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ABSTRACT

This paper presents a series of computational tools for quick estimation of factors of safety and crit-
ical circular failure surface location for embankments. The embankments are assumed to be made
of homogeneous frictional-cohesive dry soils, obeying a linear Mohr-Coulomb shear strength cri-
terion. Cases of a firm horizon that the failure surface cannot cut through are considered to exist at
the base of the embankment or at great depth. The latter case corresponds to the case of a slope in
homogeneous soil. Dimensionless functions defining the factor of safety and position of the critical
failure surface are constructed using the Bishop method of slices in the commercial limit equilib-
rium software SLIDE. Results are implemented in a computer spreadsheet that is made available
for free downloading. Formulas for quick evaluation of factors of safety are also presented. The
effect of the cohesion and friction angle of the soil and the position of the firm horizon on the
resulting factors of safety and depth of the failure surface are discussed. An application example
solved with the proposed tools and with the shear strength reduction technique implemented in the
commercial software FLAC is presented. Although the tools provided in this paper have been de-
veloped for teaching basic slope stability analysis in an undergraduate soil mechanics course, the
tools could be useful when performing preliminary estimates of factors of safety of embankments
in actual geotechnical design practice.

INTRODUCTION

Computation of factor of safety against failure and location of the critical failure surface are the
basis of the current practice of slope stability analysis in geotechnical engineering. These stability
analyses are an essential component in the design of embankments and cuts for highways, levees,
dams and dikes (Terzaghi et al. 1996; Coduto et al. 2011; Das & Sobhan 2018).

Various methods exist for computing the factor of safety and location of the critical failure
surface for slopes. Among them, limit equilibrium methods, limit analysis methods and full nu-
merical methods (e.g., Potts & Zdravkovic 1999; Davis & Selvadurai 2005). The so-called shear
strength reduction technique, normally implemented in finite element or finite difference software
(both tools being examples of implementation of the full numerical methods mentioned above),
is another method for computing the stability of a slope that has gained popularity in the last two
decades (e.g., Dawnson et al. 1999; Griffiths & Lane 1999; Hammah et al. 2007). All existing anal-
ysis methods, with a few exemptions (e.g., analytical models that consider a planar failure surface),
require use of computer software for their implementation, as they are computational-intensive. In
this sense, it is remarkable that in contrast with other problems in geotechnical engineering, there
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are no rigorous analytical (closed-form) solutions available for computing the factor of safety and
position of the critical failure surface for embankments or slopes. Therefore, with the lack of a true
exact solution for the problem to be taken as a benchmark, the methods used in stability analyses of
embankments or slopes (i.e., limit equilibrium methods, limit analysis methods and full numerical
methods), are interpreted to give approximate solutions to the problem only.

Despite of its introduction in the middle of the last century, the method of slices, which is a
particular formulation of the limit equilibrium method, is still the most popular method to estimate
the factor of safety and location of the critical failure surface for slopes (e.g., Abramson et al.
2002; Duncan et al. 2014). Within the method of slices, there exist various formulations, including
the Bishop (1955), Janbu (1954a, 1954b), Spencer (1967) and Morgenstern-Price (1965) methods.
The Bishop method is popular since it gives similar results (i.e., factors of safety and location of
the failure surface) as those obtained with more elaborated limit equilibrium methods (e.g., the
Spencer and the Morgenstern-Price methods), with less computing effort (Abramson et al. 2002).
Implementation of the Bishop method of slices to compute factor of safety and location of the
critical circular failure surface for a slope requires use of specialized computer software. There
exist various commercial packages of this type, e.g., GEO05 (Fine Inc. 2016), SLIDE (Rocscience
Inc. 2015), SLOPE/W (Geo-Slope Inc. 2012), XSTABL (Interactive Software Designs Inc. 2007),
among others.

Considering that computational-intensive methods are required for the determination of
factor of safety and location of critical failure surface, authors have proposed dimensionless charts
as a means of summarizing and conveying the results of slope stability analyses (e.g., Taylor 1948;
Bishop & Morgenstern 1960; Spencer 1967; O’Connor & Mitchell 1977; Michalowski 2002;
Baker 2003).

Among the existing stability charts obtained from limit equilibrium models, the ones pre-
sented in the book by Hoek & Bray (1974, 1977, 1981) (also, Wyllie & Mah 2004 and Wyllie
2018) deserve particular attention. These stability charts, which apply to slopes in rock masses
assumed to obey the Mohr-Coulomb shear failure criterion, use a particular form of dimensionless
scaling originally proposed by Bell (1966) that allows a compact representation of factor of safety
for slopes. Since then, other authors have used the scaling rule proposed by Bell (1966) to produce
dimensionless charts (e.g., Cousins 1978; Michalowski 2002; Steward et al. 2010).

This paper extends the dimensionless representations presented in Hoek & Bray (1981), fo-
cusing in the problem of soil embankment stability, with particular regard to the existence of a firm
horizon beneath the embankment that the failure surface cannot cut through. Two limiting cases
of embankments are considered in this paper, one in which the firm horizon (or firm foundation)
is located at the base of the embankment, and the other in which the firm foundation is located at
great depth, and therefore the case becomes that of a slope built or cut in a soil mass.

