ni tends to 0 in the first
of equations (38), i.e.,

σ1

σc
=

σ3

σc
+1 (44)

which corresponds to the failure criterion of a frictionless (cohesive only) material —and therefore to a
failure envelope parallel to the bisector line σ1 = σ3 in Figure 5a.

For the second case, the resulting failure criterion is obtained by taking the limit when ni tends to ∞ in the
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first of equations (38). This limit results

σ1

σc
=

σ3

σc
+2

√
σ3

σc
+1 (45)

which means that when the ratio of biaxial tensile strength and compressive strength is zero, the predicted
major principal strength is now bounded to an upper limiting envelope. This is in contrast with the Mohr-
Coulomb and Hoek-Brown failure envelopes discussed in Sections 2.2 and 2.3, respectively.

Figure 5a shows the points Bt and Ut (see also Figure 1a) for the Fairhurst failure envelope corresponding to
ni = 8. As mentioned previously, the points are aligned vertically. This will be the case provided the stress
σ1L/σc is above the horizontal axis. In that case, equation (40) can be written as follows

ni =− σc

σtBx
=− σc

σtUx
(46)

Making σ1L/σc ≥ 0 in equation (41), the points Bt and Ut will be aligned vertically provided ni ≥ 3. If
ni < 3, the Fairhurst failure criterion requires a tension cut-off, as in the case of the Mohr-Coulomb and
Hoek-Brown failure criteria.



The Fairhurst failure criterion expressed in terms of normal and shear stresses (divided by the unconfined
compressive strength) can be written as follows (Fairhurst 1964)

τs

σc
=

√
2
(
1−

√
ni +1

)
+ni

ni

√
σn

σc
− σtBx

σc
(47)

Comparing equation (47) with equation (12), the constants A and B in equation (12) result to be

A =

√
2
(
1−

√
ni +1

)
+ni

ni
and B =

1
2

(48)

In view of equations (42) and (47), the Fairhurst failure criterion is therefore shown to be a particular case
of the general power law failure criteria expressed in terms of principal stresses (equation 8) and in terms of
stresses on the failure plane (equation 12), respectively.

Finally, equation (47) is represented graphically in Figure 5b for the same values of the coefficients ni in
Figure 5a —the Hoek-Brown failure criterion is also included as a reference. As expected, the origin of the
various failure envelopes are located at the abscisas corresponding to the 1/ni values.

3. SCALING OF POWER LAW FAILURE CRITERIA FOR INTACT ROCK

3.1. Scaling of the general form of the power law failure criterion

The general power law failure criteria given by equations (8) and (12) allow scaled forms that can bring
advantages in the interpretation of problems involving the failure criteria, as it will be illustrated with appli-
cation examples later on in this paper.

For the general power law failure criterion expressed in terms of principal stresses (equation 8), the scaled
form that applies when 0.5 ≤ D < 1 is

S1 = S3 +SD
3 +E C−1/(1−D) (49)

where

S1 =

(
σ1

σc
− σtBx

σc

)
C−1/(1−D) and S3 =

(
σ3

σc
− σtBx

σc

)
C−1/(1−D) (50)

and when D = 1, it is
S1 = (C+1)S3 (51)

where
S1 =

σ1

σc
− σtBx

σc
+

E
C

and S3 =
σ3

σc
− σtBx

σc
+

E
C

(52)

For the general power law failure criterion expressed in terms of stresses on the failure plane (equation 12),
the scaled form that applies when 0.5 ≤ B < 1 is

Ts = SB
n (53)



where

Ts =
τs

σc
A−1/(1−B) and Sn =

(
σn

σc
− σtBx

σc

)
A−1/(1−B) (54)

and when B = 1, it is
Ts = ASn (55)

where
Ts =

τs

σc
and Sn =

σn

σc
− σtBx

σc
A−1 (56)

The following sections provide the particular forms that the equations above take, for the particular cases
of the general power law failure criteria corresponding to the Mohr-Coulomb, Hoek-Brown and Fairhurst
failure criteria.

3.2. Scaling of the Mohr-Coulomb failure criterion

According to Section 2.2, the Mohr-Coulomb failure criterion expressed in terms of principal stresses is
a particular case of the general power law failure criterion (equation 8) when C = ri, D = 1 and E = 0.
Considering also that σtBx/σc is related to the parameter ri according to equation (17), equations (51) and
(52) become

S1 = (ri +1)S3 (57)

and
S1 =

σ1

σc
+

1
ri

; S3 =
σ3

σc
+

1
ri

(58)

Also, according to Section 2.2, the Mohr-Coulomb failure criterion expressed in terms of stresses on the fail-
ure plane is a particular case of the general power law failure criterion (equation 12) when A = ri/(2

√
ri +1)

and B = 1 (with σtBx/σc related to ri according to equation 17). Therefore, equations (55) and (56) become

Ts =
ri

2
√

ri +1
Sn (59)

and

Ts =
τs

σc
; Sn =

σn

σc
+

2
√

ri +1
r2

i
(60)

The scaled form of the Mohr-Coulomb failure criteria above has been known and used by several authors in
the past. For example, equations (59) and (60) were used by Hoek & Bray (1981) to produce dimensionless
representations of stability charts for rock slopes assuming circular failure surface based on limit equilibrium
models. Equations (57) and (58) were used by Carranza-Torres (2003) to produce dimensionless representa-
tions of ground reaction curves for the convergence confinement method of tunnel support design, based on
elasto-plastic models.



3.3. Scaling of the Hoek-Brown failure criterion

According to Section 2.3, the Hoek-Brown failure criterion for intact rock is a particular case of the general
power law failure criterion when the coefficients C, D and E are given by equations (33). Considering that
σtBx/σc is related to the coefficient mi by equations (31), equations (49) and (50) become

S1 = S3 +
√

S3 (61)

and

S1 =

(
σ1

σc
+

1
mi

)
1
mi

; S3 =

(
σ3

σc
+

1
mi

)
1
mi

(62)

Equations (61) and (62) correspond to the scaled version of the Hoek-Brown failure criterion for intact rock
proposed by Londe (1988).

To illustrate the use of equations (61) and (62), Figure 6a represents the selected cases of uniaxial and
triaxial compression test results from Figure 3, designated as Cases 2, 10, 11, 15 and 17, together with the
corresponding computed best fit Hoek-Brown failure envelopes. Figure 6b represents the same test results,
after the scaling in equations (62) has been applied. Points corresponding to different rock types that are
aligned to their corresponding failure envelopes in Figure 6a, appear now aligned to a unique scaled Hoek-
Brown failure envelope given by equation (61). Table 1 includes the data represented in Figure 6.

Although this section focuses primarily on failure criteria for intact rock, the generalized Hoek-Brown failure
criterion that applies to rock masses is also a particular case of the power law failure criterion introduced
in Section 2.1, and therefore also allows a scaled form as given by equations (49) and (50). Because of
the significance of the generalized Hoek-Brown failure criterion in practical rock engineering, details of the
scaling of this failure criterion are provided in Appendix B.
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Table 1. Summary of uniaxial and triaxial test results represented in Figure 6.

Set σ3 σ1 mi σc S3 S1
[MPa] [MPa] [-] [MPa] [-] [-]

2 0.00 124.11 8.1 123.21 0.0154 0.1405
3.72 143.09 0.0192 0.1596
6.95 151.41 0.0224 0.1680

23.33 220.29 0.0389 0.2374

10 0.00 39.30 7.6 42.28 0.0175 0.1404
4.91 65.16 0.0328 0.2213
9.75 81.71 0.0480 0.2730

14.62 99.90 0.0632 0.3299
19.65 107.68 0.0789 0.3542
25.66 121.91 0.0977 0.3987

11 0.00 24.20 23.8 23.52 0.0018 0.0450
7.16 69.00 0.0146 0.1250
6.92 75.75 0.0141 0.1371

17.40 118.73 0.0328 0.2138
17.42 121.22 0.0329 0.2183

15 0.00 68.95 41.7 64.79 0.0006 0.0261
3.38 117.76 0.0018 0.0441
6.55 138.45 0.0030 0.0518
9.65 179.54 0.0041 0.0670

12.48 222.56 0.0052 0.0829

17 0.00 12.27 15.3 11.19 0.0043 0.0758
2.88 26.56 0.0211 0.1590
5.95 35.71 0.0389 0.2124

11.78 61.50 0.0729 0.3627

3.4. Scaling of the Fairhurst failure criterion

According to Section 2.4, the Fairhurst failure criterion for intact rock is a particular case of the general power
law failure criterion (equation 8) when the coefficients C, D and E are given by equations (43). Considering
that σtBx/σc is related to the coefficient ni by equation (40), equations (49) and (50) become

S1 = S3 +
√

S3 +
1
4

if S1 ≥ 1/4 (63)

S3 = 0 if S1 ≤ 1/4 (64)

