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Abstract
This paper presents a study of mechanical stability of shallow circular cavities carried out as part of a mul-
tidisciplinary project that investigated the possibility of using existing underground mining works (drifts and
shafts) from iron mining works dating back from the first half of the 20th century in northern Minnesota (USA),
for Compressed Air Energy Storage (or CAES) applications. CAES systems compress air into an underground
cavity when there is an excess of energy production (e.g., in the electrical grid or in an electrical plant) and
generate electrical energy using a turbine when the electricity demand exceeds the production. This paper
addresses the fundamental problem of establishing the stability conditions of shallow cylindrical or spherical
openings excavated in cohesive ground, and subjected to either decreasing or increasing internal pressure, as-
sociated with the process of contraction or expansion of the cavities during operation of a CAES system. A
statically admissible analytical model for a shallow circular opening in cohesive ground derived from the limit
analysis lower bound theorem is presented, and key dimensionless groups of variables controlling the stability
of the cavity, defined in terms of a scalar factor of safety, are identified. The analytical model allows several
observations of practical interest to be made with regard to the stability of shallow cavities. Numerical finite-
difference (FLAC) models are used to validate the various observations and to quantify the underestimation of
factors of safety obtained with the proposed lower bound solution. The paper also presents a critical evalua-
tion of limit equilibrium (Terzaghi’s type) models that are traditionally used to design cavities for gas and air
storage. Comparisons of results obtained with existing limit equilibrium models, with the proposed analytical
model and with numerical models, show that limit equilibrium models can lead to both over conservative (i.e.,
too safe or uneconomical) and to nonconservative (i.e., unsafe) cavity designs depending on ranges considered
for the dimensionless groups of variables governing the problem. The effect of other loading and ground con-
ditions, such as frictional strength for the ground, distribution of internal pressure in the cavity, and different
ratios of horizontal-to-vertical in-situ stresses, on stability of the cavities are also discussed.
Keywords: CAES, shallow cavities, stability, factor of safety, limit analysis, limit equilibrium

1. Introduction
A Compressed Air Energy Storage (CAES) plant compresses air when there is an excess of electrical energy
production in the grid and generates electrical energy using a turbine when the demand exceeds the production.
The storage of compressed air to produce energy in this way is typically done in underground cavities created
for this specific purpose (e.g., in salt formations, new cavities can be relatively easily created by dissolution
methods), or in reconditioned existing cavities (e.g., mining rooms, drifts and shafts).
Figure 1 (after Succar & Williams 2008) shows a schematic configuration of a compensated or constant pressure
storage CAES system. The main components of the system are the underground storage cavity, the compressors
and turbines (located in the CAES plant) and the surface water reservoir that in combination with a shaft
allows maintenance of a constant storage pressure both during compression or decompression of the air in
the underground cavity. Another possible configuration for a CAES system is that of a non-compensated or
variable pressure storage option, in which no reservoir (nor water shaft) exists and the pressure inside the
cavern decreases as air is extracted to produce energy. The compensated CAES system is more efficient (i.e.,
it produces more energy for the same initial storage pressure and volume) but it is less flexible than the non-
compensated one, since it requires availability of a water reservoir, construction of a water shaft, and location
of the storage cavern at enough depth to achieve the design storage pressure (Succar & Williams 2008).
The storage volume and pressure of the air in the underground chamber depends mainly on the target energy
to be generated by turbines (i.e., the power to be sustained for a design number of hours), the type of scheme
(whether compensated or non-compensated) and the efficiency and characteristics of the turbines (Zaugg 1975;
Cavallo 2007). Figure 2, adapted from Succar & Williams (2008), presents a diagram showing the theoretical
relationship between the mentioned variables. The horizontal axis represents the storage pressure of the air in a
compensated system or the initial pressure of the air in a non-compensated system. The vertical axis represents
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Figure 1. Constant pressure CAES storage with surface reservoir and compensating water column (after
Succar & Williams 2008).

the ratio of the energy to be generated and the volume of the storage chamber. The different curves correspond
to various configurations of CAES systems: the uppermost curve corresponds to a compensated (constant
pressure) CAES system, while the different curves below correspond to non-compensated (variable pressure)
CAES systems, for different ratios of initial to final storage pressure, and two cases of turbine operations. The
diagram shows that a constant pressure system is more efficient than any variable pressure one, since it yields
the largest amount of energy for any given value of air storage pressure. A case example illustrating use of the
diagram to determine the storage volume of air for a non-compensated system has been added in the lower part
of Figure 2.
Considering the costs of developing a CAES system which include construction of underground caverns, drifts
and shafts, Cavallo (2007) and Denholm & Sioshansi (2009) mention powers in the range of 100 to 200 MW to
be sustained for at least 10 hours, and (initial) storage pressures within the range of 80 bar (8 MPa) as convenient
targets to consider. Succar & Williams (2008) describe the characteristics of two existing (functional) CAES
plants, the McIntosh power plant in McIntosh, Alabama (USA) and the Huntorf power plant, near Bremen,
Germany. As a reference, the McIntosh power plant in McIntosh, Alabama, has been operating since 1991 and
is reported to produce 110 MW of electricity. The plant is capable of sustaining that power for 26 hours by
storing air in a single chamber of 560,000 m3 (the chamber was excavated in a salt formation by the dissolution
method, and it does not have lining). The working pressure of the air stored in the chamber varies from 74 to
45 bar (or 7.4 to 4.5 MPa, respectively).
In addition to the ‘large-scale’ CAES systems mentioned above, ‘small-scale’ CAES systems can be considered
convenient alternatives for a storage of energy associated with small wind farms, particularly when shallow
underground cavities (e.g., from old mining activities) exist already at the site. In such cases energy powers
below 10 MW sustained for 3 hours or less, with (initial) storage pressures below 70 bar (7 MPa) could be
convenient targets to consider (Fosnacht et al. 2015).
For more than one hundred years, the state of Minnesota in the northern USA has been a leading producer of
iron in the country. In the northern part of Minnesota there exists various iron formations of Precambrian age,
including the Paleoproterozoic Gunflint, Mesabi and Cuyuna Iron Ranges, and the Neoarchean Vermilion Iron
Range (Marsden 1968; Peterson et al. 2001; Addison et al. 2005; Lodge et al. 2013).
Although at present time only surface mining in the form of shallow taconite open pits takes place, there exists
extensive traces of old underground mining works in the form of relatively shallow shafts and drifts that date
back to the first half of the 20th century (Peele 1945; Lamppa 2004; MNDNR-LAM 2011).
Various studies have been conducted to evaluate taking advantage of existing surface and underground mining
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Figure 2. Relationship between generated energy, storage volume, upper and lower storage pressure and
operation cases —adapted from Succar & Williams (2008). The framed inset below shows an example of
computation of air storage volume required to produce a given amount of energy for a given air storage

pressure in a variable pressure storage CAES system.

excavations in northern Minnesota for energy generation (see, for example, Leoni 1985; Fosnacht & PHES
Study Team 2011; Bauer et al. 2012; Fosnacht et al. 2015). In particular, Fosnacht et al. (2015) studied the
economical and technical aspects of constructing CAES plants using existing underground mine workings and
above ground features at various locations in Minnesota, for both large scale and small scale CAES systems.
Figure 3a shows the three locations for potential CAES plants considered in this study. Figure 3b shows
isometric views of existing shallow underground shafts and drifts at one of the locations, which were considered
for air storage for a small scale CAES development associated with wind turbines.
The engineering design of underground cavities for air and gas storage has been treated by numerous authors
(see, for example, Kovári 1993; Damjanac et al. 2002; Blindheim et al. 2004). Major engineering consid-
erations associated with the design of underground caverns for air and gas storage include ensuring tightness
through installation of an impermeable liner or installation of water curtains, and ensuring the stability of the
cavern at different stages of the operations, for example, when no air or gas is present, and when the air or gas
is stored at the maximum design pressure (Goodall et al. 1988; Kovári 1993; Shidahara et al. 1993; Liang &
Lindblom 1994).
This paper presents a study of fundamental aspects of the stability conditions of shallow openings of simple
shape (cylindrical tunnels or spherical cavities) done as part of the multidisciplinary study by Fosnacht et al.
(2015) that looked into the possibility of using underground mine workings for development of a CAES plant
in Minnesota. The focus of the study reported in this paper is on assessing the mechanical stability of relatively
shallow openings such as those represented in Figure 3b when the tightness of the air has been guaranteed
by application of a thin impermeable liner that has no structural support effect. The study considers both,
the stability conditions of a ‘contracting’ (cylindrical or spherical) cavity when emptying of air takes place
and caving-type collapse of the ground above the cavity is to be prevented; and the stability conditions of an
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Figure 3. a) Map of the state of Minnesota (USA) showing three potential locations selected for emplacement
of CAES systems. b) Isometric views of old underground mining works at Site 3: Crosby-Ironton. Existing

shafts and drifts at the location considered for potential air storage —after Fosnacht et al. (2015).

‘expanding’ (cylindrical or spherical) cavity when pumping of air takes place and uplift-type of failure of the
ground above the cavity is to be prevented.
It must be emphasized that the problem of assessing the stability conditions of contracting cavities is not
relevant to design of CAES systems in particular, but it is also quite relevant in the assessment of stability
conditions of shallow tunnels for civil engineering applications, such as the case of shallow tunnels for trans-
portation projects. For example, Figure 4a shows a bus that fell into a sinkhole formed by the collapse of a
tunnel front during construction of the Munich Metro in 1994 (Construction Today 1994a; 1994b). Figure
4b shows another collapse that occurred due to failure of tunnel support below Hollywood Boulevard in Los
Angeles, during construction of the metro in 1995 (Civil Engineer International 1995; Oliver 1995). Figure 4c
shows another collapse that occurred during construction of the underground Mass Rapid System in Singapore
in 2005 (Government of Singapore 2005). Mechanical stability models of the type to be addressed in this paper
could serve the purpose of addressing collapse problems such as those shown in Figure 4.
The following section presents a brief literature review on existing methods for analysis of underground shallow
cavities.
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Figure 4. a) Collapse during construction of the Munich Metro (after Construction Today 1994a; 1994b).
b) Collapse during construction of the LA Metro (after Civil Engineer International 1995; Oliver 1995).