The developments presented in this paper build on and extend the developments in a previ-
ous paper (Carranza-Torres & Hormazabal 2018) which re-evaluated and extended the dimension-
less representations originally proposed by Hoek & Bray (1981) for the general case of slopes in
rock masses, without consideration of the existence of a tension crack. Based on Carranza-Torres
& Hormazabal (2018), this paper provides algebraic equations obtained from regression analysis
of factors of safety for embankments obtained with limit equilibrium models. It also provides a
computer EXCEL workbook (Microsoft 2016) that can be conveniently used to determine factors
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of safety and position of the critical (assumed circular) failure surfaces for the two limiting cases
of embankments mentioned above.

PROBLEM STATEMENT

The problem considered in this paper is shown in Figure 1. An embankment is built of an assumed
homogeneous, isotropic and dry soil of unit weight γ , that obeys the Mohr-Coulomb shear failure
criterion, and that is characterized by a cohesion c, an internal friction angle φ , and null tensile
strength. On the plane of analysis, the embankment is wide enough so that determining the stability
of the embankment involves analyzing the stability of one of the faces only. According to Figure 1,
the face is assumed to have an inclination angle α and height H. A system of cartesian coordinates
(x, y) is assumed to have its origin at the toe of the embankment (point O in Figure 1).

Two cases are considered with regard to the position of a horizontal firm foundation. The
first case corresponds to the firm foundation located at the embankment base, as represented in
Figure 1. The second case corresponds to the firm foundation located at great depth, with the case
now corresponding to that of a slope built or excavated in homogeneous soil.

When the shear strength of the soil is affected by a scalar factor of safety, the embankment
in Figure 1 is assumed to be in a limit state of equilibrium with a critical circular failure surface of
radius R and center of coordinates xc and yc. Because the firm foundation represented in Figure 1
prevents the failure surface from extending beyond the embankment base, the surface is comprised
of the arcs A−A′ and C′−B′, and the linear segments A′−C′ and B′−B (the latter associated with
the development of a tension crack). Therefore, for a firm foundation at the embankment base, the
failure surface follows the path A−A′−C′−B′−B, with the coordinates of the points being (xA,
yA), (xA′ , yA′), (xC′ , yC′), etc. This critical failure surface is referred to as the critical secant failure
surface in the legend of Figure 1.

In Figure 1, part of another critical circular failure surface referred to as critical tangent
failure surface is represented with a discontinuous outline. This is the tangent failure surface
that has been traditionally considered in the literature (Taylor 1948; Bishop & Morgenstern 1960;
Morgenstern 1963; Michalowski 2002). Steward et al. (2010) showed that a secant critical failure
surface yields a lower factor of safety compared with a tangent one. Based on Steward et al.
(2010) and on full numerical models presented in the ‘Application Example’ section, the critical
failure surface considered for the case of embankments in this paper is the one that follows the
path A−A′−C′−B′−B. Figure 1 also indicates with discontinuous outline, a deeper failure
surface that corresponds to the case in which the firm foundation is at great depth. This is the same
critical failure surface that has been considered in Carranza-Torres & Hormazabal (2018), although
without the inclusion of a tension crack.

With regard to the shape of failure surface in Figure 1, some authors have used log-spiral
failure surfaces since such surfaces yield lower values of factor of safety compared with circular
ones (Michalowski 2002; Michalowski 2013; Utili 2013; Utili & Abd 2016). The reason of adopt-
ing circular failure surfaces in this paper is that the commercial limit equilibrium software SLIDE,
used to develop the computational tools, does not implement log-spiral failure surfaces.

According to the method of slices, when the embankment or slope is at a limit state of
equilibrium, the soil shear strength is fully mobilized on the failure surface (Coduto et al. 2011;
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Figure 1. Problem of determining the factor of safety and position of the critical failure
surface for the face of an embankment or slope in cohesive-frictional soil. A firm foundation

that the failure surface cannot cut through is considered to be either at the base of the
embankment or at great depth. A tension crack is allowed to develop at the crest.

Verruijt 2012; Das & Sobhan 2018). For the case of the Mohr-Coulomb soil considered in this
paper, the shear strength is written as follows

τs = σn tanφ + c (1)

where τs and σn are the shear and normal stresses, respectively, at the base of an arbitrary slice on
the failure surface, and φ and c are the internal friction angle and cohesion of the soil, respectively.

With regard to equation (1), there is abundant bibliography showing that soils are char-
acterized by a stress dependent shear failure envelope —i.e., the relationship in equation (1) is
non-linear, rather than linear (e.g., Scott 1994; Terzaghi et al. 1996; Mesri & Shahien 2003).
Since the computational tools presented in this paper were originally developed for teaching basic
slope stability analysis in an undergraduate soil mechanics course, the authors considered more
convenient to use a simpler Mohr-Coulomb linear soil model.

The factor of safety (FS) is the ratio of the shear strength of the soil on the failure surface
and the shear stress required for equilibrium (e.g., Abramson et al. 2002; Duncan et al. 2014).
Of the various formulations available for computing the factor of safety, the Bishop Method (as
implemented in the software SLIDE) is employed in this paper. The reader is referred to the widely
available literature for more details about the implementation of the standard limit equilibrium
method used in this paper (e.g., Mostyn & Small 1987; Duncan 1996; Abramson et al. 2002;
Duncan et al. 2014; Huang 2014).
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DIMENSIONLESS REPRESENTATIONS OF STABILITY RESULTS

In this section and in the sections that follow, the case with the firm foundation located at the
embankment base (Figure 1) will be simply referred to as the embankment case, while the case
with the firm foundation located at great depth will be referred to as the slope case.