S1 =

(
σ1

σc
+

1
ni

)
ni

4
(√

ni +1−1
)2 ; S3 =

(
σ3

σc
+

1
ni

)
ni

4
(√

ni +1−1
)2 (65)

Also, according to Section 2.4, the Fairhurst failure criterion expressed in terms of stresses on the failure
plane is a particular case of the general power law failure criterion (equation 12) when the coefficients A
and B are given by equations (48). Considering that σtBx/σc is also related to ni according to equation (40),
equations (53) and (54) become

Ts =
√

Sn (66)



where

Ts =
τs

σc

ni

2
(
1−

√
ni +1

)
+ni

and Sn =

(
σn

σc
+

1
ni

)
ni

2
(
1−

√
ni +1

)
+ni

(67)

To illustrate the use of equations (63) through (65), the dots in Figure 7a represent test results corresponding
to three different rock types obeying the Fairhurst failure criterion. Set A corresponds to (mostly) tensile
strength test results reported by Hoek & Martin (2014), and originally published by Ramsey & Chester
(2004). Sets B and C are synthetic (or artificial) tests results generated for purposes of illustration. Figure 7a
also includes the best fit Fairhurst failure envelopes computed for the three sets. Figure 7b represents the same
test results, after the scaling in equations (65) has been applied. Points corresponding to the different rock
types that are aligned to their corresponding failure envelopes in Figure 7a, appear now aligned to a unique
scaled Fairhurst failure envelope given by equations (63) and (64). Table 2 includes the data represented in
Figure 7.

Finally, it should be noticed that the scaled form of the Griffith failure criterion is also given by the equations
presented in this section, when the parameter ni is considered to be equal to 8.

4. POWER LAW FAILURE CRITERION FOR UNCEMENTED ROCKFILL INTERFACES

Shear strength of uncemented rockfill interfaces has been traditionally determined from direct shear testing
or from triaxial testing of large samples of rockfill —see, for example, Marsal (1967); Marachi et al. (1972);
Linero et al. (2007); Ovalle et al. (2020). Although the Mohr-Coulomb linear failure criterion has been
applied to fit test results, power law failure criteria such as those proposed by de de Mello (1977) and by
Indraratna et al. (1993), introduced in Section 1, show better agreement with test results. In this section, the
latter failure criterion will be considered. As discussed in Section 1, for the Indraratna et al. failure criterion
the relationship between shear and normal stresses for an uncemented rockfill interface takes the form

τs

σcF
= A

(
σn

σcF

)B

(68)

where A and B are constants, and σcF is a representative average of the unconfined compressive strength of
the rock fragments.

If the constant A is moved to the right side in equation (68), the Indraratna et al. failure criterion can be
represented graphically as shown in Figure 8. The diagram in Figure 8 considers three distinct values for the
constant B, namely 0.5, 0.75 and 1.0. As discussed in Section 2.1, the variable B must be lie between 0.5
and 1.

Comparing equation (68) with equation (12), the Indraratna et al. failure criterion for uncemented rockfill
can be regarded as a particular case of the general power law failure criterion introduced in Section 2.1,
except that the unconfined compression strength of the rock, σc, is replaced with the unconfined compression
strength of the rock fragments, σcF , and the tensile strength is assumed zero.

To understand the influence of the unconfined compressive strength of the rock fragments (σcF ) in the
strength of the rockfill, equation will be rewritten assuming the properties A, B and σcF in equation (68),
are now measured properties A∗, B * and σ ∗

cF , respectively, obtained from laboratory testing of the rockfill
(i.e., A∗ and B * from triaxial testing or from direct shear testing of the rock fill interface, and σ ∗

cF from
unconfined compression tests of the rock fragments). Assuming this notation, equation (68) is now written
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Table 2. Summary of strength test results represented in Figure 7.

Set σ3 σ1 ni σc σ1L σtUx S3 S1
[MPa] [MPa] [-] [MPa] [MPa] [MPa] [-] [-]

A -8.04 8.12 16.8 130.39 72.66 -7.76 -0.0009 0.0494
-7.59 15.45 0.0005 0.0722
-7.89 30.58 -0.0004 0.1192
-7.84 60.53 -0.0002 0.2123
-10.66 70.72 -0.0090 0.2440
-9.81 80.46 -0.0064 0.2742
-7.01 90.52 0.0023 0.3055
-4.03 100.63 0.0116 0.3369
-3.04 120.40 0.0147 0.3984
0.00 130.39 0.0241 0.4295
2.45 140.09 0.0317 0.4596
4.30 150.32 0.0375 0.4914

B -10.00 0.00 8 80.00 30.00 -10.00 0.0000 0.0625
-10.00 13.71 0.0000 0.1482
-10.00 27.43 0.0000 0.2339
-9.89 34.29 0.0007 0.2768
-8.33 48.00 0.0104 0.3625
-5.40 61.71 0.0287 0.4482
-1.48 75.43 0.0532 0.5339
3.20 89.14 0.0825 0.6196

C -4.00 0.00 40 160.00 94.68 -8.00 0.0000 0.0086
-4.00 27.43 0.0000 0.0673
-4.00 54.86 0.0000 0.1260
-4.00 82.29 0.0000 0.1847
-4.00 109.71 0.0000 0.2434
-3.77 123.43 0.0005 0.2728
-1.32 150.86 0.0057 0.3315
3.26 178.29 0.0156 0.3902
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as follows
τs

σ ∗
cF

= A∗
(

σn

σ ∗
cF

)B *

(69)

Considering a rockfill that has the same constants A∗ and B * measured in the lab but an arbitrary unconfined
compressive strength of rock fragments, σcF , the expected shear strength, τs, for the same value of normal
stress, σn, will be different from the one corresponding to the rockfill tested in the lab, i.e.,

τs (σn , A∗, B ∗, σcF) ̸= τs (σn , A∗, B ∗, σ
∗

cF) (70)

In view of equations (68) and (69), the ratio of shear strengths for the rockfill with unconfined compression
strength of fragments (σcF ) and the one with measured unconfined compression strength (σ ∗

cF ) will be

rτs =
τs (σn , A, B ∗, σcF)

τs (σn , A∗, B ∗, σ ∗
cF)

=
A
A∗

σcF

σ ∗
cF

(
σ ∗

cF

σcF

)B *

(71)

Figure 9 represents the shear strength ratio given by equation (71) for three different values of the constant B *

(assumed to be the same as B), namely 0.5, 0.75 and 1.0. The lines in Figure 9 shows that if the unconfined
compressive strength of the rockfill fragments (σcF ) is the same as the measured in the lab (σ ∗

cF ), then the
shear strength of the rockfill interface will be the same. If σcF < σ ∗

cF , the predicted shear strength will be
lower, and if σcF > σ ∗

cF , the predicted shear strength will be higher than the one corresponding to the tested
rockfill (this being the case if B * > 1; if B * = 1, σcF will not have any effect on the shear strength of the
interface). The points labelled as C1, C1a and C1d correspond to cases that will be discussed later on, in an
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Figure 9. Graphical representation of the relationship between the shear strength ratio, rτs, and the ratio of unconfined
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example involving rockfill slopes in Section 6.2.

The dependence of σ ∗
cF on the shear strength of the rockfill interface given by equation (69) is the natural

dependence embedded in the Indraratna et al. failure criterion. If the case of another rockill is considered
where σcF and the ratio rτs (for a certain normal stress) are known, a corrected value of the constant A can
be found with the following equation, obtained by rearranging terms in equation (71),

A = rτs A∗ σ ∗
cF

σcF

(
σcF

σ ∗
cF

)B *

(72)

A scaled version of the Indraratna et al. failure criterion given by equation (68) can be obtained with the
scaling rules introduced in Section 3.1.

For the case 0.5 ≤ B < 1 the scaled failure criterion is

Ts = SB
n (73)

where
Ts =

τs

σcF
A −1/(1−B) and Sn =

σn

σcF
A −1/(1−B) (74)

For the case B = 1 the scaled failure criterion is

Ts = ASn (75)



where
Ts =

τs

σcF
and Sn =

σn

σcF
(76)

To illustrate the use of equations (73) through (76), the dots in Figure 10a represent triaxial test results
performed on large samples of three different rockfill types, designated as Sets D, E and F. All three rockfill
types are characterized by the same constant B * = 0.75. Figure 10a includes the best fit failure envelopes
obtained with equations (13) and (14). Figure 10b represents the same test results, but expressed in terms of
shear and normal stresses on the rockfill interface (this representation is the equivalent to the representation
in Figure 10a, and has been obtained by application of equation 69). Figure 11 represents the same test
results after the scaling in equations (74) has been applied. Points corresponding to the different rockfill
types that are aligned to their corresponding failure envelopes in Figure 10, appear now aligned to a unique
scaled power law failure envelope given by equation (73), corresponding to the measured value B * = 0.75.
Table 3 includes the data represented in Figures 10 and 11.
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Table 3. Summary of test results represented in Figures 10 and 11.