c) Collapse during construction of the Singapore underground Mass Rapid Transit (MRT) system (after
Government of Singapore 2005).
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2. Methods of analysis of stability of underground openings
Table 1, after Potts & Zdravkovic (1999), lists different methods used in the analysis of geotechnical problems
involving soil and rock, such as assessment of stability conditions of slopes and tunnels. The different rows in
the table correspond to the different methods, sorted in ascending order of flexibility while the different columns
describe the governing conditions (equilibrium, compatibility of deformations, material constitutive model, and
boundary condition equations) that the various methods satisfy (or do not satisfy).
Four of the methods listed in Table 1 are relevant to this study and are briefly described below.
These are: i) limit equilibrium solutions; ii) stress field solutions; iii) limit analysis solutions (including lower
bound and upper bound solutions); and iv) full numerical solutions. For a more detailed treatment of these
methods, particularly as applied to design of tunnels, the reader is referred to Kolymbas (2005).
Limit equilibrium solutions (second row in Table 1) consider equilibrium of a mass of soil (or rock) that, as the
name of the method indicates, is in a limit state of equilibrium and therefore tends to detach and produce the
collapse of the structure. A classical limit equilibrium model for shallow tunnels is that presented by Terzaghi
(Terzaghi 1943; Proctor & White 1977) and is represented in Figure 5. The model in Figure 5, developed in
the context of studying arching effects in soils, allows determination of the support pressure on the roof of
a shallow rectangular tunnel (of width and height, Bo and H, respectively; and depth D) that is required to
maintain stability of the overlying rectangular mass of soil of assumed dimensions (width and height, 2B1 and
D, respectively). In limit equilibrium models such as the one represented in Figure 5, the shear strength of the
ground is assumed to be fully mobilized on the lateral boundaries of the block (in this case the left and right
boundaries of length D) that tends to detach. Limit equilibrium models based on Terzaghi’s model have also
been proposed for assessing the stability of tunnel fronts —i.e., the vertical plane that remains unsupported as
a tunnel is advanced and support is installed behind it. Figure 6a shows such a limit equilibrium model for
the front of an unsupported tunnel as proposed by Horn (1961). Figure 6b shows another model due to Tamez
et al. (1997), as reported by Cornejo (1989) (see also Tanzini 2001), which accounted for tunnel support behind
the face. Terzaghi’s type limit equilibrium models have been also proposed to analyze the stability of shallow
caverns for gas storage. For example, Figure 7 (after Sofregaz U.S. Inc. 1999) shows a similar limit equilibrium
model for determining the maximum stored gas pressure, P, of a section of horse-shoe shaped cavern (of width
and height, D and H, respectively) located at a shallow depth (Z). Note that the limit equilibrium of a wedge
of soil or rock with inclined walls (at angles, α , with respect to the vertical) is considered in this model. Both
models represented in Figures 5 and 7, for the case of contracting and expanding openings, respectively, are
discussed further in Section 5 and are shown to overestimate or underestimate the stability conditions of shallow
openings depending on the values considered for the input variables.
Stress field solutions (third row in Table 1) for shallow cavities are obtained by integrating equilibrium equations
in a region of specified shape surrounding the cavities, assuming that the stresses are compatible with a plastic
state (i.e., in a stress field model the ground in a region surrounding the cavity satisfies equilibrium and is
assumed to be in plastic state). A stress field solution disregards the state of the material (whether in elastic
or plastic state) in the region outside the integration region. Caquot’s solution (after Caquot 1934) is a stress
field solution that allows determination of the support pressure required to maintain equilibrium of a shallow
circular opening (a section of long cylindrical tunnel or a spherical cavity) located at a shallow depth with
respect to the ground (see Figure 8a). Caquot’s type models for determining stability of shallow tunnels have
been investigated extensively by French researchers (Mandel et al. 1974; d’Escatha & Mandel 1971; d’Escatha
& Mandel 1974) (see Figure 8b). Caquot’s model is taken as a basis for developing the analytical model in this
study, presented later on in Section 3.
Limit analysis solutions (fourth and fifth rows in Table 1), are based on two theorems of the theory of plasticity,
namely the lower bound and upper bound theorems (see, for example, Davis & Selvadurai 2002; Pietruszczak
2010).
The lower bound theorem states that a lower bound (or statically admissible) solution that satisfies static equi-
librium everywhere in the material and nowhere violates the yield condition of the material leads to a safe
estimate of the stability conditions for the problem. In the context of analyzing the required internal support
pressure to maintain equilibrium of a shallow circular opening, as considered by Caquot (1934), the statically
admissible (or lower bound) solution predicts a support pressure that is higher than the true support pressure
required for equilibrium (i.e., it leads to a conservative or safe design).
The upper bound theorem states that an upper bound (or kinematically admissible) solution for which discrete
movement of material is already taking place, leads to an unsafe estimate of the stability conditions for the
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Table 1. Methods to analyze stability of structures such as slopes and tunnels in soils and rocks —after Potts
& Zdravkovic (1999).

problem. In the context of analyzing the required internal support pressure to maintain equilibrium of a shallow
circular opening mentioned above, the kinematical admissible (or upper bound) solution predicts a support
pressure that is lower than the true support pressure required for equilibrium (i.e., it leads to a non-conservative
or unsafe design).
Various authors have developed limit analysis solutions to assess the stability of circular sections of shallow
tunnels or the unsupported span of a circular tunnel in the vicinity of the tunnel front. For example, Davis et al.
(1980) presented both statically and kinematically admissible solutions for circular shallow tunnels in cohesive
soils (see Figure 9a). Atkinson & Potts (1977) presented a similar analysis for cohesionless and frictional soil.
Mühlhaus (1985) presented lower bound solutions for circular shallow tunnels in cohesive and frictional ground
(see Figure 9b).
In the context of analyzing stability of contracting and expanding cavities for CAES applications, statically
admissible (or lower bound) solutions are attractive because of the safe nature of predicted stability conditions.
As mentioned earlier on, Section 3 presents an extended form of the stress field Caquot’s model, that among
others, introduces a scalar factor of safety, as typically done in solutions for stability analysis of slopes. In
Section 3 it is shown that the extended (Caquot’s) stress field model is actually a statically admissible model
when the ratio of in-situ (or far-field) horizontal and vertical stresses is equal to one. Therefore, the analytical
model developed in this study is shown to lead to safe estimates of the stability conditions for shallow cavities
of circular shape.
Full numerical methods (last row in Table 1) are by far the most versatile available methods for solution of
geotechnical problems. Finite element, finite difference, discrete element and other numerical methods fall into
this category (see, for example, Brady & Brown 2004). These numerical methods require discretization (i.e.,
partition with elements) of the domain of the problem. These methods yield only approximate solutions of the
unknown variables (for example, stress and displacement fields) and the quality of the approximation depends
mainly on the resolution of the mesh used to discretize the domain.
With regard to determining the stability conditions of geotechnical problems, such as determining the required
support pressure of shallow tunnels using numerical methods, two approaches have been used.
The first approach involves programming the equations of the lower bound and upper bound theorems of plas-
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Figure 5. Limit equilibrium model by Terzaghi (1943) to determine the required support pressure at the roof of
a shallow tunnel.

Figure 6. Limit equilibrium models for analyzing the stability of tunnel fronts for a) unsupported tunnel (after
Horn 1961); and b) supported tunnel (as reported in Cornejo 1989 —see also Tanzini 2001).

ticity described above and seeking statical or kinematical admissible solutions for the problems in question
(Lyamin & Sloan 2002a and Lyamin & Sloan 2002b have presented an approach of this type).
The second approach involves intensive computing and consists in solving the problem repeatedly (for example,
in the case of a shallow cavity, for decreasing values of support pressure) until the instability occurs (i.e., until
the numerical solution does not converge because it is not possible to find the state of equilibrium for which the
material constitutive law is satisfied in all elements of the domain).
Figures 10a and 10b, after Fairhurst & Carranza-Torres (2002), illustrate the second approach. Figure 10a shows
the mesh of elements in the numerical model of a (plane strain) section of a shallow circular tunnel solved with
the software FLAC (Itasca 2008); the vertical axis in the diagram in Figure 10b, represents the decreasing
values of internal pressure considered in the model of Figure 10a (the inverted triangle symbols represent the
models that resulted stable; while the regular triangle symbols represent the models that resulted unstable).
Figure 11 shows views of the sequence of FLAC models corresponding to the four lowermost triangle symbols
in Figure 10b. Fairhurst & Carranza-Torres (2002) compared results obtained with the finite-difference code
FLAC with those obtained with Terzaghi’s type limit equilibrium and Caquot’s type solutions and quantified
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Figure 7. Limit equilibrium (Terzaghi’s type) model to determine the maximum gas pressure in an
underground gas storage cavern —after Sofregaz U.S. Inc. (1999).

the overestimation of required support pressure predicted by the analytical methods. The authors found that
Terzaghi’s results were significantly over conservative (see Figure 12).

In the last decade or so, the increase of computer power allowed developers of commercial finite element and
finite difference software to implement what it is referred to as the strength reduction technique to determine
factors of safety of shallow excavations in soil and rock, typically slopes (Itasca 2008; Plaxis b.v. 2012; Roc-
science 2014). The strength reduction technique for analysis of slopes involves solving the problem repeatedly
(i.e., applying the second of the two methods discussed above) for decreasing values (if the problem is stable for
the given ground properties) of shear strength properties of the material, until the instability occurs (i.e., until
the numerical solution does not converge anymore). Then the factor of safety is determined as the ratio of given
shear strength parameters and the reduced shear strength parameters for which the model does not converge
(see Figure 13). Although the strength reduction technique is nowadays a common method for solving slope
problems (Dawnson et al. 1999; Hammah et al. 2007a; Hammah et al. 2007b), the technique is not necessarily
restricted to slopes and can also be applied to assess the stability of shallow underground cavities. Indeed, the
documentation of the software RS2 (Rocscience 2014) presents a comparison of factors of safety for a shallow
circular tunnel obtained with the software and with the Davis et al. (1980) lower and upper bound solutions
mentioned above. In Section 4, the strength reduction technique implemented in the software FLAC (Itasca
2008) is used to obtain results of factors of safety for shallow circular tunnels and to compare and quantify
differences of these results with those obtained with the statically admissible solution developed in this study.
The following sections present the analytical model used to establish stability conditions of shallow circular
contracting or expanding openings (sections of long cylindrical tunnels or spherical cavities) located at a shal-
low depth with respect to the ground. The model, which as mentioned earlier on is based on Caquot’s stress
field model, is an extension of a model originally developed for estimation of stability conditions of shallow
tunnels with particular reference to mechanized tunnelling in soils (Carranza-Torres 2004; Guglielmetti et al.
2008). In order to simplify the formulation and to be able to reveal the fundamental relationships among vari-
ables that control the problem, Section 3 considers first the case of cavities in purely cohesive ground, as in the
study by Davis et al. (1980). Thereafter, Section 6 considers the case of cavities in cohesive-frictional ground.
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Figure 8. Stress field solutions proposed by a) Caquot (1934) and b) d’Escatha & Mandel (1971).

Figure 9. Statically admissible solutions for spherical cavities by a) Davis et al. (1980) and b) Mühlhaus
(1985) used to analyze stability of the tunnel front and the unsupported region behind the tunnel front,

respectively.
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Figure 10. Computation of minimum internal pressure required for stability of a shallow tunnel using FLAC
–after Fairhurst & Carranza-Torres (2002).

Figure 11. Sequence of internal pressure reduction in the FLAC model in Figure 10 –after Fairhurst &
Carranza-Torres (2002).
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Figure 12. Comparison of required support pressure for shallow tunnels according to Terzaghi’s solution,
Caquot and d’Escatha & Mandel’s solutions and the numerical FLAC solution –after Fairhurst &

Carranza-Torres (2002).

Figure 13. Strength reduction technique applied to the determination of factor of safety for a slope in
Mohr-Coulomb material. a) Reduction of given cohesion and internal friction angle to obtain the critical

cohesion and critical internal friction angle defining the factor of safety. b) Sequence of models with
decreasing shear strength properties, showing the transition from stable to unstable conditions. c) Closeup of

slope model showing collapse by development of a shear failure surface.
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3. Analytical model for stability of contracting and expanding shallow cavities
3.1. Problem statement
The problem considered in this study is represented in Figure 14. A cylindrical or spherical cavity of radius, a,
is excavated below the ground surface at shallow depth. A cartesian coordinate system, (x,y), is considered to
have the origin at the center of the cavity (point O in Figure 14). The distance between the ground surface and
the center of the cavity (i.e., the depth of the cavity) is denoted as h. A surcharge load, qs, is considered to act
on the ground surface.
In Figure 14, the points A, C and D are located at the crown, spring line and invert levels on the cavity periphery,
respectively. Point B is the projection of point A on the ground surface. At the crown of the cavity (point A),
the internal pressure is denoted as pA

s (or simply as ps); the distribution and values of internal pressure at points
other than point A are discussed later on.
In Figure 14, the circle labelled as ‘Integration circle’ has its center at the center of the cavity (point O) and has
a radius h. Associated to this circle, a polar (or spherical) coordinate system, (r,θ), with its origin at point O,
is considered.
Inside the integration circle, the stresses are assumed to be redistributed due to excavation as indicated for the
arbitrary point P of polar coordinates, (r,θ). Note that after excavation, radial stresses, σr, and tangential (or
hoop) stresses, σθ , become principal stresses.
Outside the integration circle, vertical and horizontal stresses are assumed to be principal stresses, as indicated
for the arbitrary point S of ordinate, y, in Figure 14. The initial (or in-situ) vertical stress, σ o

y , is considered to
be lithostatic, i.e.,

σ
o

y = qs + γ (h− y) (1)

and the initial (or in-situ) horizontal stress, σ o
x , is obtained by multiplying the coefficient of earth pressure at

rest, Ko, and the vertical stress, i.e.,
σ

o
x = Ko σ

o
y (2)

In the analytical solution of the problem presented here, the normal stresses are assumed to be positive when in
compression; consequently, all stress quantities represented in Figure 14 are positive and represent compression.
In the model in Figure 14, the ground is assumed to be dry and to have a unit weight, γ . As mentioned earlier on,
with the purpose of simplifying the analysis and to be able to reveal fundamental aspects of stability of shallow
cavities, the ground is assumed to be purely cohesive and to obey a Tresca shear failure criterion, which in
terms of principal stresses, σ1 and σ3, is written as (see, for example, Jaeger et al. 2007)

σ1 = σ3 +σc (3)

In equation (3), σc is the uniaxial compressive strength of the ground, which is related to the cohesion, c, of the
ground as follows

σc = 2c (4)