For both, embankment and slope cases, and following the analysis in Carranza-Torres &
Hormazabal (2018), all three mechanical variables (γ , φ and c) and the single length-dimension
variable (H) will be grouped into a single dimensionless factor (X) as follows

X =
γ H tanφ

c
(2)

According to Bell (1966) (also, Hoek & Bray 1974; Cousins 1978; Michalowski 2002; Steward
et al. 2010), the factor of safety divided by the tangent of the internal friction angle of the soil
(tanφ ) will depend on X and on the angle of the embankment or slope face (α) only, i.e.,

FS
tanφ

= fFS (X ,α) (3)

In equation (3), fFS represents two distinct functions, one for the embankment case and the other
for the slope case, that can be traced by solving a series of selected embankment and slope cases
for properly chosen values of the variables X and α .

Additionally, and according to Carranza-Torres & Hormazabal (2018), all ratios of vari-
ables that characterize the position of the critical circular failure surface in Figure 1, will depend
on X and α only. For example, the scaled abscissa and ordinate of the center of the critical circular
failure are defined, respectively, as follows

xc

H
= fxc (X ,α) (4)

and yc

H
= fyc (X ,α) (5)

The scaled abscissa and ordinate of the starting point of the critical circular failure surface (point
A in Figure 1) are defined, respectively, as follows

xA

H
= fxA (X ,α) (6)

and yA

H
= fyA (X ,α) (7)

Equations similar to the equations (4) through (7) can be stated for all other points defining
the critical failure surface in Figure 1 (i.e., points A′, C′, B′, and B).

As with the case of the function fFS in equation (3), the functions fxc , fyc , fxA and fyA in
equations (4) through (7) (and the similar equations for the remaining points of the critical failure
surface) can be reconstructed solving a series of selected embankment and slope cases for properly
chosen values of the variables X and α . Then, once these functions have been defined, the ratio of
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Figure 2. Dimensionless stability diagram for the estimation of scaled factor of safety for
soil embankments with a firm foundation at the base, as represented in Figure 1.

the radius of the circular arcs forming the critical failure surface, and the height of the embankment
or slope (i.e., the ratio R/H) can be computed as the distance between the points C and A in Figure
1, with the coordinates of these points expressed also as ratios of the embankment or slope height
H, i.e.,

R
H

=

√(xc

H
− xA

H

)2
+
(yc

H
− yA

H

)2
(8)

To reconstruct the functions of the dimensionless variables in equations (3) through (7),
the limit equilibrium software SLIDE (Rocscience Inc. 2015) was employed. A total of 6,804
cases of embankments and slopes were evaluated using the Bishop method of slices. The input
variables in the models were chosen so to obtain 81 equally spaced (in logarithm base-10 scale)
embankment and slope cases with the factor X between 10−2 and 100. Face inclination angles
between 20◦ and 80◦, in increments of 10◦, were chosen. The factors of safety and corresponding
critical circular failure surfaces were determined for all cases using the ‘Autorefine Search’ option
implemented in the software SLIDE. For the cases considering the firm foundation at the base of
the embankment, the option ‘Composite Surface’ in the software was used. The option to create a
tension crack (using default parameters) was also specified. For full details of the characteristics
of the limit equilibrium models, the reader is referred to Carranza-Torres & Hormazabal (2018).
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Figure 3. Dimensionless stability diagram for the estimation of scaled factor of safety for
slopes in soils (i.e., the case in which the firm foundation in Figure 1 is at great depth).

Figure 2 shows the graphical representation of the function fFS in equation (3), as obtained
with SLIDE, for the embankment case. The diagram defines the relationship between the scaled
factor of safety FS/ tanφ (vertical axis) and the ratio X (horizontal axis), for different face angles
α . The small dots on the curves represent the computed limit equilibrium models. In Figure 2, as X
decreases, the soil is predominantly cohesive, while as X increases, it is predominantly frictional.
The figure also shows the positive influence of the cohesion of the soil on the factor of safety: for
a fixed value of friction angle, the factor of safety increases with the increase in cohesion. It also
shows the effect of the embankment face angle on the factor of safety: for a fixed value of the
factor X , the factor of safety decreases with increase of the face angle.

Figure 3 shows the relationship between scaled factor of safety FS/ tanφ and the dimen-
sionless variable X , for different angles α , for the slope case. The interpretation of Figure 3 is
similar to that of Figure 2. A visual comparison of both figures indicates that the curves in Figure
3 are shifted downwards with respect to the curves in Figure 2, in particular, for values of face
angles smaller than ∼ 50◦. This implies that the factor of safety of an embankment with a firm
foundation at the base will always have a factor of safety that is greater than or equal to the factor
of safety of the same embankment when the firm foundation is at great depth. In other words, the
stability of the embankment decreases (or remains the same, for embankments with face angles
above ∼40◦) with the increase of the depth of the firm foundation.
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To quantify the difference in factors of safety for embankments and slopes, the ratio rSE of
the respective factors of safety is defined as follows,

rSE =
FSslope

FSembk.
(9)

Figure 4 shows the graphical representation of the ratio rSE and the dimensionless variable
X , for the different values of face angle α considered in Figures 2 and 3. The figure shows that the
decrease in stability conditions when transitioning from embankments to slopes depends on X and
α only. The lower the values of X and α , the larger the drop in factor of safety. Also, for values of
X larger than ∼1 and α larger than 50◦, the factors of safety for embankments and slopes are the
same. Referring to Figure 4, the discontinuity in the slope of the curve α = 40◦, in the vicinity of
the abscissa X = 1, is related to the development of the tension crack in the SLIDE models from
which the curves were constructed.