Set σ3 σ1 σn τs A∗ B * σ ∗
cF Sn Ts

[MPa] [MPa] [MPa] [MPa] [-] [-] [MPa] [-] [-]

D 0.50 2.33 0.93 0.77 0.27 0.75 90.00 1.94 1.62
1.50 5.16 2.52 1.64 5.27 3.43
2.90 8.65 4.65 2.65 9.72 5.53

E 0.40 2.79 0.83 0.92 0.32 0.75 120.00 0.66 0.73
1.90 8.16 3.45 2.70 2.74 2.15
3.10 11.38 5.32 3.67 4.23 2.92

F 0.20 0.80 0.35 0.26 0.20 0.75 75.00 2.93 2.18
1.10 2.97 1.70 0.87 14.15 7.26
2.00 4.60 2.89 1.23 24.06 10.29
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Figure 11. Same test results as in Figure 10, expressed in terms of scaled shear and normal stresses
on the failure plane.

5. APPLICATION EXAMPLE 1: EXTENT OF DAMAGE AND WALL CONVERGENCE FOR A
SECTION OF BOREHOLE DRIVEN IN INTACT ROCK

5.1. Problem statement

The first application example involves determining the extent of plastic failure and radial displacement of a
plane-strain section of borehole assumed to be subjected to uniform (or hydrostatic) far-field stresses. The
problem is schematically represented in Figure 12a. The borehole of radius R is driven in an assumed elasto-
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Figure 12. a) Elasto-plastic problem of section of circular borehole driven in intact rock. b) Ground reaction curve for
the borehole.

plastic intact rock subjected to hydrostatic far-field stresses, σo. There is a uniform pressure, pi, acting on
the periphery of the hole. The rock is assumed to have an elastic shear modulus, G, and a Poisson’s ratio, ν .
The rock is also assumed to fail plastically, according to any of the failure criteria discussed in Section 2, and
to have a constant dilation angle, ψ . When the internal pressure falls below a critical value pcr

i , an annular
region of radius Rpl develops around the hole. At a distance r from the hole center, the radial displacement
is ur(r) and at the wall of the hole (r = R) the radial displacement is uW

r . Radial displacements are positive
when directed towards the hole center —see Figure 12a. Also, at a distance r, whether within the plastic
region or the elastic region, the hoop stress, σθ (r), and the radial stress σr(r) are major and minor principal
stresses, respectively. Stresses are assumed positive when compressive, as indicated in Figure 12a.

Figure 12b represents the so called ground reaction curve of the borehole. The vertical axis represents the
ratio of internal pressure and far-field stress, while the horizontal axis represents a scaled measure of the
radial displacement at the borehole wall. The scaling chosen for the horizontal axis is such that if the rock
remains elastic after the internal pressure has been removed, the resulting value is one (see the intersection
point of the extension of the line labelled as ‘Elastic’ and the horizontal axis in Figure 12b). In general,
the ground reaction curve represented in Figure 12b has an elastic and a plastic part. Point P0 corresponds
to the initial condition for which internal pressure and far-field stresses are equal, and therefore, no radial
displacement takes place. Point P1 corresponds an intermediate condition for which the internal pressure
is equal to the critical internal pressure (pcr

i ) and the plastic region starts to the develop around the hole.
Point P3 corresponds to the final condition in which the internal pressure has been removed and the radial
displacement at the wall has reached the maximum and final value.

Figure 13 is a combined representation of the ground reaction curve discussed above, together with the
graphical representation of the extent of the plastic region, Rpl/R —notice that Rpl/R is read on the vertical
axis on the right of the diagram. Point P ′

1 is associated with the point P1 in the ground reaction curve, and
therefore corresponds to the condition when the plastic region is starting to develop (i.e., Rpl/R = 1). Point
P ′

2 is associated with the point P2 in the ground reaction curve, and therefore corresponds to final condition
in which the internal pressure has been removed and the extent of the plastic region reaches its final value.



In the following sections the equations conforming the full elasto-plastic solution of the problem in Figure
12a are provided.
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Figure 13. Ground reaction curve and extent of plastic region presentations for the problem in Figure 12a.

5.2. Elastic solution

If the internal pressure is larger than the critical internal pressure (i.e., if pi > pcr
i ), the rock remains elastic

and the solution for the radial stress, σr(r), hoop stress, σθ (r), and radial displacement, ur(r), is given by
the following equations (see, for example, Davis & Selvadurai 1996; Jaeger et al. 2007)

σr(r) = σo − (σo − pi)

(
R
r

)2

(77)

σθ (r) = σo +(σo − pi)

(
R
r

)2

(78)

ur(r) =
1

2G
(σo − pi)

R2

r
(79)

If the critical internal pressure is negative (i.e., tension needs to be applied to the borehole wall to reach the
critical pressure), then the internal pressure can be decreased to zero and the material will remain elastic; in
that case, the radial displacement of the borehole wall is obtained making pi = 0 and r = R in equation (79);
this gives

uW
r =

R
2G

σo (80)

If the internal pressure is smaller than the critical internal pressure (i.e., if pi < pcr
i ), the rock around the

borehole becomes plastic and the extent of plastic failure, distribution of radial and hoop stresses, and radial
displacements depend on the failure criterion being considered.

Appendix C presents the general elasto-plastic formulation for the general scaled power law failure criterion



introduced in Section 3.1. The following three sections provide the elasto-plastic solution for rocks that obey
the Mohr-Coulomb, Hoek-Brown and Fairhurst failure criteria, respectively.

5.3. Dimensionless solution for scaled Mohr-Coulomb intact rock

Stresses are scaled using the rule that applies to the Mohr-Coulomb failure criterion in Section 3.2 (capital
‘S ’ denotes scaled stresses). The scaled far-field stresses, internal pressure and critical internal pressure are
as follows,

So =
σo

σc
+

1
ri

Pi =
pi

σc
+

1
ri

and Pcr
i =

pcr
i

σc
+

1
ri

(81)

In equations (81), and in all equations that follow, σc is the unconfined compression strength of the rock and
ri is the ratio of unconfined compression strength and biaxial tensile strength given by equation (17).

Radial and hoop stresses are also scaled as follows

Sr(r) =
σr(r)

σc
+

1
ri

and Sθ (r) =
σθ (r)

σc
+

1
ri

(82)

The equations that follow result from application of the procedure outlined in Appendix C. For the case
of Mohr-Coulomb material, the differential equations (C-11) through (C-13) in Appendix C can be solved
exactly, and closed-form equations for all field functions can be obtained.

The scaled critical internal pressure is

Pcr
i =

2So

ri +2
(83)

while the extent of the plastic region is
Rpl

R
=

(
Pcr

i
Pi

) 1
ri

(84)

The solution for the scaled radial stress, Sr(r), scaled hoop stress, Sθ (r), and radial displacement, ur(r), for
the plastic region (r ≤ Rpl in Figure 12a) is

Sr(r) = Pcr
i

(
r

Rpl

)ri

(85)

Sθ (r) = (ri +1)Pcr
i

(
r

Rpl

)ri

(86)

2G
σc

ur(r)
Rpl

=
ri

2(1−A1)

[
2
(

r
Rpl

)A1

− (1+A1)
r

Rpl

]
Pcr

i (87)

− A2 −A3(ri +1)
(1−A1)(ri +1−A1)

[
(ri +1−A1)

r
Rpl

− ri

(
r

Rpl

)A1

− (1−A1)

(
r

Rpl

)ri+1
]

Pcr
i

where
A1 =−Kψ A2 = 1−ν(1+Kψ) A3 = ν − (1−ν)Kψ (88)

and
Kψ =

1+ sinψ

1− sinψ
(89)



The radial displacement of the borehole wall, uW
r , is obtained from equation (87), making r = R, thus

2G
σc

uW
r

Rpl
=

2G
σc

ur(R)
Rpl

(90)

The solution for Sr(r), Sθ (r), and ur(r), for the elastic region (r ≥ Rpl in Figure 12a) is

Sr(r) = So − (So −Pcr
i )

(
Rpl

r

)2

(91)

Sθ (r) = So +(So −Pcr
i )

(
Rpl

r

)2

(92)

2G
σc

ur(r)
Rpl

= (So −Pcr
i )

Rpl

r
(93)

The elasto-pastic solution conformed by equations (83) through (93) is the same solution presented in
Carranza-Torres (2002; 2003).