With the objective of providing compact equations for the solution of the problem introduced before, the dif-
ferent variables in the model are normalized (or scaled) as follows.
The radial distance, r, divided by the radius of the cavity, a, defines the scaled radial distance, ρ , i.e.,

ρ =
r
a

(5)

where ρ = 1 represents that radius of the cavity.
The depth of the cavity, h, divided by the radius of the cavity, a, defines the scaled depth of the cavity, ξ , i.e.,

ξ =
h
a

(6)

The cohesion, c, of the ground divided by the unit weight of the ground, γ , and the cavity radius, a, defines the
scaled cohesion, c̃, i.e.,

c̃ =
c

γ a
(7)

Similarly, the scaled internal pressure at the crown, p̃s, and the scaled ground surcharge load, q̃s, are defined,
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Figure 14. Problem of assessing the stability of a cylindrical or spherical (contracting or expanding) shallow
cavity in dry ground.

respectively, as follows
p̃s =

ps

γ a
; q̃s =

qs

γ a
(8)

The scaling rules introduced by equations (7) and (8) can be applied to the in-situ vertical and horizontal stresses
given by equations (1) and (2), respectively, to define the scaled in-situ vertical and horizontal stresses, σ̃ o

y and
σ̃ o

x , respectively, as follows
σ̃

o
y = q̃s +ξ − y

a
; σ̃

o
x = Ko σ̃

o
y (9)

In later sections, to investigate the effect of the (scaled) internal pressure, p̃s, on the stability of the cavity
in Figure 14, the in-situ vertical stress at the crown level (point A) prior to excavation is considered to be a
reference vertical stress or internal pressure. This (scaled) reference internal pressure is denoted as p̃o

s and is
obtained by considering y/a = 1 in the (left-side) equation (9), i.e.,

p̃o
s = q̃s +ξ −1 (10)

With the scaled reference internal pressure defined by equation (10), any scaled internal pressure at the crown
of the cavity, p̃s, can be expressed as a factor, f p̃s, of the scaled reference internal pressure, i.e.,

p̃s = f p̃s p̃o
s (11)

Note that when the factor f p̃s in equation (11) is smaller than one, the case corresponds to that of a contracting
cavity, i.e., the case in which the cavity is excavated and a (crown) internal pressure smaller than the original
in-situ vertical stress (at the crown) is applied. Also, when the factor f p̃s in equation (11) is larger than one,
then the case corresponds to that of an expanding cavity, i.e., the case in which the cavity is excavated and a
(crown) internal pressure larger than the original in-situ vertical stress (at the crown) is applied.

3.2. Solution of stress fields
Figure 15 represents the stress fields inside and outside the integration circle in Figure 14, for the case of a con-
tracting cylindrical opening at a scaled depth, ξ = h/a = 3.5, obtained with the analytical solution developed in
this study. The cavity is assumed to be at the verge of collapse (i.e., at a limit state of equilibrium) with values
of (critical) cohesion, c̃cr = 1.25, scaled ground surcharge load, q̃s = 0.632, and scaled crown internal pressure,
p̃s = 0.243. In Figure 15 the crosses represent the directions and magnitudes of the scaled radial and tangential
(or hoop) stresses, σ̃r and σ̃θ , respectively, inside the integration circle, obtained with the analytical solution
to be presented below. Outside the integration circle, the crosses represent the directions and magnitudes of
the scaled in-situ vertical and horizontal stresses, σ̃ o

x and σ̃ o
y , respectively, as defined by equation (9) with a
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Figure 15. Stress fields inside and outside the integration circle in Figure 14 obtained with the proposed
analytical solution for a contracting cylindrical opening.

coefficient of earth pressure at rest, Ko = 1.

Appendix A presents a detailed derivation of the equations conforming the solution represented in Figure 15
(the reader is also referred to that appendix for a discussion of several other features of the analytical solution).
Below, only the main equations are transcribed from the appendix.
For the problem represented in Figure 15, the scaled radial stress, σ̃r(ρ,θ), inside the integration circle is
computed with the following equation

σ̃r(ρ,θ) = σ̃
AB

r (ρ)+ρ (1− sinθ) (12)

while the scaled hoop stress, σ̃θ (ρ,θ), is computed with the equation

σ̃θ (ρ,θ) = σ̃
AB

θ (ρ)+ρ (1− sinθ) (13)

In equations (12) and (13), σ̃ AB
r (ρ) and σ̃ AB

θ
(ρ) refer to the solution for the scaled radial and hoop stresses,

respectively, along the segment AB in Figure 14. For contracting cavities, the scaled radial stress, σ̃ AB
r (ρ), is

computed with the equation
σ̃

AB
r (ρ) = q̃s +ξ −ρ +2k c̃cr ln

ρ

ξ
(14)

while the scaled hoop stress, σ̃ AB
θ

(ρ), is computed with the equation

σ̃
AB

θ (ρ) = σ̃
AB

r (ρ)+2 c̃cr (15)

In equation (14), the parameter k is such that k = 1 implies that the cavity is cylindrical, while k = 2 implies
that the cavity is spherical. Also, in equations (14) and (15), the scaled cohesion of the ground is referred to as
c̃cr, to enforce the idea that the cavity is at a critical state of equilibrium for the given values of scaled crown
internal pressure, p̃s, and ground surcharge load, q̃s (the fact that the cavity in Figure 14 is at a limiting stage of
equilibrium is a fundamental assumption made to derive the solution in Appendix A).
The scaled internal pressure at the crown of the cavity, p̃s = p̃A

s (see Figure 14), compatible with the limit state
of equilibrium is obtained by making ρ = 1 and θ = π/2 in equation (12) —together with equation (14). This
gives

p̃s = q̃s +ξ −1−2k c̃cr lnξ (16)
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It is emphasized that the stress field inside the integration circle represented in Figure 14 is compatible with
a plastic state (i.e., the ground inside the integration circle is failing plastically) while the stress field outside
the integration circle, defined by the in-situ stresses, is compatible with an elastic state (the ground outside the
integration circle remains in the elastic state). A proof of these statements is also provided in Appendix A.

Figure 16, which is equivalent to Figure 15 (for contracting cavities), represents the stress fields inside and
outside the integration circle in Figure 14 for the case of a cylindrical expanding cavity, for the values of scaled
variables indicated on the right-side of the figure (i.e., ξ = 3.5, q̃s = 0.632, p̃s = 6.264, p̃o

s = 3.132 and Ko = 1).
In Figure 16 the applied crown internal pressure is p̃s = 2 p̃o

s —i.e., the factor f p̃s in equation (11) is considered
to be equal to two.
As for the case of contracting cavities, Appendix A presents the detailed derivation of the equations conforming
the solution represented in Figure 16, together with a discussion of other features of the solution that also apply
to expanding cavities. Below, only the main equations are transcribed from that appendix.
For the problem represented in Figure 16, the scaled radial and hoop stresses, σ̃r(ρ,θ) and σ̃θ (ρ,θ), respec-
tively, are computed using the same equations (12) and (13), respectively. In these equations, the scaled radial
stress along the segment AB, σ̃ AB

r (ρ), is computed with the equation

σ̃
AB

r (ρ) = q̃s +ξ −ρ−2k c̃cr ln
ρ

ξ
(17)

while the scaled hoop stress, σ̃ AB
θ

(ρ), is computed with the equation

σ̃
AB

θ (ρ) = σ̃
AB

r (ρ)−2 c̃cr (18)

As for the case of contracting cavities discussed earlier on, the parameter k in equation (17) controls whether
the cavity is cylindrical or spherical (k = 1 or 2, respectively) and the scaled cohesion of the ground is referred
to as c̃cr to enforce the idea that the cavity is at a critical state of equilibrium. Also, it is emphasized that
the stress field inside the integration circle represented in Figure 16 is compatible with a plastic state (i.e., the
ground inside the integration circle is failing plastically) while the stress field outside the integration circle,
defined by the in-situ stresses, is compatible with an elastic state (the ground remains elastic).
The scaled crown internal pressure, p̃s = p̃A

s (see Figure 14), compatible with the limit state of equilibrium is
again obtained by making ρ = 1 and θ = π/2 in equation (12) —this time together with equation (17). This
gives

p̃s = q̃s +ξ −1+2k c̃cr lnξ (19)

The following sections discuss various observations of theoretical-practical interest that can be made from the
solution conformed by the equations introduced above.

3.3. Stability of contracting cavities
To characterize the stability of the openings in terms of a single scalar parameter, a factor of safety is introduced
in the formulation. The widely accepted definition of factor of safety used in slope stability analyses states that
the factor of safety, FS, is the ratio of the shear strength of the material (e.g., the shear strength along a potential
shear failure surface) and the shear stress (along the same failure surface) required for equilibrium (see, for
example, Abramson, L.W. et al. 2002; Coduto et al. 2011). Therefore, if the cavity in Figure 14 is excavated in
a ground with cohesion, c, then the critical scaled cohesion, c̃cr, that makes the cavity to be at a critical state of
equilibrium can be determined from the factor of safety, FS, as follows

c̃cr =
c̃

FS
(20)

Replacing equation (20) into equation (16) and solving for FS, the factor of safety for the contracting cavity in
Figure 14 results

FS =
2k c̃ lnξ

q̃s− p̃s +ξ −1
(21)

Some relevant observations can be made from equation (21).

A first observation is that the factor k that dictates whether the opening is cylindrical or spherical (when k = 1 or
2, respectively) acts as a multiplier in the numerator of equation (21). Therefore, with all other variables being
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Figure 16. Stress fields inside and outside the integration circle in Figure 14 obtained with the proposed
analytical solution for an expanding cylindrical opening.

the same (i.e., cavity radius and depth, ground strength, crown internal pressure and ground surcharge load) a
spherical cavity has a factor of safety that is twice the factor of safety of a cylindrical cavity (this prediction is
confirmed using numerical models, as discussed in a later section).

A second observation is with regard to the effect of the scaled depth, ξ , on the stability of the cavity. Figure 17
represents the relationship between the factor of safety, FS, and the scaled cohesion, c̃, obtained with equation
(21), for a cylindrical contracting opening at different scaled depths, ξ , for particular cases of null crown
internal pressure (p̃s = 0) and null ground surcharge load (q̃s = 0). The horizontal line of ordinate FS = 1
represents the critical stability condition (i.e., cases of cavities above the line FS = 1 are stable, while cases
of cavities below the line FS = 1 are unstable). The representation in Figure 17 indicates the expected result
that for cavities of the same radius and same depth (i.e., cavities with the same value of ξ ) the factor of safety
increases as the strength of the ground increases. The representation in Figure 17 also indicates the somehow
counter intuitive result that as the cavity depth increases in a ground with constant shear strength, the factor of
safety of the cavity decreases. This observation, to be confirmed in later sections with numerical models, can
be explained by the fact that as the cavity depth increases (for the same ground shear strength), the magnitudes
of in-situ stresses that produce the redistribution of stresses around the cavity also increase. This increase
in magnitude of stresses facilitates the development of a redistributed plastic region around the cavity that
eventually reaches the ground surface to produce a limit state of equilibrium.

A third observation is with regard to the influence of the crown internal pressure on the stability of the cavity.
The influence of the scaled crown internal pressure, p̃s, on the factor of safety can be conveniently analyzed
using the internal pressure factor, f p̃s, introduced in the previous section (see equation 11). Considering the
reference internal pressure, p̃o

s (equation 10), representing the vertical in-situ stress prior to excavation at the
cavity crown level, the internal pressure factor, f p̃s, results

f p̃s =
p̃s

p̃o
s

(22)

The factor f p̃s defined by equation (22) is such that f p̃s = 0 implies that the applied crown internal pressure
is zero, while f p̃s = 1 implies that the crown internal pressure is equal to the in-situ vertical stress (prior to
excavation) at the crown level (i.e., f p̃s = 1 corresponds to the case in which the cavity is excavated but the
in-situ stresses are restored, as if no excavation has taken place).
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Figure 17. Graphical representation of the relationship between factor of safety and scaled ground cohesion
for contracting unsupported cylindrical cavities as a function of the scaled depth.