To quantify the influence of the position of the firm foundation on factors of safety, the
point P represented in Figures 2, 3 and 4, corresponds to embankment and slope cases for which
X is 1 and α is 20◦. From Figure 2, the scaled factor of safety for the embankment case is 13.15,
whereas from Figure 3, the scaled factor of safety for the slope case is 11.43. From Figure 4, the
decrease in the scaled factor of safety is ≈ 0.87.

For space reasons, no diagrams for the functions defining the different points that form the
critical circular failure surface in Figure 1 (equations 4 through 7) are explicitly included in this
paper. The diagrams can be constructed using the coordinates of the critical failure surface points
that are included in the EXCEL workbook to be discussed in the section ‘Computer Spreadsheet for
Analysis of Stability’ (the EXCEL workbook also includes coordinates of all the points represented
in Figures 2 and 3).

MECHANICAL SIMILARITY OF EMBANKMENT AND SLOPE PROBLEMS

The concept of mechanical similarity of slope cases, with particular reference to mechanical sim-
ilarity of scaled factors of safety and scaled position of the critical failure surface, has been intro-
duced in Carranza-Torres & Hormazabal (2018). This section summarizes the concept, focusing
on the expected decrease in stability conditions when transitioning from embankment cases (firm
foundation at the base of the embankment) to slope cases (firm foundation at great depth).

Five different cases of embankments or slopes, as listed in Table 1, are considered. At first
sight, and disregarding the fact that all cases have the face angle (α = 20◦), these correspond to
quite different embankment or slope heights, and soil properties. Nevertheless, according to the
last column in Table 1, all cases are characterized by the same dimensionless variable X (equal to
1.00). Therefore, according to equations (3) through (8), the cases are expected to have the very
same values of scaled factor of safety (FS/ tanφ ) and scaled coordinates of the different points that
form the critical failure surface (i.e., the scaled coordinates of points A, A′, C′, etc. in Figure 1). To
illustrate this, Table 2 lists the values of scaled factor of safety and scaled coordinates of the center,
starting point and radius of the critical failure surface, for all cases, as obtained with equations (4)
through (8) and with the EXCEL workbook to be discussed in the next section. The values listed
in Table 2 result the same for all five considered cases.
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Figure 4. Ratio of factors of safety obtained with equation (9), for cases of slopes (firm
foundation at great depth) and embankments (firm foundation at the embankment base).

The concept of mechanical similarity illustrated by the different cases in Tables 1 and 2,
allows explanation of an observation that dates back to the early developments of computational
methods for slope stability analysis in soil mechanics: embankments and slopes in predominantly
cohesive soils tend to show deeper critical failure surfaces than those in predominantly frictional
soil. Indeed, it has also been known that for slopes in purely frictional soil, the thickness of the
critical failure surface becomes null, as proved by the analytical solution of an infinite slope in
cohesionless soil (Scott 1994; Abramson et al. 2002; Coduto et al. 2011; Das & Sobhan 2018). It
will be shown next that it is the dimensionless parameter X (equation 2) that controls how deep or
shallow the critical failure surface is.

The diagrams in Figures 5a and 5b are equivalent to the diagrams already introduced in
Figures 2 and 3. For clarity, only three curves corresponding to embankment and slope face angles
equal to 20◦, 40◦ and 60◦ are included in the diagrams. The different sketches above the curves
in Figures 5a and 5b correspond to embankment and slope cases in predominantly cohesive soil
(characterized by an arbitrarily chosen value X = 0.05), cases in a regular cohesive-frictional soil
(arbitrarily chosen value X = 1), and cases in a predominantly frictional soil (arbitrarily chosen
value X = 25). The sketches show the shape of the critical circular failure surface as obtained
with the EXCEL workbook described in the next section. It is seen that when the angle of the
embankment or slope face is fixed, the average thickness of the critical failure surface depends on
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Table 1. Geometric characteristics and physical/mechanical soil properties for embankments
or slopes that yield the same dimensionless factor X .

Case α [◦] H [m] γ [kN/m3] φ [◦] c [kPa] X = γH tanφ /c [-]

a 10.0 17.0 10.0 30.0
b 19.1 15.7 30.9 179.5
c 20 20.6 16.5 5.0 29.7 1.00
d 33.2 17.4 32.5 368.0
e 42.4 18.1 21.1 296.1

Table 2. Scaled factor of safety and scaled coordinates that define the position of the
assumed critical failure surface, as obtained with the computational tools in this paper.

Cases Type FS/ tanφ [-] xC/H [-] yC/H [-] xA/H [-] yA/H [-] R/H [-]

a, b, c, d, e Embk. 13.15 1.17 2.60 0.25 0.09 2.67

a, b, c, d, e Slope 11.43 1.13 2.15 -0.38 0.00 2.63

Note: For space reasons, the scaled coordinates of the remaining points defining the critical failure surface
shown in Figure 1 are not listed in the table; those values result also the be the same in all five cases.

the dimensionless parameter X only. Finally, it should be noted that all five cases listed in Tables 1
and 2 plot as points B20 in Figures 5a and 5b. Therefore, the sketches that correspond to case B20
in Figures 5a and 5b are representative of the shape of the critical circular failure surface for all
five cases listed in Tables 1 and 2.