A scaled version of the ground reaction curve in Figures 12b and 13 can be constructed plotting the ratio
Pi/So defined by the first two equations (81) in the vertical axis, and the ratio uW

r /R 2G̃/So defined by equation
(90) (see also equation C-7) in the horizontal axis. In such plot, different curves correspond to different ratios
ri. In addition, a dimensionless graphical representation of the scaled extent of the plastic region similar to
that in Figure 13 can be constructed plotting the ratio Rpl/R defined by equation (84) in the vertical axis,
and the same scaled radial displacement as for the mentioned ground reaction curve. These dimensionless
diagrams, that are included in Figure 14, conform what they can be called global representations of the
ground reaction curve (and extent of plastic region) for a borehole in a rock that satisfies the Mohr-Coulomb
failure criterion. This is because every possible ground reaction curve (and plastic extent curve) for boreholes
in Mohr-Coulomb rock can be constructed based on these dimensionless representations.

As an example, the points labelled as P with superscripts A, B and C in Figure 14 correspond to the same
points P in Figure 13, for the cases designated as Cases A, B and C in Table 4. Although all three cases have
different values of the variables σo and σc, they all have the same ratio ri. Cases C, B and A (in that order)
correspond to boreholes in different rocks that have decreasing values of unconfined compression strength,
σc, relative to the far-field stresses σo acting on the rock —see Table 4. Therefore the wall displacements and
extents of plastic failure are progressively larger (for the same scaled internal pressure) for Cases C, B and A
(in that order). This can be readily seen in the diagrams of Figure 15, which corresponds to the actual ground
reaction curves and extent of plastic failure diagrams in terms of unscaled stresses, for the three mentioned
cases, constructed from the global representations in Figure 14.
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Figure 14. Global a) ground reaction curve and b) extent of plastic region representations for a borehole driven in rock
that satisfies the Mohr-Coulomb failure criterion.



Table 4. Cases of boreholes driven in rocks that satisfy the Mohr-Coulomb failure criterion, represented in Figure 14.

Data

Case σo σc ri φ G
[MPa] [MPa] [-] [◦] [GPa]

A 50 50 5 45.6 25
B 80 40 5 45.6 16
C 40 10 5 45.6 3

Note: All three cases assume ν = 0.25 and ψ = 0◦.

Results. Actual stresses

Case pcr
i /σo pi/σo Rpl/R uW

r /R
[-] [-] [-] [%]

A 0.143 0.00 1.114 0.110
B 0.214 0.00 1.257 0.341
C 0.250 0.00 1.431 1.202

Results. Scaled stresses

Case Pcr
i /So Pi/So Rpl/R uW

r /R 2G̃/So

[-] [-] [-] [-]

A 0.286 0.167 1.114 0.913
B 0.286 0.091 1.257 1.239
C 0.286 0.048 1.431 1.718
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Figure 15. a) Ground reaction curve and b) extent of plastic region representations for three cases of borehole driven
in rocks that satisfy the Mohr-Coulomb failure criterion, constructed from the global representations in Figure 14.



5.4. Dimensionless solution for scaled Hoek-Brown intact rock

Stresses are scaled using the rule that applies to the Hoek-Brown failure criterion in Section 3.3 (capital ‘S ’
denotes scaled stresses). The scaled far-field stresses, internal pressure and critical internal pressure are as
follows,

So =

(
σo

σc
+

1
mi

)
1
mi

Pi =

(
pi

σc
+

1
mi

)
1
mi

and Pcr
i =

(
pcr

i
σc

+
1
mi

)
1
mi

(94)

In equations (94), σc is the unconfined compression strength of the rock and mi is the ratio of unconfined
compression strength and biaxial tensile strength given by equation (31).

Radial and hoop stresses are also scaled as follows

Sr(r) =
[

σr(r)
σc

+
1
mi

]
1
mi

and Sθ (r) =
[

σθ (r)
σc

+
1
mi

]
1
mi

(95)

The equations that follow result from application of the procedure outlined in Appendix C. For the case of
Hoek-Brown material, the differential equations (C-11) through (C-13) in Appendix C can be solved exactly,
and closed-form equations for all field functions can be obtained.

The scaled critical internal pressure is

Pcr
i =

1
16

(
1−

√
16So +1

)2
(96)

while the extent of the plastic region is

Rpl

R
= exp

[
2
(√

Pcr
i −

√
Pi

)]
(97)

The solution for the scaled radial stress, Sr(r), scaled hoop stress, Sθ (r), and radial displacement, ur(r), for
the plastic region (r ≤ Rpl in Figure 12a) is

Sr(r) =
[√

Pcr
i +

1
2

ln
(

r
Rpl

)]2

(98)

Sθ (r) = Sr(r)+
√

Sr(r) (99)

2G
miσc

ur(r)
Rpl

=
Kφ −1

2(1−A1)

[
2
(

r
Rpl

)A1

− (1+A1)
r

Rpl

]√
Pcr

i (100)

+
A2 −A3

4(1−A1)

r
Rpl

[
ln
(

r
Rpl

)]2

+

[
A2 −A3

(1−A1)
2

√
Pcr

i − A2 −A1A3

2(1−A1)
3

][(
r

Rpl

)A1

− r
Rpl

+(1−A1)
r

Rpl
ln
(

r
Rpl

)]

The constants A1, A2 and A3 in equation (100) are defined by the same equations (88).



The radial displacement of the borehole wall, uW
r , is obtained from equation (100), making r = R, thus

2G
miσc

uW
r

Rpl
=

2G
miσc

ur(R)
Rpl

(101)

The solution for Sr(r), Sθ (r), and ur(r), for the elastic region (r ≥ Rpl in Figure 12a) is given by the same
equations (91) through (93).

The elasto-plastic solution conformed by equations (96) through (101) is the same solution presented in
Carranza-Torres & Fairhurst (1999) and Carranza-Torres (2002).

A scaled version of the ground reaction curve in Figures 12b and 13 can be constructed plotting the ratio
Pi/So defined by the first two equations (94) in the vertical axis, and the ratio uW

r /R 2G̃/So defined by equation
(101) (see also equation C-8) in the horizontal axis. In such plot, different curves correspond to different
scaled far-field stresses, So. In addition, a dimensionless graphical representation of the scaled extent of the
plastic region similar to that in Figure 13 can be constructed plotting the ratio Rpl/R defined by equation
(97) in the vertical axis, and the same scaled radial displacement as for the mentioned ground reaction curve.
These dimensionless diagrams, that are included in Figure 16, conform global representations of the ground
reaction curve (and extent of plastic region) for a borehole in a rock that satisfies the Hoek-Brown failure
criterion. This is because every possible ground reaction curve (and plastic extent curve) for boreholes in
Hoek-Brown rock can be constructed based on these dimensionless representations.

As an example, the points labelled as P with superscripts D, E and F in Figure 16 correspond to the same
points P in Figure 13, for the cases designated as Cases D, E and F in Table 5. Although the cases correspond
to different values of input variables σo, σc, mi and G, all three cases have the same value of scaled far-field
stress, So, equal to 0.5. Cases F, E and D (in that order) correspond to boreholes in different rocks that
have decreasing values of unconfined compression strength, σc, relative to the far-field stresses σo acting
on the rock —see Table 5. Therefore the wall displacements and extents of plastic failure are progressively
larger (for the same scaled internal pressure) for Cases F, E and D (in that order). This can be readily seen
in the diagrams of Figure 17, which correspond to the actual ground reaction curves and extent of plastic
failure diagrams in terms of unscaled stresses, for the three mentioned cases, constructed from the global
representations in Figure 16.
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Figure 16. Global a) ground reaction curve and b) extent of plastic region representations for a borehole driven in rock
that satisfies the Hoek-Brown failure criterion.



Table 5. Cases of boreholes driven in rocks that satisfy the Hoek-Brown failure criterion, represented in Figure 16.

Data

Case σo σc mi G So
[MPa] [MPa] [-] [GPa] [-]

D 80 34.78 5 14.78 0.5
E 120 29.49 10 11.02 0.5
F 150 15.08 20 6.03 0.5

Note: All three cases assume ν = 0.25 and ψ = 0◦.

Results. Actual stresses

Case pcr
i /σo pi/σo Rpl/R uW

r /R
[-] [-] [-] [%]

D 0.457 0.00 1.822 0.597
E 0.490 0.00 2.226 1.792
F 0.497 0.00 2.460 5.050

Results. Scaled stresses

Case Pcr
i /So Pi/So Rpl/R uW

r /R 2G̃/So

[-] [-] [-] [-]

D 0.500 0.080 1.822 2.030
E 0.500 0.020 2.226 3.225
F 0.500 0.005 2.460 4.040
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Figure 17. a) Ground reaction curve and b) extent of plastic region representations for three cases of borehole driven
in rocks that satisfy the Hoek-Brown failure criterion, constructed from the global representations in Figure 16.