Replacing equation (10) into equation (11) and the resulting equation into equation (21), the factor of safety,
FS, can now be expressed in terms of the internal pressure factor, f p̃s, given by equation (22); i.e.,

FS =
2k c̃ lnξ

(1− f p̃s)(q̃s +ξ −1)
(23)

Figure 18 represents the relationship between the factor of safety, FS, and the scaled cohesion, c̃, obtained with
equation (23), for a cylindrical contracting opening and for different scaled (crown) internal pressures, defined
by the factor f p̃s. The representation in Figure 18 corresponds to a cavity at a scaled depth, ξ = 2, with zero
ground surcharge load. Note that the line corresponding to f p̃s = 0 in Figure 18 is the same line corresponding
to ξ = 2 in Figure 17. Also, as expected, when the internal pressure factor, f p̃s, increases from the minimum
value of zero, the factor of safety also increases. For the limiting case of contracting cavity in which f p̃s = 1,
as expected, the factor of safety becomes infinite (consider the case f p̃s = 1 in equation 23).
To quantify the increase of factor of safety with the increase of internal pressure factor, f p̃s, the ratio of factors of
safety of cavities with arbitrary crown internal pressure, FS( f p̃s), and the particular case of zero crown internal
pressure, FS(0), to be called the factor of safety ratio, f p̃s

FS , is defined as follows

f p̃s
FS =

FS( f p̃s)

FS(0)
(24)

Replacing the numerator and denominator of equation (24), with equation (23) for the cases of arbitrary value
of internal pressure factor, f p̃s, and zero internal pressure factor ( f p̃s = 0), equation (24) becomes

f p̃s
FS =

1
1− f p̃s

(25)

Figure 19 represents the relationship between the factor of safety ratio, f p̃s
FS , and the internal pressure factor,

f p̃s, defined by equations (25) and (22), respectively. Note that the factor f p̃s
FS in equation (25), depends only

on the factor f p̃s; therefore, in contrast with the representations in Figures 17 and 18, the representation in
Figure 19 is valid for both cylindrical and spherical cavities for any depth and for any ground surcharge load.
The representation in Figure 19 shows, as expected, that when f p̃s = 0 (case of zero crown internal pressure),
f p̃s
FS = 1, and when f p̃s = 1 (case of no excavation), the factor f p̃s

FS tends to infinity. The representation also
shows that for the case in which the internal pressure is half the value of the in-situ reference internal pressure
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Figure 18. Graphical representation of the relationship between factor of safety and scaled ground cohesion
for contracting cylindrical cavities at the scaled depth, ξ = 2, for increasing values of scaled crown internal

pressure defined by the factor, f p̃s.

Figure 19. Graphical representation of the relationship between the factor of safety ratio, f p̃s
FS , and internal

pressure factor, f p̃s, valid for both cylindrical and spherical contracting cavities.
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(i.e., f p̃s = 0.5) the factor of safety of the contracting cavity is twice the value of the factor of safety for the
cavity with zero crown internal pressure (i.e., f p̃s

FS = 2).
As mentioned in Section 3.2, Appendix A discusses several other features of the analytical solution for con-
tracting cavities presented above.
One consideration discussed in Appendix A is about the distribution of internal pressure that the solution
considers for the cavity. The solution assumes that the internal pressure increases with depth inside the cavity
in a lithostatic manner, as if the internal pressure is provided by an imaginary pressurized gas which has the
same unit weight as the ground surrounding the cavity. This means that if the internal pressure at the crown
of the cavity (point A in Figure 14) is ps = pA

s , then the internal pressure at the spring line of the cavity (point
C in Figure 14) is pC

s = pA
s + γ a (see left-side equation A-18 in Appendix A). It is because of this lithostatic

increase of internal pressure that equation (21) predicts a finite value of factor of safety for the hypothetical case
of a shallowest possible cavity, ξ = 1, when p̃s = 0 and q̃s = 0 (see line labelled as ξ = 1 in Figure 17). In such
case, and referring now to equation (21), the limit of the term ln(ξ )/(ξ−1) when ξ tends to one becomes equal
to one in that equation, and the factor of safety for the shallowest possible cavity, ξ = 1, (with p̃s = q̃s = 0)
becomes equal to 2kc̃. If q̃s− p̃s 6= 0 (i.e., if the applied ground surcharge load or internal pressure do not
equilibrate each other) then the limit of the term ln(ξ )/(ξ −1) when ξ tends to one becomes equal to zero, in
equation (21), and the factor of safety for the shallowest possible cavity, ξ = 1, becomes zero (no equilibrium
is possible).
The effect of considering internal pressure distributions other than lithostatic on the factor of safety is addressed
in Appendix B. There, it is shown that numerical (finite-difference) models of contracting cavities with uniform
distributions of internal pressure equal to ps (where ps is the crown internal pressure in the analytical solution
presented above), yield factors of safety that are conservative (i.e., smaller than) those corresponding to cavities
with the lithostatic internal pressure considered by the analytical solution presented above.
Another consideration discussed in Appendix A is with regard to the coefficient of earth pressure at rest, Ko. For
the analytical solution presented above to be a statically admissible solution (and therefore to be a safe estimate
of the stability condition of the cavity) the coefficient Ko must be equal to one. The effect of considering
coefficients Ko other than one on the factor of safety is also discussed in Appendix B. The appendix shows that
numerical finite-difference models of contracting cavities with in-situ stresses characterized by coefficients of
earth pressure at rest, Ko, different from one yield factors of safety that are similar to those obtained for cavities
with in-situ stresses characterized by coefficients Ko equal to one.

3.4. Stability of expanding cavities
Introducing the same definition of factor of safety as in Section 3.3 (see equation 20), the factor of safety for
the expanding cavity in Figure 14 is obtained from equation (19) and results to be

FS =− 2k c̃ lnξ

q̃s− p̃s +ξ −1
(26)

Note that the main difference between equation (26) above (that applies to expanding cavities) and equation
(21) (that applies to contracting cavities) is the negative sign in equation (26) and the fact that the scaled
crown internal pressure, p̃s, is now larger than the reference crown internal pressure, p̃o

s , given by equation
(10). Therefore, most of the observations made for contracting cavities in Section 3.3 also apply to expanding
cavities, including the fact that a spherical cavity has a factor of safety that is twice the factor of safety for a
cylindrical cavity (when all other input variables such as depth, strength and loading are the same).
Another observation is with regard to the influence of the scaled cavity depth, ξ , on the stability of the cavity.
Figures 20 and 21 show similar representations as in Figure 17 (for contracting cavities), this time obtained
with equation (26), when the applied crown internal pressure is p̃s = 1.5 p̃o

s and p̃s = 2 p̃o
s , respectively, with

p̃o
s given by equation (10). The interpretation Figures 20 and 21 is the same to that for Figure 17, discussed in

the previous section. Comparison of Figures 20 and 21 indicates that as the crown internal pressure increases
( p̃s increases from 1.5 p̃o

s to 2 p̃o
s ), the lines corresponding to different scaled depths, ξ , shift downward, in-

dicating that the factor of safety decreases. This is the expected result since as the internal pressure increases
(with all other parameters being the same), the factor of safety must decrease. Considering now the different
curves corresponding to different depths in either Figure 20 or Figure 21, it is observed that as the cavity depth
increases in a ground with constant shear strength (and with an applied internal pressure that is a constant ratio
of the in-situ vertical stress at that level), then the factor of safety decreases. Certainly, if the crown internal
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Figure 20. Graphical representation of the relationship between factor of safety and scaled ground cohesion
for expanding cylindrical cavities as a function of the scaled depth. The representation corresponds to a scaled

crown internal pressure p̃s = 1.5 p̃o
s .

Figure 21. Graphical representation of the relationship between factor of safety and scaled ground cohesion
for expanding cylindrical cavities as a function of the scaled depth. The representation corresponds to a scaled

crown internal pressure p̃s = 2 p̃o
s .
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pressure in equation (26) is considered to be constant (or a constant ratio of the shear strength) and the depth is
increased, the factor of safety can be expected to increase. This is shown in Figure 22 that includes a similar
diagram as in Figure 20 (or Figure 21), but this time considering that the crown internal pressure is equal to 5
times the value of considered scaled cohesion. The different curves in Figure 22 correspond to different scaled
depths, and as expected, the larger the scaled depth considered, the larger the resulting factor of safety.
Comparison of Figures 17 and 21 shows that the position of the lines corresponding to the different scaled
depths, ξ , are identical, and therefore that the same relationship between factor of safety, FS, and scaled cohe-
sion, c̃, with scaled depth, ξ , is the same for contracting cavities with zero crown internal pressure (as in Figure
17) and for expanding cavities with a crown internal pressure that is two times the in-situ vertical stress at the
crown level (as in Figure 21). This is a relevant observation that has implications for the design of shallow
underground cavities that are subjected to changes in pressure, as in CAES systems: if the unlined underground
cavity is designed to have a certain factor of safety when there is no air pressure (other than atmospheric), then
a convenient maximum value of air pressure to be considered for the cavity is two times the lithostatic vertical
stress value at the crownlevel (i.e., two times the vertical stress that existed at the crown level prior to excava-
tion). This guarantees the same factor of safety for the cavity in the limiting states of working pressure, when
the internal air pressure is zero (or atmospheric) and when the internal air pressure is the maximum working
pressure. Any other intermediate pressure within these two limits will result in a factor of safety for the cavity
that is higher than the design factor of safety (for zero internal pressure or an internal pressure equal to two
times the lithostatic vertical stress at the crown level).
To illustrate this observation of equivalence of factors of safety for cavities with zero crown internal pressure
and with crown internal pressure equal to twice the in-situ vertical stress value, an analysis similar to that in the
previous section is presented below.
Replacing equation (11) into equation (10) and the resulting equation into equation (26), the factor of safety,
FS, can now be expressed in terms of the internal pressure factor, f p̃s, given by equation (22); i.e.,

FS =
2k c̃ lnξ

( f p̃s−1)(q̃s +ξ −1)
(27)

Also, the factor of safety ratio, f p̃s
FS (see equation 24), can be computed using equation (27). This gives

f p̃s
FS =

1
f p̃s−1

(28)

Figures 23 and 24 show a similar representation as in Figures 18 and 19, respectively, this time obtained
with equations (27) and (28), respectively. For expanding cavities, the representation in Figure 24 shows, as
expected, that when f p̃s = 1 (case of no excavation), then f p̃s

FS tends to infinity, and when f p̃s = 2 (crown internal
pressure is equal to twice the in-situ vertical stress), then f p̃s

FS = 1.
Similar considerations as for the analytical solution for contracting cavities discussed in Section 3.3 apply to
the analytical solution for expanding cavities presented above. The reader is referred to Appendix B for a
discussion on the assumptions made with regard to the lithostatic distribution of internal pressure in the cavity
and the coefficient of earth pressure at rest, Ko, for the case of expanding cavities.
There is a particular consideration for expanding cavities that is not applicable to contracting cavities. This is
with regard to the occurrence of tensile stresses inside the integration circle in Figure 14, for certain combina-
tions of input variables, particularly, when the ground surcharge load is null. To derive the analytical solution
for expanding cavities, the assumption is made that the radial stresses in the integration circle are major prin-
cipal stresses and that the hoop stresses are minor principal stresses (see equation A-4 in Appendix A). This
assumption is put in evidence in the representation of principal stresses in the form of crosses in Figure 16.
For the case in which the scaled ground surcharge load, q̃s, is null, equation (17) predicts a scaled radial stress,
σ̃ AB

r = 0, at point B on the ground surface (see Figure 14), and equation (18) predicts a scaled hoop stress
σ̃ AB

θ
=−2 c̃cr at the same point B. This means that the hoop stress becomes negative (or tensile) at the ground

surface, and up to a certain depth below the ground surface. Since geomaterials, in general, do have limited
strength in tension compared with the strength in compression, the prediction of tensile stresses in the analytical
solution poses a problem, that in principle limits the applicability of the solution to predict values of factors of
safety for expanding cavities. It is shown in Section 4 of this paper that numerical models that account for null
tensile strength of the ground, display indeed the development of tensile failure near the ground surface, but the
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Figure 22. Graphical representation of the relationship between factor of safety and scaled ground cohesion
for expanding cylindrical cavities as a function of the scaled depth. The representation corresponds to a scaled

crown internal pressure p̃s = 5 c̃.

Figure 23. Graphical representation of the relationship between factor of safety and scaled ground cohesion
for expanding cylindrical cavities at the scaled depth, ξ = 2, for increasing values of scaled crown internal

pressure defined by the factor, f p̃s.
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factors of safety obtained from the numerical models are comparable to the ones obtained with the analytical
solution presented above. Indeed, the values of factor of safety obtained with the analytical solution are lower
than the ones obtained with the numerical models, as is expected to be the case from a statically admissible
solution, in view of the lower bound theorem discussed earlier on in Section 2.

Figure 24. Graphical representation of the relationship between factor of safety ratio, f p̃s
FS , and internal

pressure factor, f p̃s, valid for both cylindrical and spherical expanding cavities.