COMPUTER SPREADSHEET FOR ANALYSIS OF STABILITY

Although dimensionless charts have been the traditional way of summarizing and presenting results
of stability analyses, in modern geotechnical design practice, engineers typically prefer the use of
computer spreadsheets over the use of these dimensionless charts (Hoek 2000).

With this idea in mind, based on Carranza-Torres & Hormazabal (2018), the results of the
limit equilibrium models that allowed the functions in equations (3) through (7) to be reconstructed
by discrete points, have been summarized in an EXCEL workbook (Microsoft 2016) called ‘Slope
Stability Calculator for Embankments in Frictional-Cohesive Soils’ (Figure 6). The EXCEL work-
book implements a polynomial interpolation scheme that allows the user to obtain estimates of
factor of safety and location of the circular critical failure surface for any embankment or slope,
provided the characteristic dimensionless factor X and the angle α fall within specified ranges.

The main interface in this EXCEL workbook is the worksheet called ‘Main Page’ shown
in Figure 6a. The user defines the geometry of the embankment or slope and the properties of
the soil in the section entitled ‘Input Data’. The results are then displayed side by side in the
section ‘Results’, in the lower part of the same worksheet. Results are identified as Case 1, which
corresponds to an embankment with the base of the firm foundation as shown in Figure 1, and
Case 2, which corresponds to the firm foundation located at great depth. If the user specifies to
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Figure 5. Dimensionless stability diagrams showing similarity of scaled factor of safety and
critical failure surface location. The diagrams correspond to cases of a) embankments, with

a firm foundation at the base; and b) slopes, with a firm foundation at great depth.
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a)

b)

Figure 6. EXCEL workbook for implementation of stability computations. a) Main
worksheet. b) Graphical representation of Case 2 (i.e., slope in soil).
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make a plot in the input data section of the ‘Main Page’ spreadsheet, two other spreadsheets in the
workbook, called ‘Plot C1’ and ‘Plot C2’, provide a graphical representation of the embankment
and slope cases (i.e., Cases 1 and 2, respectively), together with a summary of input data and
results. For example, Figure 6b shows the contents of the worksheet ‘Plot C2’.

It must be emphasized that the EXCEL workbook does not include an implementation
of the limit equilibrium method of slices to compute results of embankment problems. Instead
the EXCEL workbook, simply uses lookup table formulas to interpolate results of models that
have been already computed with the commercial limit equilibrium software SLIDE (Rocscience
Inc. 2015), as discussed in previous sections. These results are tabulated in different worksheets,
these having names which are representative of the information they contain. For example, the
worksheets called ‘FS tanPhi C1’ and ‘FS tanPhi C2’ contain the resulting scaled factors of safety
for different values of the dimensionless variable X and embankment or slope face angle α —i.e.,
the coordinates of the points in the different curves represented in Figures 2 and 3, respectively.
Similarly, the worksheets called ‘Xc H C1’ and ‘Xc H C2’ contain the scaled abscissas of the
center of the critical circular failure surface as a function of X and α for Cases 1 and 2, respectively,
etc.

Although computation of results is implemented through table lookup formulas without
the use of macros, the EXCEL workbook uses a VBA (Visual Basic for Applications) macro for
constructing the plots in the worksheets ‘Plot C1’ and ‘Plot C2’. Therefore, if asked by EXCEL,
the user should allow the software to activate the macro in order for the plots in the worksheets
‘Plot C1’ and ‘Plot C2’ to be generated.

The EXCEL file corresponding to the workbook introduced above can be freely down-
loaded from the first author’s web site, at www.d.umn.edu/∼carranza/EMBK20.

FACTOR OF SAFETY EQUATIONS FOR EMBANKMENTS AND SLOPES

Following previous developments in Carranza-Torres & Hormazabal (2018), a multiple regression
analysis was carried out using the results of scaled factors of safety represented in Figures 2 and
3, for embankments and slopes, respectively. The objective of the analysis was to come up with
algebraic equations to predict values of scaled factor of safety (FS/ tanφ ) as a function of the
dimensionless factor X and the angle α , which could be used as additional tools to quickly estimate
values of factors of safety.

The adjusting function was chosen to be a power inverse function of the variable X of the
following form,

FS
tanφ

=
1

tanα
+

g1(α)

X
+

g2(α)

X g3(α)
(10)

The reason for choosing an inverse function was to be able to recover the solution of an
infinite slope for the case of purely frictional soil. Indeed, when X tends to infinity, all different
curves in Figures 2 and 3 will become asymptotic towards the scaled factor of safety predicted by
the analytical solution of an infinite slope in purely frictional soil, i.e., FS/ tanφ = 1/ tanα (e.g.,
Scott 1994; Abramson et al. 2002; Coduto et al. 2011; Das & Sobhan 2018).