5.5. Dimensionless solution for scaled Fairhurst intact rock

Stresses are scaled using the rule that applies to the Fairhurst failure criterion in Section 3.4 (capital ‘S ’
denotes scaled stresses). The scaled far-field stresses, internal pressure and critical internal pressure are as
follows,

So =

(
σo

σc
+

1
ni

)
ni

4
(√

ni +1−1
)2 Pi =

(
pi

σc
+

1
ni

)
ni

4
(√

ni +1−1
)2 (102)

Pcr
i =

(
pcr

i
σc

+
1
ni

)
ni

4
(√

ni +1−1
)2 (103)

In equations (102) and (103), σc is the unconfined compression strength of the rock and ni is the ratio of
unconfined compression strength and biaxial tensile strength given by equation (40).

Radial and hoop stresses are also scaled as follows

Sr(r) =
[

σr(r)
σc

+
1
ni

]
ni

4
(√

ni +1−1
)2 and Sθ (r) =

[
σθ (r)

σc
+

1
ni

]
ni

4
(√

ni +1−1
)2 (104)

The equations that follow result from application of the procedure outlined in Appendix C, that allows
the elasto-plastic solution of the borehole problem for the Fairhurst failure criterion to be obtained. For
the case of Fairhurst material, the differential equations (C-11) through (C-13) in Appendix C cannot be
solved exactly, and closed-form equations for field functions are not possible. With the exception of the
scaled critical internal pressure and scaled hoop stress for which a closed-form solution is possible, the other
quantities require numerical integration. In the equations that follow, numerical integration is implied with
the notation f (x1,x2, ...) on the right side of the equation. The Fourth-order Runge-Kutta method may be
used as a method of integration of the differential equations in Appendix C (see, for example, Press et al.
2007).

The scaled critical internal pressure is

Pcr
i =

1
16

(
1−

√
16So −1

)2
(105)

while the extent of the plastic region is
Rpl

R
= f1(Pcr

i , Pi) (106)

The solution for the scaled radial stress, Sr(r), scaled hoop stress, Sθ (r), and radial displacement, ur(r), for
the plastic region (r ≤ Rpl in Figure 12a) is

Sr(r) = f2

(
Pcr

i ,
r

Rpl

)
(107)

Sθ (r) = Sr(r)+
√

Sr(r)+
1
4

(108)

ur(r)
Rpl

=
σc

2G
4
(√

ni +1−1
)2

ni
f3

(
Pcr

i ,
r

Rpl
, A1, A2, A3

)
(109)

The constants A1, A2 and A3 in equation (109) are defined by the same equations (88).



The radial displacement of the borehole wall, uW
r , is obtained from equation (109), making r = R, thus

uW
r

Rpl
=

ur(R)
Rpl

(110)

As discussed in Section 3.4, the Griffith failure criterion is recovered from the Fairhurst failure criterion
when ni = 8. Therefore equations (102) through (110) with ni = 8 corresponds to the solution of a borehole
in Griffith rock.

As in the case of boreholes in Mohr-Coulomb and Hoek-Brown rock discussed in Sections 5.3 and 5.4,
respectively, a scaled version of the ground reaction curve in Figures 12b and 13 can be constructed plotting
the ratio Pi/So defined by equations (102) in the vertical axis, and the ratio uW

r /R 2G̃/So defined by equation
(110) (see also equation C-9) in the horizontal axis. In such plot, and as in the case of the borehole in Hoek-
Brown rock discussed in Section 5.4, different curves correspond to different scaled far-field stresses, So. In
addition, a dimensionless graphical representation of the scaled extent of the plastic region similar to that in
Figure 13 can be constructed plotting the ratio Rpl/R given by equation (106) in the vertical axis, and the
same scaled radial displacement as for the ground reaction curve. These dimensionless diagrams, that are
included in Figure 18, conform global representations of the ground reaction curve (and extent of plastic
region) for a borehole in a rock that satisfies the Fairhurst failure criterion. This is because every possible
ground reaction curve (and plastic extent curve) for boreholes in Fairhurst rock can be constructed based on
these dimensionless representations.

As an example, the points labelled as P with superscript D ′ in Figure 18 correspond to the same points P
in Figure 13, for the case designated as Case D ′ in Table 6. This case is the same Case D corresponding to
Hoek-Brown parameter mi = 5 in Table 5, but considering the Fairhurst parameter ni = 5 (compare the row
for Case D in the Data section of Table 5, with the row for Case D ′ in the corresponding section of Table 6).

Figure 19a represents the same borehole problem in Figure 12a, considering that the rock obeys the Hoek-
Brown failure criterion and the Fairhurst criterion, according to the properties listed for Cases D and D ′

in Tables 5 and 6, respectively. Figure 19b shows the corresponding failure envelopes in a principal stress
diagram. For a confined stress regime that is purely compressive (as it is the case of the borehole problem
considered here), the shear strength predicted by Hoek-Brown failure criterion will be higher than that pre-
dicted by the Fairhurst failure criterion for the same value of the constants mi and ni, respectively. Since the
Fairhurst failure criterion is based on the Griffith failure criterion, it can be argued that this failure criterion
allows the extent of fracturing to be quantified. In this way, and referring to Figure 19, the Hoek-Brown
failure criterion may be used to quantify the extent of failure, while the Fairhurst criterion may be used to
quantify the extent of fracturing.

Figure 20 represents the actual ground reaction curves and extent of plastic failure diagram in terms of
unscaled stresses, obtained from the global representations in Figures 16 and 18. In view that the shear
strength predicted by the Fairhurst failure criterion is smaller than that predicted by the Hoek-Brown failure
criterion, the representations in Figure 20 shows larger displacements and larger extent of failure (for the
same internal pressure) for the case of Fairhurst failure criterion compared with the Hoek-Brown failure
criterion.

The Fairhurst constitutive model was written in the internal scripting language of the software FLAC (Itasca
Consulting Group, Inc. 2016) and the borehole problem in Figure 19 was solved using the mesh of elements
represented in Figure 21a, for zero internal pressure. The resulting distribution of radial and hoop stresses,
and radial displacement is represented with dots in Figures 21b and 21c, respectively. As a reference, the



analytical solutions for both Fairhurst and Hoek-Brown failure criteria are represented with continuous lines.
A good match is found between FLAC results and analytical results.
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Figure 18. Global a) ground reaction curve and b) extent of plastic region representations for a borehole driven in rock
that satisfies the Fairhurst failure criterion.



Table 6. Case of borehole driven in rock that satisfies the Fairhurst failure criterion, represented in Figure 18.

Data

Case σo σc ni G So
[MPa] [MPa] [-] [GPa] [-]

D ′ 80 34.78 5 14.78 1.487
Note: The case assumes ν = 0.25 and ψ = 0◦.

Results. Actual stresses

Case pcr
i /σo pi/σo Rpl/R uW

r /R
[-] [-] [-] [%]

D ′ 0.564 0.00 2.338 0.832

Results. Scaled stresses

Case Pcr
i /So Pi/So Rpl/R uW

r /R 2G̃/So

[-] [-] [-] [-]

D ′ 0.599 0.080 2.388 2.830

0 20 40
0

20

40

60

80

100
a) b)

Fracturing**

Failure*

*   Hoek-Brown failure criterion
** Fairhurst failure criterion

Sound rock

34.78

-7.56

Fairhurst 
envelope (          )

Hoek-Brown 
envelope (           )

Figure 19. a) Borehole damage model considering failure region dictated by the Hoek-Brown failure criterion and
fracturing region by the Fairhurst failure criterion. b) Failure envelopes corresponding to assumed ratios of

compressive to tensile strength equal to 5, and unconfined compressive strength equal to 34.78 MPa.



0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.5

2.0

2.5

Fairhurst 

Hoek-Brown Hoek-Brown 

Fairhurst 

Hoek-Brown Hoek-Brown 

a) b)

Figure 20. a) Ground reaction curve and b) extent of plastic region representations for borehole driven in rock that
satisfies the Hoek-Brown and Fairhurst failure criteria, constructed from the global representations

in Figures 16 and 18, respectively.
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Figure 21. a) FLAC mesh used to model the axi-symmetric borehole problem in Figure 19, for a rock that obeys the
Fairhurst failure criterion. b) Distribution of radial and hoop stresses, and c) distribution of radial displacements

obtained with analytical and numerical solutions.



6. APPLICATION EXAMPLE 2: FACTOR OF SAFETY AND CRITICAL FAILURE SURFACE
FOR AN UNCEMENTED ROCKFILL SLOPE

6.1. Problem statement

The second application example involves determining the factor of safety and the position of the assumed
critical circular failure surface for a section of slope that results from dumping uncemented rockfill material
that satisfies the Indraratna et al. failure criterion discussed in Section 4. Figure 22 is a schematic representa-
tion of the slope problem to be considered. The height of the slope is H and the angle of the slope is α . The
bulk unit weight of the rockfill is γ and the shear strength of the rockfill is characterized by the parameters
A, B and σcF introduced in Section 4. There is an infinitely strong horizontal surface at the base of the slope,
which the critical failure surface is unable to cut through. The origin of a cartesian system of coordinates
(x,y) is located at the toe of the slope. The center of the critical circular failure surface is at point Pc (of
coordinates xc and yc), the starting point at the slope base is P1 (of coordinates x1 and y1) and the exit point
at the slope crest is P3 (of coordinates x3 and y3). The critical failure surface may show a horizontal portion
between the point P1 and an intermediate point P2 (of coordinates x2 and y2) at the base of the slope.