4. Comparison of factors of safety obtained from analytical and numerical finite-difference models
To confirm the observations made for contracting and expanding cavities in Sections 3.3 and 3.4, this sec-
tion presents a comparison of results obtained with the proposed analytical model and with numerical models
computed with the commercial finite-difference software FLAC (Itasca 2008), which implements the strength
reduction technique discussed in Section 2.
For a shallow cavity in a Tresca material with scaled cohesion, c̃, if the cavity is stable for the given shear
strength, the strength reduction technique consists in solving the problem repeatedly for decreasing values of
shear strength, until the cavity is no longer stable. If in each solution step the given cohesion is divided by the
factor rFS (with rFS > 1), and if the first unstable case (for a specified tolerance of the increment of the factor
rFS) corresponds to the critical scaled cohesion, c̃cr, obtained with the critical factor, r cr

FS, then the factor of
safety, FS, is computed as follows

FS = r cr
FS where c̃cr =

c̃
r cr

FS
(29)

Alternatively, if the cavity is not stable for the given value of shear strength, the strength reduction technique
consists in solving the problem repeatedly for increasing values of shear strength, until the cavity becomes
stable again. If in each solution step the given cohesion is multiplied by the factor rFS (with rFS > 1), and if the
first stable case corresponds to the critical scaled cohesion, c̃cr, obtained with the critical factor, r cr

FS, then the
factor of safety, FS, is computed as follows

FS =
1

r cr
FS

where c̃cr = r cr
FS c̃ (30)

To illustrate the implementation of the strength reduction technique, Figure 25 shows a sequence of computa-
tions of numerical models for a shallow cylindrical contracting cavity of scaled depth, ξ = 4, that is unstable
for the given value of cohesion, c̃ = 1 (as it will be discussed later on, the factor of safety for the cavity repre-
sented in Figure 25 is 0.968; i.e., it is less than one). The models consider values of scaled ground surcharge
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load, q̃s = 0, and scaled crown internal pressure, p̃s = 0, with the lithostatic distribution of internal pressure
discussed in Section 3.3. Furthermore, the models consider an initial horizontal-to-vertical stress ratio, Ko = 1;
a value of Young’s Modulus equal to 1,000 times the value of the scaled cohesion, c̃; a Poisson’s ratio equal to
0.25 and a tensile strength equal to zero; also the models consider a mesh of square elements near the cavity of
side length equal to 0.1 times the radius of the cavity.
The different plots in the Figure 25 correspond to models solved for the decreasing values of the factor, rFS,
indicated in each plot (note that the plots indicate factors rFS > 1; this implies that the model is unstable for
the given value of shear strength —see equation 30). The models represented in Figures 25a through 25e
correspond to stable cavities, while the one in Figure 25f corresponds to the fist unstable case (for a value of
tolerance of the sought factor of safety, 1/rFS = 0.001 —see equation 30). The two colors in the plots in Figure
25 represent the elements in the mesh that undergo plastic failure, whether in shear or tensile failure. Note
that as the cohesion is decreased, the plastic failure grows around the cavity and migrates towards the ground
surface until caving of the mass above the cavity takes place in the fist unstable case. It should be noted that
although the computation of the mechanical models in Figure 25 is done in small strain mode, the plots in
Figure 25 consider the deformed mesh of elements based on computed displacements with a specified large
value of exaggeration, so as to reveal the outline of the deformation that takes place, particularly on the ground
surface. To illustrate further the deformations, Figure 26 shows the same models represented in Figure 25,
this time representing contours of magnitude of displacements for the decreasing values of cohesion (the caved
zone is clearly seen in the first unstable model in Figure 26f).
Considering the input parameters listed above, the resulting factor of safety for the sequence of models in
Figure 25 and Figure 26 result to be FS = 0.968; this value is the result of doing the operation 1/1.0334 (see
equation 30), where 1.0334 is the critical factor, r cr

FS, found with the strength reduction technique (note that the
model corresponding to this critical factor is not shown in the plots in Figure 25, and lies in between the models
represented in Figures 25e and 25f).

As part of this study, a large number of numerical models were set up and computed for various conditions of
input parameters. Figure 27 shows the first unstable case obtained for models with similar input parameters as
in the models in Figures 25 and 26, but for values of scaled depths, ξ , equal to 1.5, 2, 3 and 4, respectively.
Although evaluation of stability conditions for deeper cavities was also of interest, the scaled depth considered
in the models was limited to 4 due to the need to extend the boundaries of the models and increase the number
of elements required for computation —all this having a marked effect in the time required to compute the
models.
Figure 28, which is similar to Figure 17, represents factors of safety as a function of scaled cohesion for
contracting cavities at different scaled depths (the reader is referred to Section 3.3 for a discussion of Figure
17), this time including symbols that represent the values of factors of safety computed with the numerical
models for different scaled depths (values of ξ equal to 1.5, 2, 3 and 4). The values of scaled parameters,
p̃s = 0 and q̃s = 0, considered in the models are indicated in the figure. Table 2 lists the values of input
parameters and resulting factors of safety for the 20 models represented in Figure 28 (in particular, the sequence
of strength increase computations discussed already in Figures 25 and 26, corresponds to Case 4c in Table 2).
The columns labelled as FSA and FSN in Table 2 correspond to the factors of safety obtained with the analytical
model (equation 21) and with the numerical models, respectively. The column labelled as f A-N

FS represents the
ratio of factors of safety obtained with the analytical solution and with the numerical solution, i.e.,

f A-N
FS =

FS [Proposed Analytical Model]
FS [Numerical (FLAC) Model]

(31)

When the mesh of the elements in the finite-difference (FLAC) models is fine enough (as with the case of
the models discussed in this paper, based on a parametric evaluation of the effect of element mesh size on
results —not included in this paper for space reasons) the factors of safety obtained with the strength reduction
technique can be expected to be reasonably similar to the true factors of safety for the cavities. From Figure
28 it is seen that the symbols representing the numerical results are always located above the lines representing
the analytical results. This means that the factors of safety obtained with the statically admissible solution
are conservative and therefore safe estimates of the characteristic factor of safety for the cavities, this being
the expected result given that the proposed analytical solution is a lower bound solution (see Section 2). The
right-most column in Table 2 (see equation 31) indicates that the underestimation of stability conditions by the
proposed analytical solution is within 10% of the assumed true solution.
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Figure 25. Sample sequence of computation of factor of safety for a cylindrical contracting cavity using the
strength reduction technique in numerical (FLAC) models. The colored areas around the cavity and on the

ground surface represent elements in the mesh that undergo plastic failure, in tension or compression. Plots a)
through e) correspond to stable cavities, while plot f) corresponds to the first unstable situation (the sequence

represented in the figure corresponds to Case 4c in Table 2).
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Figure 26. Representation of contours of magnitude of displacements for the same sequence of numerical
models shown in Figure 25.
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Figure 27. First unstable situation in the computation of factor of safety with numerical models for cylindrical
contracting cavities at various scaled depths, ξ , corresponding values a) 1.5; b) 2; c) 3; and d) 4.
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Figure 28. Graphical representation similar to that in Figure 17 showing the relationship between factor of
safety and scaled ground cohesion for contracting cylindrical cavities at different scaled depths. The symbols

in the diagram represent the factors of safety obtained with the numerical models.

Table 2. Summary of input data and results for different cases of cylindrical contracting cavities in cohesive
ground solved with the numerical models (see Figure 28).

Case ξ c̃ a h γ c ps FSA FSN f A-N
FS

[-] [-] [m] [m] [kN/m3] [kPa] [kPa] [-] [-] [-]

1a 1.5 0.2 4.4 6.6 17.4 15.312 0.00 0.324 0.36 0.90
1b 1.5 0.5 3.6 5.4 15.7 28.260 0.00 0.811 0.89 0.91
1c 1.5 1.0 4.4 6.6 24.0 105.600 0.00 1.622 1.79 0.91
1d 1.5 2.0 1.4 2.1 21.2 59.360 0.00 3.244 3.57 0.91
1e 1.5 5.0 2.3 3.5 17.0 195.500 0.00 8.109 8.93 0.91

2a 2.0 0.2 4.6 9.2 21.2 19.504 0.00 0.277 0.30 0.92
2b 2.0 0.5 1.9 3.8 24.3 23.085 0.00 0.693 0.75 0.92
2c 2.0 1.0 2.6 5.2 21.5 55.900 0.00 1.386 1.50 0.92
2d 2.0 2.0 3.5 7.0 20.8 145.600 0.00 2.773 3.00 0.92
2e 2.0 5.0 2.8 5.6 16.2 226.800 0.00 6.931 7.50 0.92

3a 3.0 0.2 3.9 11.7 24.2 18.876 0.00 0.220 0.23 0.96
3b 3.0 0.5 3.7 11.1 15.9 29.415 0.00 0.549 0.58 0.95
3c 3.0 1.0 2.3 6.9 15.0 34.500 0.00 1.099 1.16 0.95
3d 3.0 2.0 2.2 6.6 21.7 95.480 0.00 2.197 2.32 0.95
3e 3.0 5.0 1.4 4.2 20.5 143.500 0.00 5.493 5.81 0.95

4a 4.0 0.2 1.3 5.2 22.0 5.720 0.00 0.185 0.19 0.97
4b 4.0 0.5 3.6 14.4 19.9 35.820 0.00 0.462 0.48 0.96
4c 4.0 1.0 1.4 5.6 20.0 28.000 0.00 0.924 0.97 0.95
4d 4.0 2.0 1.9 7.6 20.1 76.380 0.00 1.848 1.94 0.95
4e 4.0 5.0 4.7 18.8 22.3 524.050 0.00 4.621 4.84 0.95

Results summarized in this table consider a scaled internal pressure at the crown, p̃s = ps/(γ a) = 0 and a scaled ground
surcharge load, q̃s = 0. The columns labelled as FSA and FSN correspond to the numerator and denominator of equation (31),
respectively.
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A similar comparison of analytical and numerical results as discussed above for cylindrical contracting cavities
was carried out for cylindrical expanding cavities.
Figures 29, 30 and 31 are equivalent to Figures 25, 26 and 27, respectively, this time for expanding cavities
and for a value of crown internal pressure equal to two times the value of in-situ vertical stress at the level of
the crown (i.e., p̃s = 2 p̃o

s ), with all other parameters being the same as for the case of the contracting cavities
discussed earlier on.
Figure 32 and Table 3 are equivalent to Figure 28 and Table 2, respectively, and allow the same observations
as for the case of contracting cavities to be made with regard to small differences between analytical and
numerical results. Figure 32 and Table 3, in particular, confirm the observation made in Section 3.4, that the
factor of safety of a contracting cavity with zero crown internal pressure is equal to the factor of safety of an
expanding cavity with crown internal pressure equal to two times the value of in-situ vertical stress at the level
of the crown (with all other input parameters being the same).

It should be noted that the comparison of factors of safety obtained with the proposed statically admissible
solution and with the numerical models presented in this section correspond, as indicated, to cylindrical cav-
ities. Similar comparison was carried out for spherical cavities, using the same mesh of elements shown in
Figures 27 and 31 and taking advantage of the axi-symmetrical capabilities in the software FLAC. The results
obtained for spherical cavities confirmed the observations made in Sections 3.3 and 3.4, that when other input
parameters are the same, spherical cavities do have factors of safety that are approximately twice the factors
of safety for cylindrical cavities. Numerical models were also set up and solved for values of crown internal
pressure different from zero (for contracting cavities) and different from two times the initial vertical stress at
the crown level (for expanding cavities) and numerical results compared well with the predictions made with
the proposed analytical models, according to the relationships in Figures 18 and 19 discussed in Section 3.3,
and the relationships in Figures 23 and 24 discussed in in Section 3.4.
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Figure 29. Representation similar to that in Figure 25 for cylindrical expanding cavity (the sequence
represented in the figure corresponds to Case 4c in Table 3).
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Figure 30. Representation of contours of magnitude of displacements for the same sequence of numerical
models shown in Figure 29.
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Figure 31. First unstable situation in the computation of factor of safety with numerical models for cylindrical
expanding cavities at various scaled depths, ξ , corresponding values a) 1.5; b) 2; c) 3; and d) 4.
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Figure 32. Graphical representation similar to that in Figure 21 showing the relationship between factor of
safety and scaled ground cohesion for expanding cylindrical cavities at different scaled depths. The symbols in

the diagram represent the factors of safety obtained with the numerical models.