In equation (10), the functions g1(α), g2(α) and g3(α) are cubic polynomials that are
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assumed to have a discontinuity of the first and higher derivatives at α = 50◦, the approximate
value of slope angle above which the critical circular failure surface always start at the toe of the
slope (i.e., at point 0 in Figure 1). Using standard methods of minimization of sum of square of
the estimate residuals (Chapra & Canale 2015), the functions g1(α), g2(α) and g3(α) were found
to be as follows:

For the case of embankments,
If α ≤ 50◦

g1(α) = 5.430−9.180×10−2 (α−50)−1.904×10−3 (α−50)2−9.963×10−5 (α−50)3 (11)

g2(α) = 1.333+7.563×10−3 (α−50)+4.674×10−4 (α−50)2 +5.871×10−6 (α−50)3

g3(α) = 3.682×10−1 +3.068×10−4 (α−50)−3.841×10−5 (α−50)2−9.460×10−7 (α−50)3

If α ≥ 50◦

g1(α) = 5.430−6.067×10−2 (α−50)+2.088×10−3 (α−50)2−7.738×10−5 (α−50)3 (12)

g2(α) = 1.333+1.721×10−2 (α−50)−4.454×10−3 (α−50)2 +1.217×10−4 (α−50)3

g3(α) = 3.682×10−1 +7.698×10−3 (α−50)−1.419×10−3 (α−50)2 +3.664×10−5 (α−50)3

For the case of slopes,
If α ≤ 50◦

g1(α) = 5.346−8.603×10−3 (α−50)−3.221×10−4 (α−50)2−1.335×10−7 (α−50)3 (13)

g2(α) = 1.414−3.435×10−2 (α−50)+1.656×10−3 (α−50)2 +2.175×10−5 (α−50)3

g3(α) = 3.841×10−1−6.840×10−3 (α−50)+4.102×10−5 (α−50)2 +3.573×10−6 (α−50)3

If α ≥ 50◦

g1(α) = 5.346−4.524×10−2 (α−50)+1.247×10−3 (α−50)2−6.336×10−5 (α−50)3 (14)

g2(α) = 1.414+2.321×10−3 (α−50)−3.642×10−3 (α−50)2 +1.082×10−4 (α−50)3

g3(α) = 3.841×10−1 +4.771×10−3 (α−50)−1.259×10−3 (α−50)2 +3.398×10−5 (α−50)3

It is important to note that the regression analysis considers that the embankment or slope
face angle (α) in the equations above is expressed in degrees and not in radians.

To illustrate the application of the regression equations above, Figure 7a shows a diagram
that is equivalent to that in Figure 2, but constructed with equation (10), together with equations
(11) and (12). At first sight, the diagrams in Figures 2 and 7a are identical. Nevertheless, because
the equations used to construct the curves in Figure 7a are best fit equations obtained from regres-
sion analysis, there will be some error associated with the estimation of scaled factor of safety.

The error in the estimate of scaled factor of safety with the regression equations can be
quantified using the following expression

FS
tanφ

Error [%] =
FS/ tanφ (with Eq. 10)−FS/ tanφ (with Eq. 3)

FS/ tanφ (with Eq. 3)
(15)

Equation (15) assumes that the factors of safety obtained with the limit equilibrium software
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Figure 7. a) Dimensionless stability diagram for embankments (firm foundation at the base)
equivalent to that in Figure 2, obtained with equation (10). b) Resulting error in the

estimation of factor of safety with the regression formulas (equation 15).
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SLIDE (equation 3) correspond to the true solution of the problem.
Figure 7b is the graphical representation of the error given by equation (15) for embank-

ments. The figure indicates that the error associated with application of equation (10) can be
positive or negative (i.e., the values of scaled factor of safety can be either overestimated or un-
derestimated, respectively). The figure also indicates that the largest error (that in absolute value
is ∼10%) occurs for the case of very steep embankment faces (angles α ≥ 70◦) and for predom-
inantly frictional soils. Figure 7b also indicates that for embankment faces of small inclination
angle, the error is not significant. For example, considering the embankment case already dis-
cussed in the section ‘Dimensionless Representations of Stability Results’, for which X = 1 and
α = 20◦, application of the regression equations (10) through (12) yields a scaled factor of safety
equal to 13.28 (point P in Figure 7a), whereas the scaled factor of safety predicted by SLIDE is
equal to 13.15 (point P in Figure 2). Therefore, application of the regression equations yields an
error of only 0.99% (point P in Figure 7b).

Figures 8a and 8b show similar representations as in Figures 7a and 7b, for the case of
slopes. Again, comparing Figures 8a and 3, it is observed that the largest error (that in absolute
value is ∼10%) occurs for the case of very steep embankment or slope faces (angles α ≥ 70◦) and
for the case of predominantly frictional soils. Also, for cases of relatively small embankment face
inclination angle, the error is not significant (point P in Figure 8b).

The reason why the error becomes large for the case of embankment and slope faces with
steep faces (≥ 70%) in Figures 7b and 8b, is related to the inclusion of a tension crack in the limit
equilibrium models used to define the dimensionless functions given by equations (3) through (7).
The resulting factor of safety and location of the critical failure surface are quite sensitive to the
inclusion of a tension crack in limit equilibrium models of slopes, particularly for very steep slopes
with null tensile strength. The effect of the influence of the tension crack in steep slopes is put in
evidence when comparing the magnitude of error for the case of slopes with a tension crack (Figure
8b) with the equivalent error presented in Carranza-Torres & Hormazabal (2018) for slopes without
a tension crack. In the former case, the errors for slope inclination angles clearly exceed 5% in
absolute value (Figure 8b), while in the latter case all errors are within ±5%.

As inclusion of tension cracks in the limit equilibrium models makes the error of the regres-
sion equations increase for very steep embankments and slopes, the reader is cautioned to limit the
application of the equations presented in this section to cases of embankment or slope face angles
smaller than 70%.