From dimensional analysis, the characteristic stress for the problem in Figure 22 is γ H. When the scaling
rule introduced in Section 4 is applied to this stress (see equations 74), it can be shown that the factor of
safety, FS, is a function of dimensionless variables as follows

FS = fFS

(
γ H
σcF

A −1/(1−B) ,B,α
)

if 0.5 ≤ B < 1 (111)

and

FS = fFS

(
γ H
σcF

,A,α
)

if B = 1 (112)

The solution of the problem for the case B = 1, corresponds to the solution of a slope in a Mohr-Coulomb
cohesionless material. This problem as been discussed in many publications. In particular, an analysis
similar to the one to be presented here is presented in Carranza-Torres & Hormazabal (2018).

The following section discusses the solution for the case B ̸= 1, when the factor of safety is governed by
equation (111).

6.2. Dimensionless solution

A large number of limit equilibrium SLIDE (Rocscience Inc. 2018) models were set up and computed to
define the relationship between factor of safety and the dimensionless parameters given by equation (111).
Six slope inclination angles corresponding to α equal to 20, 30, 40, 50, 60 and 70 degrees were considered.
The approach used is that described in Carranza-Torres & Hormazabal (2018; 2020). Although other values
of the rockfill parameter B were also evaluated, to illustrate the approach, the results presented here are for
the case B = 0.75, which corresponds to the set of triaxial test results on large samples of rockfill discussed
in Section 4.

Figure 23 represents graphically the relationship between the factor of safety and the dimensionless factor
γH/σcF A−1/(1−B) obtained for the different slope angles, and for the value B = 0.75. When plotted in
logarithmic scale, the relationship resulted linear with all the lines corresponding to different slope angles
being parallel to each other. The coordinates of the different points P in Figure 22 that characterize the
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Figure 22. Problem of determining the factor of safety for a rockfill slope, assuming a critical circular failure surface.

critical circular failure surface, scaled with the height of the slope, resulted to be independent of the factor
γH/σcF A−1/(1−B) and to depend on the slope inclination angle only. The resulting scaled coordinates of the
points P in Figure 22 are listed in Table 7 and these were used to construct the dimensionless slope sketches
on the upper part of Figure 23. In the dimensionless diagram in Figure 23, the different points on the line
corresponding to α = 40◦ correspond to different slope cases to be discussed next. A regression analysis
was done for the factor of safety results from the limit equilibrium models represented in Figure 23, and a
closed-form equation for the factor of safety for slopes was obtained. The equation, which is valid when
B = 0.75, is as follows

FS = exp
[

54,027
50,000

−
(

145,869
50,000

×10−2
)

α +

(
95,433
25,000

×10−4
)

α
2 (113)

−
(

127,411
50,000

×10−6
)

α
3 −0.25 log

(
γ H
σcF

A −4
)]

In equation (113), α is to be entered in degrees.

To illustrate the use of Figure 23 (and equation 113), a set of five initial cases, named Case 1, 2, 3, 4 and 5,
are listed in Table 8. A second set of cases, named Cases 1a, 1b, 1c, 1d, 1e and 1f are listed in Table 9. All
these cases are represented as the different points C (with subscripts indicating the case) in Figure 23.

Starting with the cases listed in Table 8, Cases 1, 2 and 3 correspond to slopes of same inclination angle,
α = 40◦, but different heights, H. In Table 8, the rockfill properties are denoted as A∗, B * and σ ∗

cF (notice
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Figure 23. Dimensionless representation of factor of safety defined by limit equilibrium SLIDE models for the
problem in Figure 22.

Table 7. Coordinates of points defining the critical circular failure surface in Figure 22, defined by limit equilibrium
SLIDE models.

α xc/H yc/H x1/H y1/H x2/H y2/H x3/H y3/H
[◦] [-] [-] [-] [-] [-] [-] [-] [-]

20 0.55 3.20 0.00 0.00 1.10 0.00 2.94 1.00
30 -0.12 2.56 0.00 0.00 0.00 0.00 1.91 1.00
40 -0.35 1.83 0.00 0.00 0.00 0.00 1.32 1.00
50 -0.77 1.69 0.00 0.00 0.00 0.00 0.95 1.00
60 -1.28 1.61 0.00 0.00 0.00 0.00 0.68 1.00
70 -2.09 1.55 0.00 0.00 0.00 0.00 0.45 1.00



the use of an asterisk in the variable name) to imply, as explained in Section 4, that these are measured
properties —the reason for doing this will become clear when discussing the cases in Table 9. In Table 8,
the unit weight γ and the parameters A∗ and σ ∗

cF are different for all cases, but these values are such that all
three cases have the same dimensionless factor γH/σ ∗

cF A*−1/(1−B *) equal to 3. Cases 1, 2 and 3 plot as the
same point labelled as C1, C2 and C3 in Figure 23. The resulting factor of safety is 1.75 (see lower part of
Table 8). Although the scaled coordinates of the points defining the critical circular failure surface are the
same (see scaled coordinates for α = 40◦ in Table 7), the actual coordinates are different, as indicated in the
lower part of Table 8.

Cases 4 and 5 listed in Table 8 are comparable to Case 1, except that the height of the slope in Case 4 is 10
times smaller than the height of the reference Case 1. Similarly, the height of the slope in Case 5 is 10 times
larger than that of Case 1 (the height of the slope for Case 5 is unrealistically large and is considered here
for illustration purposes only). Considering that for Case 1 the dimensionless factor γH/σ ∗

cF A*−1/(1−B *) is
equal to 3, this dimensionless factor becomes 0.3 and 30 for Cases 4 and 5, respectively. Cases 4 and 5
plot as the points labelled as C4 and C5 in Figure 23. The resulting factors of safety for these cases are 3.11
and 0.98, respectively (see Figure 23 and lower part of Table 8). As expected, these are larger and smaller,
respectively, than the factor of safety of 1.75 for the reference Case 1.

The different cases listed in Table 9 correspond to different variations of the Case 1 in Table 8. The purpose
of including the additional cases in Table 9 is to show the effect of the unconfined compressive strength of
the rockfill fragments, σcF , on the factor of safety, and to illustrate the use of the equations (68) through (72)
in Section 4.

The first row in Table 9 corresponds to Case 1 (this has been transcribed from Table 8). Cases 1a, 1b and 1c
in Table 9 correspond to cases for which the value of unconfined compressive strength of the rockfill (σcF ) is
smaller than for Case 1 (i.e., smaller than the value σ ∗

cF = 122.52 MPa measured with the properties A∗ and
B * in Table 9), and equal to 80 MPa. Cases 1d, 1e and 1f correspond to values of σcF larger than for Case 1,
and equal to 140 MPa.

Cases 1a and 1d in Table 9, with the mentioned values of σcF , consider that the values of A and A∗ are
the same. Therefore, the shear strength ratio, rτs, computed with equation (71) results to be 0.9 and 1.03,
respectively. According to Figure 9, the shear strength for Case 1a can be expected to be smaller than the
one for Case 1 (see point C1a in Figure 9 —the abscissa of the point is 0.653 and it corresponds to the ratio
σcF/σ ∗

cF equal to 80/122.52), and the shear strength for Case 1d can be expected to be larger than the one for
Case 1 (see point C1d in Figure 9 —the abscissa of the point is 1.143 and it corresponds to the ratio σcF/σ ∗

cF
equal to 140/122.52). Consequently, for the rockfill slope problem of Figure 22, the factor of safety for Case
1a results smaller than that for Case 1 (1.57 < 1.75), and the factor of safety for Case 1d results larger than
that for Case 1 (1.81 > 1.75).

Cases 1b and 1e in Table 9, assume that the shear strength ratio rτs given by equation (71) are both equal
to 1.0 —this implies that the shear strength of the rockfill for Cases 1b and 1e are the same as for Case 1.
Then, making rτs = 1 in equation (72), the values of the parameter A for Cases 1b and 1e result to be 0.30
and 0.26, respectively. Since by making rτs = 1 the values of σcF are prescribed not to have an effect on the
strength of the rockfill, the factors of safety for Cases 1b and 1e are both equal to the factor of safety of Case
1 (i.e., they are all equal to 1.75).