Table 3. Summary of input data and results for different cases of cylindrical expanding cavities in cohesive
ground solved with the numerical models (see Figure 32).

Case ξ c̃ a h γ c ps FSA FSN f A-N
FS

[-] [-] [m] [m] [kN/m3] [kPa] [kPa] [-] [-] [-]

1a 1.5 0.2 4.4 6.6 17.4 15.312 76.56 0.324 0.37 0.88
1b 1.5 0.5 3.6 5.4 15.7 28.260 56.52 0.811 0.90 0.90
1c 1.5 1.0 4.4 6.6 24.0 105.600 105.60 1.622 1.79 0.90
1d 1.5 2.0 1.4 2.1 21.2 59.360 29.68 3.244 3.58 0.91
1e 1.5 5.0 2.3 3.5 17.0 195.500 39.10 8.109 8.95 0.91

2a 2.0 0.2 4.6 9.2 21.2 19.504 195.04 0.277 0.30 0.92
2b 2.0 0.5 1.9 3.8 24.3 23.085 92.34 0.693 0.75 0.92
2c 2.0 1.0 2.6 5.2 21.5 55.900 111.80 1.386 1.50 0.92
2d 2.0 2.0 3.5 7.0 20.8 145.600 145.60 2.773 3.01 0.92
2e 2.0 5.0 2.8 5.6 16.2 226.800 90.72 6.931 7.52 0.92

3a 3.0 0.2 3.9 11.7 24.2 18.876 377.52 0.220 0.23 0.96
3b 3.0 0.5 3.7 11.1 15.9 29.415 235.32 0.549 0.58 0.95
3c 3.0 1.0 2.3 6.9 15.0 34.500 138.00 1.099 1.16 0.95
3d 3.0 2.0 2.2 6.6 21.7 95.480 190.96 2.197 2.33 0.94
3e 3.0 5.0 1.4 4.2 20.5 143.500 114.80 5.493 5.82 0.94

4a 4.0 0.2 1.3 5.2 22.0 5.720 171.60 0.185 0.19 0.97
4b 4.0 0.5 3.6 14.4 19.9 35.820 429.84 0.462 0.49 0.94
4c 4.0 1.0 1.4 5.6 20.0 28.000 168.00 0.924 0.97 0.95
4d 4.0 2.0 1.9 7.6 20.1 76.380 229.14 1.848 1.94 0.95
4e 4.0 5.0 4.7 18.8 22.3 524.050 628.86 4.621 4.85 0.95

Results summarized in this table consider a scaled internal pressure at the crown, p̃s = ps/(γ a) = 2 p̃o
s and a scaled ground surcharge

load, q̃s = 0. The columns labelled as FSA and FSN correspond to the numerator and denominator of equation (31), respectively.
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5. Comparison of results obtained from limit equilibrium (Terzaghi’s) type models
As discussed in Section 2, limit equilibrium methods are still popular methods for analysis of stability of
cavities in the practice of geotechnical engineering, including cases of expanding cavities for gas storage and
CAES applications (see, for example, Figure 7). This section presents a comparison of results obtained with
the statically admissible model discussed in Section 3, and with Terzaghi’s limit equilibrium models.
Appendix C presents a demonstration of the equations needed to compute the required internal pressure at the
crown of the (assumed flat) roof of contracting and expanding cavities to which a cavity of circular shape is
circumscribed. Below, only the main equations are transcribed from the appendix.

The case of contracting cavities is considered first.
Figure 33 represents the same model proposed by Terzaghi (see Figure 5), when the material is frictionless (i.e.,
the ground is purely cohesive as in the model presented in Section 3) and when the same notation for variables
as in the model in Figure 3 is used. For a contracting cavity at a limit state of equilibrium in a ground with
scaled critical cohesion, c̃cr, considering that the variables are scaled according to the same rules introduced by
equations (6) through (8), the scaled pressure acting on the crown of a circular cavity circumscribed to a flat
roof (as in Figure 33) becomes (see Appendix C for details)

p̃s = q̃s +(ξ −1)
(

1− k
3

c̃cr

)
(32)

In equation (32), similarly as in the equations presented in Sections 3.2 and 3.3, the parameter k distinguishes
the cases of cylindrical and spherical cavities, for values equal to 1 and 2, respectively.
Introducing the same definition of factor of safety as in equation (20), the factor of safety for the circular
contracting cavity based on the Terzaghi’s limit equilibrium model becomes

FS =
1
3

k c̃(ξ −1)
q̃s− p̃s +ξ −1

(33)

When the internal pressure is expressed as a factor of the in-situ vertical stress at the crown level according to
equation (22) (see also equations 10 and 11), equation (33) is written as follows

FS =
1
3

k c̃(ξ −1)
(1− f p̃s)(q̃s +ξ −1)

(34)

The ratio of factors of safety for the proposed analytical model and the limit equilibrium model, f A-T
FS , is

introduced as follows
f A-T
FS =

FS [Proposed Analytical Model]
FS [Limit Equilibrium Model]

(35)

Replacing equations (23) and (34) into equation (35), the ratio f A-T
FS becomes

f A-T
FS =

6 lnξ

ξ −1
(36)

Note that in equation (36), all parameters other than the scaled depth, ξ , have cancelled out (including the
parameter k), so the relationship given by equation (36) is valid for both cylindrical and spherical contracting
cavities.
Figure 34 represents the relationship between the ratio of factors of safety, f A-T

FS , and the scaled depth, ξ , for
contracting cylindrical or spherical cavities according to equation (36). The horizontal line corresponding to
the ordinate one, marks the limit between conservative predictions by the limit equilibrium model (ratios f A-T

FS
larger than one) and non-conservative predictions by the limit equilibrium model (ratios f A-T

FS smaller than one).
The curve in Figure 34 is shown to intersect the horizontal line of ordinate one at the abscissa∼18.5. Therefore,
Terzaghi’s limit equilibrium model (Figure 33) predicts over conservative (too safe) values of factors of safety
for shallow cavities when ξ < ∼18.5 and non-conservative (unsafe) values of factors of safety for deeper
cavities, when ξ >∼18.5.
Table 4 lists the resulting values of factors of safety and the ratios of factors of safety obtained with the proposed
analytical model, the numerical (FLAC) model and with Terzaghi’s model for the same cases of contracting
cylindrical cavities listed in Table 2. The ratio f T -N

FS (right-most column in Table 4) corresponds to the ratio of
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Figure 33. Limit equilibrium model by Terzaghi (1943) for a contracting opening in purely cohesive ground
(See Figure 5).

Figure 34. Relationship between the ratio of factors of safety obtained with the proposed analytical model and
with Terzaghi’s (limit equilibrium, L.E.) model, and the scaled depth of cylindrical or spherical contracting

openings.
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Table 4. Comparison of analytical (with proposed solution), numerical and limit equilibrium (Terzaghi’s
based) results for the same cases of contracting openings listed in Table 2.

Case ξ c̃ FSA FSN FST f A-N
FS f T -N

FS
[-] [-] [-] [-] [-] [-] [-]

1a 1.5 0.2 0.324 0.36 0.067 0.90 0.19
1b 1.5 0.5 0.811 0.89 0.167 0.91 0.19
1c 1.5 1.0 1.622 1.79 0.333 0.91 0.19
1d 1.5 2.0 3.244 3.57 0.667 0.91 0.19
1e 1.5 5.0 8.109 8.93 1.667 0.91 0.19

2a 2.0 0.2 0.277 0.30 0.067 0.92 0.22
2b 2.0 0.5 0.693 0.75 0.167 0.92 0.22
2c 2.0 1.0 1.386 1.50 0.333 0.92 0.22
2d 2.0 2.0 2.773 3.00 0.667 0.92 0.22
2e 2.0 5.0 6.931 7.50 1.667 0.92 0.22

3a 3.0 0.2 0.220 0.23 0.067 0.96 0.29
3b 3.0 0.5 0.549 0.58 0.167 0.95 0.29
3c 3.0 1.0 1.099 1.16 0.333 0.95 0.29
3d 3.0 2.0 2.197 2.32 0.667 0.95 0.29
3e 3.0 5.0 5.493 5.81 1.667 0.95 0.29

4a 4.0 0.2 0.185 0.19 0.067 0.97 0.35
4b 4.0 0.5 0.462 0.48 0.167 0.96 0.35
4c 4.0 1.0 0.924 0.97 0.333 0.95 0.34
4d 4.0 2.0 1.848 1.94 0.667 0.95 0.34
4e 4.0 5.0 4.621 4.84 1.667 0.95 0.34

The columns labelled as FSA and FSN correspond to the numerator and denominator of
equation (31), respectively. The column labelled as FST corresponds to the denominator
of equation (35) and the numerator of equation (37).

factors of safety obtained with the Terzaghi’s model and with the numerical (FLAC) models, i.e.,

f T -N
FS =

FS [Limit Equilibrium Model]
FS [Numerical (FLAC) Model]

(37)

The ratios f T -N
FS listed in Table 4 indicate that factors of safety obtained with Terzaghi’s model are in between

19% and 34% of the factors of safety obtained with the numerical solution (which as discussed in Section 4 can
be considered to be close to the true factors of safety), for cavities with scaled depths varying between 1.5 and
4, respectively.

A similar analysis as above can be done for expanding cavities.
Figure 35 shows a similar limit equilibrium model as in Figure 7 but considering that the lateral boundaries of
the wedge above the cavity are vertical (i.e., the angle α in Figure 7 is assumed to be zero). It can be shown
that for a cavity at a limit state of equilibrium, the pressure needed to reach the limit state becomes minimum
when the walls are assumed vertical (see, for example, Kim et al. 2012).
For an expanding cavity at a limit state of equilibrium in a ground with scaled critical cohesion, c̃cr, considering
that the variables are scaled according to the same rules introduced by equations (6) through (8), the scaled
pressure acting on the crown of a circular cavity circumscribed to a flat roof becomes (see Appendix C for
details)

p̃s = q̃s +(ξ −1)(1+ k c̃cr) (38)

With the same definition of factor of safety as in equation (20), the factor of safety for the circular expanding
cavity based on the Terzaghi’s limit equilibrium model becomes

FS =− k c̃(ξ −1)
q̃s− p̃s +ξ −1

(39)

When the crown internal pressure is expressed as a factor of the in-situ vertical stress at the crown level accord-
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ing to equations (10), (11) and (22), equation (39) is written as follows

FS =
k c̃(ξ −1)

( f p̃s−1)(q̃s +ξ −1)
(40)

Replacing equations (27) and (40) into equation (35), the ratio of factors of safety for the proposed analytical
model and the limit equilibrium model, f A-T

FS , becomes

f A-T
FS =

2 lnξ

ξ −1
(41)

Again, and as for the case of contracting cavities, equation (41) is valid for both cylindrical and spherical
expanding cavities.
Figure 36 shows a similar representation as in Figure 34, this time for expanding cavities computed with equa-
tion (41). The horizontal line at ordinate one distinguishes again the cases of conservative and non-conservative
predictions by the limit equilibrium model. Figure 36 shows that the Terzaghi’s type limit equilibrium model
predicts again over conservative (too safe) values of factors of safety for shallow cavities when ξ < ∼3.51
and non-conservative (unsafe) values of factors of safety for deeper cavities when ξ >∼3.51 (note that for the
case of expanding cavities, the limit between conservative and non-conservative predictions has decreased from
∼18.5 to ∼3.51). Table 5 lists similar information as Table 4, and shows that the ratio f T -N

FS varies between
54% and 103% for cavities with scaled depths varying between 1.5 and 4, respectively.

Figure 35. Limit equilibrium model for an expanding opening in purely cohesive ground derived from Figure
7. Note that the angle α in Figure 7 is considered to be zero; this leads to the most conservative condition of

shear strength mobilized along the lateral boundaries of the detaching block.
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Figure 36. Relationship between the ratio of factors of safety obtained with the proposed analytical model and
with Terzaghi’s based limit equilibrium (L.E.) model and the scaled depth of cylindrical or spherical

expanding openings.

Table 5. Comparison of analytical (with proposed solution), numerical and limit equilibrium (Terzaghi’s
based) results for the same cases of expanding openings listed in Table 3.