APPLICATION EXAMPLE

This section presents an application example of stability analysis of an embankment that illustrates
the use of the computational tools discussed in previous sections.

The problem involves computing the factor of safety and location of the critical circular
failure surface for the face of the embankment in Figure 1 with geometry and soil properties as
follows:
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Figure 8. a) Dimensionless stability diagram for slopes (firm foundation at great depth)
equivalent to that in Figure 3, obtained with equation (10). b) Resulting error in the

estimation of factor of safety with the regression formulas (equation 15).
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– Height, H = 10 m
– Face inclination angle, α = 20◦

– Unit weight of the soil, γ = 17 kN/m3

– Cohesion of the soil, c = 30 kPa
– Internal friction angle of the soil, φ = 10◦

Cases in which the firm foundation is located at the base of the embankment, and in which the
firm foundation is located at great depth will be considered separately. Following the notation of
the EXCEL workbook introduced in an earlier section, the cases will be referred to as Case 1 (or
embankment case) and Case 2 (or slope case), respectively.

According to the ‘Dimensionless Representations of Stability Results’ section, the factor
of safety and location of critical failure surface depends on the dimensionless factor X , and on
the face angle α (in this case, 20◦). For the input values listed above, the dimensionless factor X
results to be

X =
γ H tanφ

c
=

17kN/m3×10m× tan10◦

30kPa
= 1.0 (16)

The embankment problem introduced above corresponds to the Case a in the Tables 1 and
2 and to the values listed in the EXCEL workbook (Figure 6). Therefore, from Table 2 and Figure
6a, the computational tools introduced in previous sections give the following values of factor of
safety and coordinates of the points that define the critical failure surface:

For Case 1 (or embankment case):

– Scaled factor of safety, FS/ tanφ = 13.15 (FS = 2.32 for φ = 10◦)
– Scaled abscissa of the center of the critical failure surface, xc/H = 1.17

(xc = 11.7 m for H = 10 m)
– Scaled ordinate of the center of the critical failure surface, yc/H = 2.60

(yc = 26.0 m for H = 10 m)
– Scaled abscissa of the starting point of the critical failure surface, xA/H = 0.25

(xA = 2.5 m for H = 10 m)
– Scaled ordinate of the starting point of the critical failure surface, yA/H = 0.09

(yA = 0.9 m for H = 10 m)
– Scaled radius of the critical failure surface, R/H = 2.67

(R = 26.7 m for H = 10 m)

For Case 2 (or slope case):

– Scaled factor of safety, FS/ tanφ = 11.43 (FS = 2.02 for φ = 10◦)
– Scaled abscissa of the center of the critical failure surface, xc/H = 1.13

(xc = 11.3 m for H = 10 m)
– Scaled ordinate of the center of the critical failure surface, yc/H = 2.15

(yc = 21.5 m for H = 10 m)
– Scaled abscissa of the starting point of the critical failure surface, xA/H =−0.38

(xA =−3.8 m for H = 10 m)
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Figure 9. Geometry and mesh of elements for the embankment model solved with the finite
difference software FLAC (Itasca 2016).

– Scaled ordinate of the starting point of the critical failure surface, yA/H = 0.0
(yA = 0.0 m for H = 10 m)

– Scaled radius of the critical failure surface, R/H = 2.63
(R = 26.3 m for H = 10 m)

From the resulting values of factor of safety, it is seen that Case 1 and Case 2 are sta-
ble (i.e., they both have a factor of safety larger than one), and according to the ‘Dimensionless
Representations of Stability Results’ section, Case 1 has a larger factor of safety than Case 2.

The previous section illustrated the application of the regression formulas for estimating
factors of safety for embankment and slope cases characterized by the particular dimensionless
factor X = 1 and angle α = 20◦ (point P in Figures 7 and 8). Those cases are the same Cases 1
and 2 considered here. Therefore, the regression analysis formulas (equations 10 through 14) give
the following factors of safety:

For Case 1 (or embankment case):
– Scaled factor of safety, FS/ tanφ = 13.28 (FS = 2.34 for φ = 10◦)

For Case 2 (or slope case):
– Scaled factor of safety, FS/ tanφ = 11.42 (FS = 2.01 for φ = 10◦)

Comparing the values of factor of safety obtained with the regression formulas (equations
10 through 14) and with the EXCEL workbook, for Case 1, the formulas overestimate slightly the
stability of the embankment, giving an error of 0.99% —point P in Figure 7b. For Case 2, the
formulas underestimate slightly the stability of the slope, giving an error of −0.09% —point P in
Figure 8b. For both Cases 1 and 2, the error is relatively small.

Cases 1 and 2 have also been solved with the shear strength reduction technique using the
finite different software FLAC (Itasca, Inc. 2016). Figure 9 shows the mesh of elements used for
the models. The mesh shown in Figure 9 corresponds to Case 1, for which the elements below the
indicated ‘firm foundation level’ were considered to be elastic.
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Figure 10. Critical failure surfaces outlined by contours of shear strain rates given by the
software FLAC, and as explicitly defined by the EXCEL workbook. Plots correspond to
a) Case 1 (embankment with firm foundation at the base) and b) Case 2 (slope, with firm

foundation at great depth).