Cases 1c and 1f in Table 9, assume that the shear strength ratios, rτs, take arbitrarily selected values equal
to 0.7 and 1.2 respectively. The corresponding values of the parameter A can be computed with equation
(72), and these are listed in the corresponding rows in Table 9. Since the arbitrary values of rτs for Cases
1c and 1f lead to smaller and larger values than the values of the ratio for Cases 1a and 1d, respectively, the



Table 8. First set of cases of rockfill slopes represented in Figure 23.
Data

Case γ H σ ∗
cF A∗ γH

σ ∗
cF

A∗ −1/(1−B∗)

[kN/m3] [m] [MPa] [-] [-]

1 27.45 71.16 122.52 0.27 3
2 25.68 10.28 173.82 0.15 3
3 26.15 201.16 42.76 0.45 3

4 27.45 7.12 122.52 0.27 0.3
5 27.45 711.60 122.52 0.27 30

Note: All cases correspond to a slope angle α = 40◦ and B * = 0.75.

Results

Case FS xc yc x1; x2 y1; y2 x3 y3
[-] [-] [-] [-] [-] [-] [-]

1 1.75 -24.91 130.22 0.00 0.00 93.93 71.16
2 1.75 -3.60 18.81 0.00 0.00 13.57 10.28
3 1.75 -70.41 368.12 0.00 0.00 265.53 201.16

4 3.11 -2.49 13.03 0.00 0.00 9.40 7.12
5 0.98 -249.06 1302.23 0.00 0.00 939.31 711.60

Table 9. Second set of cases of rockfill slopes represented in Figure 23.
Data

Case γ H σ ∗
cF A∗ σcF rτs A γH

σ ∗
cF

A∗ −1/(1−B∗) γH
σcF

A−1/(1−B)

[kN/m3] [m] [MPa] [-] [MPa] [-] [-] [-] [-]

1 27.45 71.16 122.52 0.27 122.52 1.0 0.27 3 3

1a 27.45 71.16 122.52 0.27 80 0.9 * 0.27 3 4.6
1b 1.0 ** 0.30 3
1c 0.7 ** 0.21 12.5

1d 27.45 71.16 122.52 0.27 140 1.03 * 0.27 3 2.63
1e 1.0 ** 0.26 3
1f 1.2 ** 0.31 1.45

Note: All cases correspond to a slope angle α = 40◦ and B * = B = 0.75.
* Ratio computed with equation (71), assuming A = A∗.
** Ratio assumed based on expected decrease/increase of shear strength.

Results

Case FS xc yc x1; x2 y1; y2 x3 y3
[-] [-] [-] [-] [-] [-] [-]

1 1.75 -24.91 130.22 0.00 0.00 93.93 71.16

1a 1.57 -24.91 130.22 0.00 0.00 93.93 71.16
1b 1.75
1c 1.22

1d 1.81 -24.91 130.22 0.00 0.00 93.93 71.16
1e 1.75
1f 2.10



factors of safety for Cases 1c and 1f result even smaller and larger, respectively, than that for Case 1 (i.e.,
1.22 < 1.75 < 2.10).

The Indraratna et al. constitutive model was written in the internal scripting language of the software FLAC
(Itasca Consulting Group, Inc. 2016) and the rockfill slope stability problem for all cases included in Tables
8 and 9 were solved using the parametric mesh of elements in Figure 24a. The FLAC models implemented
the shear strength reduction technique (see, for example, Griffiths & Lane 1999) to define the values of
factor of safety and outline the contours of shear strain at the verge of failure. Figure 24b shows the shear
strength reduction technique results for the Cases 1, 2, 4 and 5 in Table 8 (other computed cases look
similar and are not included here for space reasons). The factors of safety obtained with FLAC are listed in
the legend. These values compare reasonably well with those obtained with the limit equilibrium software
SLIDE. Superimposed to the contours of shear strain, the plots in Figure 24b include the outline of the critical
circular failure surface obtained with SLIDE. The position of the critical failure surfaces obtained with the
two methods are slightly different, due to the fact that actual critical failure surfaces are not a perfect arcs of
circles, as considered in the SLIDE models —see Carranza-Torres (2021).

H = 71.16 m
Factors of Safety
FLAC: 1.72
SLIDE: 1.75

H = 10.28 m
Factors of Safety
FLAC: 1.72
SLIDE: 1.75

H = 7.12 m
Factors of Safety
FLAC: 3.05
SLIDE: 3.11

H = 711.6 m
Factors of Safety
FLAC: 0.96
SLIDE: 0.98

Critical failure 
surface (SLIDE)
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Figure 24. a) FLAC mesh used to model various rockfill slope cases. b) Critical failure surfaces for various cases in
Table 8, obtained with the software FLAC and SLIDE.



7. CONCLUSIONS

This paper has presented the formulation of a general power law failure criterion for intact rock, expressed
in terms of principal stresses and in terms of stresses on the failure plane, that has the Mohr-Coulomb, Hoek-
Brown and Fairhurst failure criteria as particular cases of the general failure criterion. It has presented also
the formulation of a general power law failure criterion for cemented and uncemented rockfill interfaces,
expressed in terms of stresses on the failure plane, that has the model by Indraratna et al. for uncemented
rockfill as particular case of the general failure criterion.

The paper has provided the set of equations needed to transform the general power law failure criterion
expressed in terms of principal stresses to the equivalent failure criterion expressed in terms of stresses on the
failure plane, and vice-versa. This set of equations are hoped to contribute to the needed implementation of
power law models in finite difference and finite element rock engineering software, particularly for modelling
cemented and uncemented rockfill material.

The paper has outlined a general rule to scale the proposed power law failure criterion and consequently
to scale all shear failure criteria mentioned earlier. The use of the scaled form of the failure criteria has
been illustrated with the analysis and interpretation of actual shear strength test results for intact rock and
uncemented rockill.

As a practical application of the scaling rule for intact rock, the paper has discussed the generalization in the
interpretation of the damage around sections of circular holes based on elasto-plastic analytical and semi-
analytical solutions for the Mohr-Coulomb, Hoek-Brown and Fairhurst failure criteria. So called global
ground reaction curves that summarize all possible ground reaction curves that can be obtained for these
failure criteria have been introduced.

Although the elasto-plastic solution of a circular hole subjected to uniform initial stresses in homogeneous
and isotropic rock that obeys the Mohr-Coulomb and Hoek-Brown failure criteria has been presented in
many publications in the past, to the author’s knowledge, the solution for the case of a rock that obeys the
Fairhurst failure criterion, and consequently the Griffith failure criterion, has not been published before. The
semi-analytical solution for Fairhurst failure criterion may be of practical application to quantity the extent
of fracturing damage around holes.

Finally, and as a practical application of the scaling law for rockfill, the paper has presented the generalization
in the interpretation of the factor of safety and location of the critical failure surface for slopes in uncemented
rockfill slopes that satisfy the Indraratna et al. failure criterion.
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APPENDIX A. POWER LAW FAILURE CRITERIA EXPRESSED IN TERMS OF PRINCIPAL STRESSES
AND STRESSES ON THE FAILURE PLANE

In Section 2.1, equations (10) and (11) are the generic form of the set of equations needed to transform the
general power law failure criterion given by equation (8), into an equivalent failure criterion expressed in
terms of normal and shear stresses on the failure plane. To simplify notation, in this appendix a tilde above
a stress variable is used to indicate that the stress has been divided by the unconfined compression strength,
σc.

The explicit form of equations (10) and (11) are the equations due to Balmer (1952). These are

σ̃n =
σ̃1 + σ̃3

2
− σ̃1 − σ̃3

2
dσ̃1/dσ̃3 −1
dσ̃1/dσ̃3 +1

(A-1)

and

τ̃s = (σ̃1 − σ̃3)
dσ̃1/dσ̃3 −1
dσ̃1/dσ̃3 +1

(A-2)

For the general power law failure criterion given by equation (8), the derivatives in equations (A-1) and (A-2)



are
dσ̃1

dσ̃3
= 1+C D(σ̃3 − σ̃tBx)

D−1 (A-3)

In Section 2.1, equations (13) and (14) are the generic form of the set of equations needed to transform the
general power law failure criterion given by equation (12), into an equivalent failure criterion expressed in
terms of principal stresses. Application of the inverse of the equations (A-1) and (A-3) allows, in principle,
the relationships in equations (13) and (14) to be obtained, but since the procedure requires use of numerical
methods of integration, explicit (closed-form) equations are not be possible.