Case ξ c̃ FSA FSN FST f A-N
FS f T -N

FS
[-] [-] [-] [-] [-] [-] [-]

1a 1.5 0.2 0.324 0.37 0.200 0.88 0.54
1b 1.5 0.5 0.811 0.90 0.500 0.90 0.56
1c 1.5 1.0 1.622 1.79 1.000 0.90 0.56
1d 1.5 2.0 3.244 3.58 2.000 0.91 0.56
1e 1.5 5.0 8.109 8.95 5.000 0.91 0.56

2a 2.0 0.2 0.277 0.30 0.200 0.92 0.67
2b 2.0 0.5 0.693 0.75 0.500 0.92 0.67
2c 2.0 1.0 1.386 1.50 1.000 0.92 0.67
2d 2.0 2.0 2.773 3.01 2.000 0.92 0.66
2e 2.0 5.0 6.931 7.52 5.000 0.92 0.66

3a 3.0 0.2 0.220 0.23 0.200 0.96 0.87
3b 3.0 0.5 0.549 0.58 0.500 0.95 0.86
3c 3.0 1.0 1.099 1.16 1.000 0.95 0.86
3d 3.0 2.0 2.197 2.33 2.000 0.94 0.86
3e 3.0 5.0 5.493 5.82 5.000 0.94 0.86

4a 4.0 0.2 0.185 0.19 0.200 0.97 1.05
4b 4.0 0.5 0.462 0.49 0.500 0.94 1.02
4c 4.0 1.0 0.924 0.97 1.000 0.95 1.03
4d 4.0 2.0 1.848 1.94 2.000 0.95 1.03
4e 4.0 5.0 4.621 4.85 5.000 0.95 1.03

The columns labelled as FSA and FSN correspond to the numerator and denominator of
equation (31), respectively. The column labelled as FST corresponds to the denominator
of equation (35) and the numerator of equation (37).
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6. Stability conditions for shallow cavities in cohesive-frictional ground
The stability analyses of shallow contracting and expanding openings presented in previous sections assumed
the ground to be purely cohesive. This was done with the purpose of simplifying the analysis and to be able to
reveal fundamental relationships governing the stability of shallow cavities.
This section presents the extension of the analytical solution presented earlier on for the case of Mohr-Coulomb
cohesive-frictional ground, and a comparison of results obtained with the analytical solution and with the
numerical (FLAC) solution.
Appendix D presents a detailed derivation of the equations conforming the analytical solution of contracting
and expanding cavities in a ground that obeys the Mohr-Coulomb failure criterion. Below, only the main
equations are transcribed from Appendix D.
The problem considered in this section is the same problem introduced in Section 3.1 (see Figure 14). It
involves a contracting or expanding cylindrical or spherical cavity with scaled depth, ξ , for which the scaled
internal pressure at the crown is p̃A

s (again, to be denoted simply as p̃s) and the scaled ground surcharge load is
q̃s. The ground is assumed to obey the Mohr-Coulomb failure criterion, and to have a cohesion, c, (and a scaled
cohesion, c̃, according to equation 7) and an internal friction angle, φ . The objective is to compute the factor of
safety, FS, for the cavity for the given values of shear strength and loading.
For a material that obeys the Mohr-Coulomb failure criterion, the relationship between principal stresses, σ1
and σ3, at failure is written as follows (see, for example, Jaeger et al. 2007)

σ1 = Nφ σ3 +σc (42)

In equation (42), Nφ is the passive reaction coefficient, computed from the internal friction angle, φ , as

Nφ =
1+ sinφ

1− sinφ
(43)

while σc is the uniaxial compressive strength, computed from the cohesion, c, and the passive reaction coeffi-
cient, Nφ , as

σc = 2c
√

Nφ (44)

With regard to equation (43), it should be noted that the tangent of the internal friction angle, φ , can be expressed
in terms of the passive reaction coefficient, Nφ , as follows to

tanφ =
Nφ −1
2
√

Nφ

(45)

According to the strength reduction technique discussed in previous sections (see, for example, Figure 13), for
the case of a cohesive-frictional material, the scaled critical cohesion and the tangent of the critical internal
friction angle associated with the limit state of equilibrium are computed from the given values of cohesion and
tangent of internal friction angle, and the factor of safety, FS, using the following equations, respectively

c̃cr =
c̃

FS
; tanφcr =

tanφ

FS
(46)

Note that in view of equation (46), the following equality holds between the ratio of given scaled cohesion
and tangent of internal friction angle, and between the ratio of critical scaled cohesion and tangent of critical
internal friction angle,

c̃
tanφ

=
c̃cr

tanφcr
(47)

Also, in view of equation (45) and the (right-side) equation (46), the ratio of factor of safety and tangent of
given internal friction angle can be written in terms of the critical passive reaction coefficient, Ncr

φ
, as follows

FS
tanφ

=
2
√

Ncr
φ

Ncr
φ
−1

(48)

For the case of contracting cavities, the coefficient Ncr
φ

can be computed from the solution of the following
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transcendental equation (see Appendix D for details)(
q̃s +

c̃
tanφ

)
ξ
−k(Ncr

φ
−1)+

1
1− k(Ncr

φ
−1)

[
ξ

1−k(Ncr
φ
−1)−1

]
−
(

p̃s +
c̃

tanφ

)
= 0 (49)

Similarly, for the case of expanding cavities, the coefficient Ncr
φ

can be computed from the solution of the
following transcendental equation (again, see Appendix D for details)(

q̃s +
c̃

tanφ

)
ξ

k(Ncr
φ
−1)/Ncr

φ +
1

1+ k(Ncr
φ
−1)/Ncr

φ

[
ξ

1+k(Ncr
φ
−1)/Ncr

φ −1
]
−
(

p̃s +
c̃

tanφ

)
= 0 (50)

As with the case of equations introduced in Section 3, in equations (49) and (50) the parameter k is such that
k = 1 implies that the cavity is cylindrical, while k = 2 implies that the cavity is spherical.
Once the critical passive reaction coefficient, Ncr

φ
, is computed with either equations (49) and (50), the normal-

ized factor of safety, FS/ tanφ , can be computed with equation (48). In view of equations (48), (49) and (50),
dimensionless representations of normalized factor of safety, FS/ tanφ , for the vertical axis, and scaled cohe-
sion, c̃/ tanφ , for the horizontal axis, can be produced for chosen values of scaled internal (crown) pressure, p̃s;
scaled ground surcharge load, q̃s; and scaled cavity depth, ξ .
It should be noted that similar dimensionless representations of factor of safety have been proposed by other
authors in the past for the case of slopes, from results obtained with limit equilibrium or lower and upper bound
models (see, for example, Bell 1966; Hoek & Bray 1981; Michalowski 2002; Wyllie & Mah 2004). For the
case of slopes, the dimensionless representations involve considering for the vertical axis the same normalized
factor of safety, FS/ tanφ , and for the horizontal axis the height of the slope multiplied by the unit weight of
the ground and the tangent of internal friction angle divided by the cohesion; in the published dimensionless
representations for slopes, different curves correspond to different inclination angles considered for the slope.
Figure 37 shows such dimensionless representation of stability for the case of contracting cylindrical cavities
for the case p̃s = 0 and q̃s = 0. The different curves in the diagram represent different scaled depths, ξ .
These curves have been computed using equations (49) and (50), together with equation (48). Comparison
of Figures 37 and 17 (the latter corresponding to cohesionless ground) indicates that the same observations
regarding increase of factor of safety with increase of shear strength, and decrease of factor of safety with
increase of depth can be made. Also, for the case of cohesive-frictional ground, Figure 37 indicates that the
relationship between predicted normalized factor of safety, FS/ tanφ , and scaled shear strength is non-linear
(when represented in logarithmic scale, done in Figures 37 and 17).
To evaluate the predictions of factor of safety with the proposed analytical solution for contracting cavities,
a series of numerical finite-difference (FLAC) models were set up and computed using the strength reduction
technique. The computation of factor of safety for the FLAC models was done using a similar procedure as
explained in Section 4, this time decreasing (or increasing) not only the cohesion of the material but also the
tangent of internal friction angle (see Figure 13a). The symbols in Figure 37 represent the results of normalized
factor of safety obtained with the numerical models for scaled depths, ξ = 2 and 4, respectively. The relative
position of the curves representing the analytical solution for contracting cavities with respect to the symbols,
suggest that the analytical solution is more conservative for the case of cohesive-frictional ground, compared
with the case of purely cohesive ground discussed in Section 4 (see Figure 17).
Table 6 lists the input data and results for 48 cases of cylindrical contracting openings solved with the software
FLAC, and represented by the symbols in Figure 37. As mentioned above, the cases consider values of scaled
depth, ξ = 2 and 4, and the values of scaled cohesion, c̃/ tanφ , listed in the third column in Table 6, covering the
range of values on the horizontal axis in Figure 37. For each of the values of scaled cohesion, cases of internal
friction angle, φ = 15◦, 30◦ and 45◦ are computed (see fourth column in Table 6). Table 6 shows that although
the unscaled factor of safety is different for each of the 3 cases of internal friction angle (see column labelled as
FSN in Table 6), the factor of safety divided by the tangent of the internal friction angle results the same for each
of the three cases of internal friction angle (see column labelled as FSN/ tanφ in Table 6). This confirms the
observation made above for the analytical solution with regard to the dependence of the ratio FS/ tanφ and the
dimensionless variables c̃/ tanφ , ξ , p̃s and q̃s (see equations 48, 49 and 50). The column labelled as FSA/ tanφ

in Table 6 represents the results obtained with equation (49) (together with equation 48). The column labelled
as f A-N

FS in Table 6 represents the ratio of analytical and numerical results (see equation 31) and indicates that
the underestimation of stability conditions by the proposed analytical solution ranges between 60 and 80%, a
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quite large value compared with the 10% underestimation for the case of purely cohesive ground described in
Section 4 (see last column in Table 2).
The significant underestimation of factor of safety for the case of cohesive ground is suspected to be associated
with the way in which the failure zone around and above the cavity propagates towards the ground surface to
lead to the collapse mechanism. Figure 38 is similar to Figure 25 and shows a sequence of evolution of plastic
failure for Case 2f-30 in Table 6. Also, Figure 39 is similar to Figure 26 and shows contours of magnitude of
displacements corresponding to the models shown in Figure 38. Comparing Figures 38 and 25 (and Figures 39
and 26), for purely cohesive ground and cohesive-frictional ground, respectively, it is seen that for cohesive-
frictional ground (Figures 38 and 39), the failure zone tends to propagate mostly upwards towards the ground
surface, and does not seem to extend significantly towards the lateral and lower regions of the opening. The
proposed analytical solution for cohesive-frictional ground, nevertheless, assumes a circular area of integration
around the cavity, in which re-distributed hoop and radial stresses are principal stresses (see Appendix D); in
view of the way in which the failed region propagates, this assumption possibly does not reflect the condition of
redistributed stresses around the opening and this leads to the significant underestimation of stability conditions
—i.e., although the proposed analytical solution is a lower bound solution, it does not reflect well the mechanics
of collapse.

A similar comparison of analytical and numerical results as discussed above for cylindrical contracting cavities
is also carried out for cylindrical expanding cavities. Figures 40, 41 and 42 and Table 7 are equivalent to Figures
37, 38, 39 and Table 6, respectively, this time for expanding cavities and for a value of crown internal pressure
equal to one and-a-half times the value of in-situ vertical stress at the level of the crown (i.e., p̃s = 1.5 p̃o

s ), with
all other parameters being the same as for the case of contracting cavities discussed earlier on.
For the case of expanding cavities, the underestimation of stability conditions by the analytical solution given by
equation (50) together with equation 48) results even more significant. The reason is suspected to be associated
with the prediction of tensile hoop stresses inside the integration circle, in the vicinity of the ground surface, by
the analytical solution, which deviates from the prediction by the numerical finite-difference (FLAC) models,
which consider null tensile strength for the material (this particular consideration, which was discussed in
Section 3.4 for the case of expanding cavities in cohesive materials, also applies to the analytical solution for
the case of expanding cavities in cohesive-frictional materials discussed in this section).
Although the analytical solution for cohesive-frictional ground presented in this section does seem to lead to
good predictions of stability conditions, it provides the framework to show how the factor of factor of safety
can be conveniently scaled and expressed in terms of other dimensionless variables, to allow to produce similar
dimensionless representations of (normalized) factor of safety, as published before by other authors for the case
of slopes.
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Figure 37. Graphical representation of the relationship between scaled factor of safety and scaled ground
cohesion for contracting cylindrical cavities at different scaled depths in cohesive-frictional ground. The

symbols in the diagram represent the factors of safety obtained with the numerical (FLAC) models.
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Table 6. Summary of input data and results for different cases of cylindrical contracting cavities in
cohesive-frictional ground solved with numerical (FLAC) models, represented in Figure 37.