Figures 10a and 10b show the resulting contours of normalized shear strain computed with
the shear strength reduction technique for the models of Case 1 and 2, respectively (these models
correspond to models that are at the verge of failure). When applying the shear strength reduction
technique, the contour representation of shear strain is normally used to define the critical failure
surface. The words ‘shear strain’ in the legend of Figures 10a and 10b refer to the square root of
the second invariant of the deviatoric strain rate, while the word ‘normalized’ refers to the fact that
the shear strain rates have been divided by the maximum value of shear strain rate in the model at
the shown state.
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Figures 10a and 10b also include the outlines of the critical failure surfaces obtained with
the EXCEL workbook —i.e., as obtained with the software SLIDE (Rocscience Inc. 2015). The
similarity of the critical failure surfaces obtained with shear strength reduction technique and with
the limit equilibrium method is remarkable. In particular, for Case 1 (the embankment case),
and according to Steward et al. (2010), the failure surface given by FLAC is secant to the firm
foundation and not tangent as it has been traditionally considered in the literature (Taylor 1948;
Bishop & Morgenstern 1960; Morgenstern 1963; Michalowski 2002).

The values of factor of safety obtained with the shear strength reduction technique in the
software FLAC, and with the limit equilibrium method in the EXCEL workbook are indicated on
the left side of Figures 10a and 10b. The shear strength reduction technique yields a factor of safety
that is comparatively larger than the one obtained with limit equilibrium for Case 1 (Figure 10a),
while the opposite is true for the Case 2 (Figure 10b). If the true values of factors of safety for
the embankment and slope cases are assumed to be the mean values of factors of safety obtained
with FLAC and EXCEL (a reasonable assumption considering that there is no exact solution for
the problem of determining factors of safety), then the normalized errors of the factors of safety
for each method result as follows:

For Case 1 (or embankment case):

– FLAC, (2.40− (2.40+2.32)/2)/((2.40+2.32)/2) = 1.69%
– EXCEL (SLIDE), (2.32− (2.40+2.32)/2)/((2.40+2.32)/2) =−1.69%

For Case 2 (or slope case):

– FLAC, (1.94− (1.94+2.02)/2)/((1.94+2.02)/2) =−2.02%
– EXCEL (SLIDE), (2.02− (1.94+2.02)/2)/((1.94+2.02)/2) = 2.02%

The values listed above indicate that the normalized errors are within approximately ±2%
for both Cases 1 and 2, a relative small value that confirms that values of factor of safety obtained
with limit equilibrium method and shear strength reduction technique can be expected to be similar
for the case of simple embankments and slope cases (Cheng et al. 2007).

Further to the FLAC models discussed above, the results represented in Figure 10 corre-
spond to models with a non-associated flow rule with no dilation. For the particular properties in
this application example, the very same factors of safety and contours of shear strain, as repre-
sented in Figure 10, were obtained when considering an associated flow rule with a dilation angle
equal to the friction angle.

FINAL COMMENTS

The computational tools presented in this paper include graphical dimensionless representations,
an EXCEL workbook and regression equations that can be used to quickly determine factors of
safety and location of critical circular failure surfaces for simple embankments or slopes in dry
homogeneous and isotropic soils. Although these tools were developed for teaching basic slope
stability analysis in an undergraduate soil mechanics course, the tools could be useful in geotech-
nical design practice, for example in the pre-design stage of simple embankments or slopes. The
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tools could also be useful when performing probability and reliability analyses of stability of em-
bankments and slopes using the Monte-Carlo simulation technique. In such cases, thousands of
cases need to be analyzed to estimate factors of safety for different input parameters (e.g., Vanmar-
cke 1980; Juang et al. 1998; Wang et al. 2013; Lacasse et al. 2019) and computational tools that
allow quick estimation of factors of safety are desirable.

The computational tools presented in this paper will not be applicable to cases of embank-
ments or slopes in purely cohesive soil. Indeed, if the internal friction angle of the soil is equal
to zero, the dimensionless parameter X in equation (2) becomes undetermined. For the case of
embankments or slopes in purely cohesive soil, a new set of tools would be required, with particu-
lar consideration that the position of the firm foundation dictates the extent in depth of the critical
failure surface. For example, the case of a firm foundation located at infinite depth will always
yield an infinitely deep failure surface when the soil is purely cohesive (e.g., Michalowski 2002;
Baker 2003; Steward et al. 2010).

The adoption of the limit equilibrium method and the Bishop formulation used to develop
the tools presented in this paper was due to practical reasons only. Use of commercial limit equi-
librium software is still very much spread in the field of geotechnical engineering and the authors
needed to generate and solve thousands of models and process the results in a reasonable amount
of time. Similar representations could have been developed with limit analysis and possibly shear
strength reduction methods —although in the latter case, an impractical amount of time would
have been required to process all models needed to develop these tools. For simple embankment
and slope cases considered in this paper (i.e., embankments and slopes with a planar face in homo-
geneous, isotropic, frictional-cohesive soil) no significant differences in values of factor of safety
or location of the critical failure surface could be expected when applying other methods, like limit
analysis or shear strength reduction methods (e.g., Yu et al. 1998; Dawnson et al. 1999; Davis &
Selvadurai 2005; Cheng et al. 2007; Leshchinsky 2013). Due to the non-existence of a rigorous
closed-form solution for the problem of computing the factor of safety and location of the critical
failure surface for embankments and slopes, all of the methods available to carry out stability anal-
yses will be expected to give an approximate solution to the problem only, and small differences
in results of factor of safety and location of the critical failure surface should be always expected,
as illustrated in the section ‘Application Example’ in this paper.
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