An alternative procedure for recasting the general power law failure criterion expressed in terms of shear
and normal stresses on the failure plane, into an equivalent failure criterion expressed in terms of principal
stresses, is to express the power law failure criterion directly in terms of principal stresses. For the case
0.5 ≤ B < 1, the equivalent failure criterion takes the following form

(
σ̃1 − σ̃3

2

)2

1−

 σ̃1 + σ̃3 −2σ̃tBx

2(1−B)(σ̃1 − σ̃3)
−

√[
σ̃1 + σ̃3 −2σ̃tBx

2(1−B)(σ̃1 − σ̃3)

]2

− B
1−B

2
 (A-4)

−A2

 σ̃1 + σ̃3

2
− σ̃1 − σ̃3

2

 σ̃1 + σ̃3 −2σ̃tBx

2(1−B)(σ̃1 − σ̃3)
−

√[
σ̃1 + σ̃3 −2σ̃tBx

2(1−B)(σ̃1 − σ̃3)

]2

− B
1−B

− σ̃tBx

2B

= 0

Details of the procedure for obtaining an equivalent version of equation (A-4) are outlined in Yu et al.
(2020).

APPENDIX B. SCALING OF THE GENERALIZED HOEK-BROWN FAILURE CRITERION

The generalized Hoek-Brown failure criterion for rock masses is written as follows —see for example, Hoek
& Brown (1980a; 1980b)

σ1

σc
=

σ3

σc
+

(
mb

σ3

σc
+ s

)a

(B-1)

where σc is the unconfined compression strength of the intact rock and mb, s and a are parameters of the
rock mass. These parameters depend on the parameter mi for intact rock (discussed in the main text), on the
Geological Strength Index, GSI, and on the Disturbance Factor, D (Hoek et al. 2002; Hoek & Brown 2019).

Considering that the biaxial tensile strength of the rock mass, σtBx, corresponds to the case, σ1 = σ3 in
equation (B-1), then

σtBx

σc
=− s

mb
(B-2)

Replacing equation (B-2) into equation (B-1), and factoring terms, the generalized Hoek-Brown failure cri-
terion can be written as follows

σ1

σc
=

σ3

σc
+mb

a
(

σ3

σc
− σtBx

σc

)a

(B-3)

Comparing the equation (B-2) with equation (8), the generalized Hoek-Brown failure criterion is found to be



a particular case of the general power law failure criterion given by equation (8), when

C = mb
a D = a and E = 0 (B-4)

Replacing equations (B-4) into equation (49), the scaled form of the generalized Hoek-Brown failure crite-
rion results to be

S1 = S3 +S a
3 (B-5)

where

S1 =

(
σ1

σc
+

s
mb

)
m−a/(1−a)

b and S3 =

(
σ3

σc
+

s
mb

)
m−a/(1−a)

b (B-6)

Equations (B-5) and (B-6) correspond to the scaled version of the Hoek-Brown failure criterion for rock
masses proposed by Rojat (2010).
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Figure B.1. Major principal stresses at failure according to the generalized Hoek-Brown failure criterion for 1,000
randomly generated cases (from a uniform distribution) of confining stresses. Representation in terms of a) actual

stresses, and b) scaled stresses according to equations (B-6).



APPENDIX C. SELF-SIMILAR ANALYSIS OF THE MECHANICAL RESPONSE OF A CIRCULAR
HOLE IN A ROCK THAT OBEYS THE POWER LAW FAILURE CRITERION

This appendix presents the plane-strain elasto-plastic formulation of the problem of driving a circular bore-
hole in a homogeneous isotropic perfectly plastic medium, initially subjected to uniform (hydrostatic) com-
pressive stresses (see Figure 12a). The formulation is based on the incremental theory of plasticity, and takes
advantage of the self-similar nature of the problem, discussed in Detournay (1986).

The formulation that follows assumes that the internal pressure in the hole has fallen below the critical
pressure, pcr

i , and that the plastic region of radial extent Rpl develops.

The yield function of the material is defined by an arbitrary function ‘Y ’ of the scaled principal stresses, S1
and S3, i.e.,

Y (S1, S3) = 0 (C-1)

In equation (C-1), and in all equations in this appendix, capital ‘S ’ refers to principal stresses that have been
scaled according to the scaling rule introduced in Section 3.1.

The flow rule of the material is assumed to be non-associated, with a linear potential function of scaled
principal stresses as follows

F(S1, S3) = S1 −Kψ S3 = 0 (C-2)

In equation (C-2), Kψ is computed based on the plastic dilation angle, ψ , as in equation (89).

For the hole excavation problem in Figure 12a, for which the internal pressure decreases below the far-field
stress, the hoop stresses are major principal stresses and the radial stresses are minor principal stresses, i.e.,

S1 = Sθ and S3 = Sr (C-3)

According to Detournay (1986), the extent of the plastic region, Rpl , is a kinematic parameter that can be
used to integrate the incremental equations of elasto-plasticity. Consequently, the dimensionless variable, ρ ,
is defined to be a function of the radial distance, r, and the variable Rpl as follows

ρ =
r

Rpl
(C-4)

Equation (C-4) maps the physical plane of coordinate r into a ‘unit circle’ of radius equal to one, where the
boundary of the unit circle represents the boundary of the plastic region in the physical plane.

Figure 12a shows the radial displacement u(r) for a point at the radial distance r from the center. In the
formulation below, capital ‘U ’ will be used to indicate that the radial displacement is now a function of the
scaled radial distance, ρ , defined by equation (C-4) —i.e., U(ρ) refers to the radial displacement in the unit
circle. In addition, a tilde above the capital ‘U’ will indicate that the radial displacement has been scaled as
follows

Ũr(ρ) = 2G̃
Ur(ρ)

R
(C-5)

where
G̃ =

G
σc

C −1/(1−D) if 0.5 ≤ D < 1 (C-6)



and
G̃ =

G
σc

if D = 1 (C-7)

In equations (C-6) and (C-7), G is the elastic shear modulus of the material.

As discussed in Section 2.2, for the case of Mohr-Coulomb material, D = 1; therefore, the scaled shear
modulus for this case is given by equation (C-7).

As dicussed in Section 2.3, for the case of Hoek-Brown rock, C =
√

mi and D = 1/2; therefore, replacing
these values in equation (C-6), the scaled shear modulus for Hoek-Brown rock becomes

G̃ =
G
σc

1
mi

(C-8)

Similarly, and as discussed in Section 2.4, for the case of Fairhurst rock C = 2(
√

ni +1− 1)/
√

ni and D =
1/2; therefore, replacing these values in equation (C-6), the scaled shear modulus for Fairhurst rock becomes

G̃ =
G
σc

ni

4
(√

ni +1−1
)2 (C-9)

Due to the self-similar nature of the problem, the relationship between the radial displacement u(r) in the
physical plane and the radial displacement U(ρ) in the unit circle must be —see Detournay (1986)

ur(r) =
Rpl

2G̃
Ũr(ρ) (C-10)

The differential equations governing the hole excavation problem are as follows —see Carranza-Torres
(1998; 2002)

dSr

dρ
=−Sr −Sθ

ρ
(C-11)

dSθ

dρ
=− 1

B2

[
B1

dSr

dρ
−B3ρ

d2Ũr

dρ2 +B4

]
(C-12)

d2Ũr

dρ2 = A2
dSr

dρ
−A3

dSθ

dρ
+

A1

ρ

dŨr

dρ
−A1

Ũr

ρ2 (C-13)

where

A1 =
∂F/∂Sr

∂F/∂Sθ

=−Kψ (C-14)

A2 = 1−ν +ν
∂F/∂Sr

∂F/∂Sθ

= 1−ν −Kψν (C-15)

A3 = (1−ν)
∂F/∂Sr

∂F/∂Sθ

+ν = ν −Kψ(1−ν) (C-16)

and

B1 = ∂Y/∂Sr (C-17)

B2 = ∂Y/∂Sθ (C-18)



B3 = 0 (C-19)

B4 = 0 (C-20)

Equation (C-11) represents equilibrium, equation (C-12) represents the consistency condition, and equation
(C-13) represents compatibility of deformation.

Four boundary conditions are needed to integrate the set of differential equations (C-11) through (C-13)
(Carranza-Torres 1998; 2002).

The first boundary condition is
Sr(1) = Pcr

i (C-21)

where Pcr
i is scaled critical internal pressure below which the plastic region develops. This is computed from

the solution of the following system of equations

Y (S1, Pcr
i ) = 0 (C-22)

S1 −2So +Pcr
i = 0 (C-23)

The second boundary condition is the value Sθ (1), that can be found from the yield function in equation
(C-1)

Y (Sθ (1), Pcr
i ) = 0 (C-24)

The third boundary condition is the value Ũr(1), that is computed from the elastic solution of the region
surrounding the plastic region, i.e.,

Ũr(1) = So −Pcr
i (C-25)

Finally, the fourth third boundary condition is

dŨr(1)
dρ

=−(So −Pcr
i ) (C-26)

Equation (C-26) has been obtained by differentiation of equation (C-10), together with equation (C-25).

Once the scaled radial stress function Sr(ρ) and the hoop stress function Sθ (ρ) have been obtained, the
extent of plastic failure, Rpl , can be found from the condition that at the wall of the hole (i.e., at ρ = R/Rpl),
Sr(ρ) must be equal to the scaled internal pressure, Pi.