Case ξ c̃/tanφ φ a h γ c ps FSN FSA/tanφ FSN/tanφ f A-N
FS

[-] [-] [◦] [m] [m] [kN/m3] [kPa] [kPa] [-] [-] [-] [-]

1a-15 2.0 0.02 15 1.0 2.0 15.1 0.081 0.00 0.123 0.283 0.46 0.62
1a-30 2.0 0.02 30 2.8 5.6 24.3 0.786 0.00 0.266 0.283 0.46 0.62
1a-45 2.0 0.02 45 1.0 2.0 21.2 0.424 0.00 0.460 0.283 0.46 0.62

1b-15 2.0 0.05 15 1.8 3.6 15.8 0.381 0.00 0.171 0.447 0.64 0.70
1b-30 2.0 0.05 30 1.2 2.4 23.4 0.811 0.00 0.370 0.447 0.64 0.70
1b-45 2.0 0.05 45 2.1 4.2 22.8 2.394 0.00 0.640 0.447 0.64 0.70

1c-15 2.0 0.10 15 3.3 6.6 25.9 2.290 0.00 0.222 0.630 0.83 0.76
1c-30 2.0 0.10 30 4.1 8.2 26.0 6.155 0.00 0.479 0.630 0.83 0.76
1c-45 2.0 0.10 45 3.4 6.8 20.9 7.106 0.00 0.830 0.630 0.83 0.76

1d-15 2.0 0.20 15 2.4 4.8 15.4 1.981 0.00 0.305 0.889 1.14 0.78
1d-30 2.0 0.20 30 3.1 6.2 21.3 7.624 0.00 0.658 0.889 1.14 0.78
1d-45 2.0 0.20 45 4.4 8.8 15.8 13.904 0.00 1.140 0.889 1.14 0.78

1e-15 2.0 0.50 15 4.3 8.6 14.1 8.123 0.00 0.485 1.457 1.81 0.81
1e-30 2.0 0.50 30 4.5 9.0 17.2 22.343 0.00 1.045 1.457 1.81 0.81
1e-45 2.0 0.50 45 2.9 5.8 19.1 27.695 0.00 1.810 1.457 1.81 0.81

1f-15 2.0 1.00 15 1.7 3.4 20.4 9.292 0.00 0.723 2.252 2.70 0.83
1f-30 2.0 1.00 30 4.8 9.6 24.1 66.788 0.00 1.559 2.252 2.70 0.83
1f-45 2.0 1.00 45 4.0 8.0 20.2 80.800 0.00 2.700 2.252 2.70 0.83

1g-15 2.0 2.00 15 3.8 7.6 21.2 43.172 0.00 1.155 3.719 4.31 0.86
1g-30 2.0 2.00 30 3.2 6.4 18.5 68.358 0.00 2.488 3.719 4.31 0.86
1g-45 2.0 2.00 45 2.8 5.6 23.0 128.800 0.00 4.310 3.719 4.31 0.86

1h-15 2.0 5.00 15 2.2 4.4 16.0 47.159 0.00 2.390 7.948 8.92 0.89
1h-30 2.0 5.00 30 2.8 5.6 22.1 178.632 0.00 5.150 7.948 8.92 0.89
1h-45 2.0 5.00 45 4.0 8.0 16.0 320.000 0.00 8.920 7.948 8.92 0.89

2a-15 4.0 0.02 15 1.0 4.0 15.1 0.081 0.00 0.123 0.283 0.46 0.59
2a-30 4.0 0.02 30 2.8 11.2 24.3 0.786 0.00 0.266 0.283 0.46 0.59
2a-45 4.0 0.02 45 1.0 4.0 21.2 0.424 0.00 0.460 0.283 0.46 0.59

2b-15 4.0 0.05 15 1.8 7.2 15.8 0.381 0.00 0.171 0.447 0.64 0.75
2b-30 4.0 0.05 30 1.2 4.8 23.4 0.811 0.00 0.370 0.447 0.64 0.75
2b-45 4.0 0.05 45 2.1 8.4 22.8 2.394 0.00 0.640 0.447 0.64 0.75

2c-15 4.0 0.10 15 3.3 13.2 25.9 2.290 0.00 0.222 0.630 0.83 0.76
2c-30 4.0 0.10 30 4.1 16.4 26.0 6.155 0.00 0.479 0.630 0.83 0.76
2c-45 4.0 0.10 45 3.4 13.6 20.9 7.106 0.00 0.830 0.630 0.83 0.76

2d-15 4.0 0.20 15 2.4 9.6 15.4 1.981 0.00 0.303 0.882 1.13 0.78
2d-30 4.0 0.20 30 3.1 12.4 21.3 7.624 0.00 0.652 0.882 1.13 0.78
2d-45 4.0 0.20 45 4.4 17.6 15.8 13.904 0.00 1.130 0.882 1.13 0.78

2e-15 4.0 0.50 15 4.3 17.2 14.1 8.123 0.00 0.466 1.365 1.74 0.79
2e-30 4.0 0.50 30 4.5 18.0 17.2 22.343 0.00 0.970 1.365 1.68 0.81
2e-45 4.0 0.50 45 2.9 11.6 19.1 27.695 0.00 1.680 1.365 1.68 0.81

2f-15 4.0 1.00 15 1.7 6.8 20.4 9.292 0.00 0.648 1.955 2.42 0.81
2f-30 4.0 1.00 30 4.8 19.2 24.1 66.788 0.00 1.397 1.955 2.42 0.81
2f-45 4.0 1.00 45 4.0 16.0 20.2 80.800 0.00 2.420 1.955 2.42 0.81

2g-15 4.0 2.00 15 3.8 15.2 21.2 43.172 0.00 0.954 2.978 3.56 0.84
2g-30 4.0 2.00 30 3.2 12.8 18.5 68.358 0.00 2.055 2.978 3.56 0.84
2g-45 4.0 2.00 45 2.8 11.2 23.0 128.800 0.00 3.560 2.978 3.56 0.84

2h-15 4.0 5.00 15 2.2 8.8 16.0 47.159 0.00 1.779 5.841 6.64 0.88
2h-30 4.0 5.00 30 2.8 11.2 22.1 178.632 0.00 3.834 5.841 6.64 0.88
2h-45 4.0 5.00 45 4.0 16.0 16.0 320.000 0.00 6.640 5.841 6.64 0.88

Results summarized in this table consider a scaled internal pressure at the crown, p̃s = ps/(γ a) = 0 and a scaled ground surcharge
load, q̃s = 0. The columns labelled as FSA and FSN correspond to the numerator and denominator of equation (31), respectively.
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Figure 38. Sample sequence of computation of factor of safety for a cylindrical contracting cavity in
cohesive-frictional ground, using the strength reduction technique in numerical (FLAC) models. The colored
areas around the cavity and on the ground surface represent elements in the mesh that undergo plastic failure,
in tension or compression. Plots a) through e) correspond to stable cavities, while plot f) corresponds to the

first unstable situation (the sequence represented in the figure corresponds to Case 2f-30 in Table 6).
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Figure 39. Representation of contours of magnitude of displacements for the same sequence of numerical
(FLAC) models shown in Figure 38.
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Figure 40. Graphical representation of the relationship between scaled factor of safety and scaled ground
cohesion for expanding cylindrical cavities at different scaled depths in cohesive-frictional ground. The

symbols in the diagram represent the factors of safety obtained with the numerical (FLAC) models.
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Table 7. Summary of input data and results for different cases of cylindrical expanding cavities in
cohesive-frictional ground solved with numerical (FLAC) models, represented in Figure 40.

Case ξ c̃/tanφ φ a h γ c ps FSN FSA/tanφ FSN/tanφ f A-N
FS

[-] [-] [◦] [m] [m] [kN/m3] [kPa] [kPa] [-] [-] [-] [-]

1a-15 2.0 0.02 15 1.0 2.0 15.1 0.081 30.20 0.592 0.359 2.21 0.16
1a-30 2.0 0.02 30 2.8 5.6 24.3 0.786 136.08 1.276 0.359 2.21 0.16
1a-45 2.0 0.02 45 1.0 2.0 21.2 0.424 42.40 2.210 0.359 2.21 0.16

1b-15 2.0 0.05 15 1.8 3.6 15.8 0.381 56.88 0.624 0.579 2.33 0.25
1b-30 2.0 0.05 30 1.2 2.4 23.4 0.811 56.16 1.345 0.579 2.33 0.25
1b-45 2.0 0.05 45 2.1 4.2 22.8 2.394 95.76 2.330 0.579 2.33 0.25

1c-15 2.0 0.10 15 3.3 6.6 25.9 2.290 170.94 0.678 0.844 2.53 0.33
1c-30 2.0 0.10 30 4.1 8.2 26.0 6.155 213.20 1.461 0.844 2.53 0.33
1c-45 2.0 0.10 45 3.4 6.8 20.9 7.106 142.12 2.530 0.844 2.53 0.33

1d-15 2.0 0.20 15 2.4 4.8 15.4 1.981 73.92 0.774 1.262 2.89 0.44
1d-30 2.0 0.20 30 3.1 6.2 21.3 7.624 132.06 1.669 1.262 2.89 0.44
1d-45 2.0 0.20 45 4.4 8.8 15.8 13.904 139.04 2.890 1.262 2.89 0.44

1e-15 2.0 0.50 15 4.3 8.6 14.1 8.123 121.26 1.064 2.278 3.97 0.57
1e-30 2.0 0.50 30 4.5 9.0 17.2 22.343 154.80 2.292 2.278 3.97 0.57
1e-45 2.0 0.50 45 2.9 5.8 19.1 27.695 110.78 3.970 2.278 3.97 0.57

1f-15 2.0 1.00 15 1.7 3.4 20.4 9.292 69.36 1.517 3.784 5.66 0.67
1f-30 2.0 1.00 30 4.8 9.6 24.1 66.788 231.36 3.268 3.784 5.66 0.67
1f-45 2.0 1.00 45 4.0 8.0 20.2 80.800 161.60 5.660 3.784 5.66 0.67

1g-15 2.0 2.00 15 3.8 7.6 21.2 43.172 161.12 2.387 6.647 8.91 0.75
1g-30 2.0 2.00 30 3.2 6.4 18.5 68.358 118.40 5.144 6.647 8.91 0.75
1g-45 2.0 2.00 45 2.8 5.6 23.0 128.800 128.80 8.910 6.647 8.91 0.75

1h-15 2.0 5.00 15 2.2 4.4 16.0 47.159 70.40 4.920 15.038 18.36 0.82
1h-30 2.0 5.00 30 2.8 5.6 22.1 178.632 123.76 10.600 15.038 18.36 0.82
1h-45 2.0 5.00 45 4.0 8.0 16.0 320.000 128.00 18.360 15.038 18.36 0.82

2a-15 4.0 0.02 15 1.0 4.0 15.1 0.081 90.60 1.246 3.235 4.65 0.70
2a-30 4.0 0.02 30 2.8 11.2 24.3 0.786 408.24 2.685 3.235 4.65 0.70
2a-45 4.0 0.02 45 1.0 4.0 21.2 0.424 127.20 4.650 3.235 4.65 0.70

2b-15 4.0 0.05 15 1.8 7.2 15.8 0.381 170.64 1.265 3.300 4.72 0.70
2b-30 4.0 0.05 30 1.2 4.8 23.4 0.811 168.48 2.725 3.300 4.72 0.70
2b-45 4.0 0.05 45 2.1 8.4 22.8 2.394 287.28 4.720 3.300 4.72 0.70

2c-15 4.0 0.10 15 3.3 13.2 25.9 2.290 512.82 1.297 3.406 4.84 0.70
2c-30 4.0 0.10 30 4.1 16.4 26.0 6.155 639.60 2.794 3.406 4.84 0.70
2c-45 4.0 0.10 45 3.4 13.6 20.9 7.106 426.36 4.840 3.406 4.84 0.70

2d-15 4.0 0.20 15 2.4 9.6 15.4 1.981 221.76 1.361 3.616 5.08 0.71
2d-30 4.0 0.20 30 3.1 12.4 21.3 7.624 396.18 2.933 3.616 5.08 0.71
2d-45 4.0 0.20 45 4.4 17.6 15.8 13.904 417.12 5.080 3.616 5.08 0.71

2e-15 4.0 0.50 15 4.3 17.2 14.1 8.123 363.78 1.549 4.235 5.78 0.73
2e-30 4.0 0.50 30 4.5 18.0 17.2 22.343 464.40 3.337 4.235 5.78 0.73
2e-45 4.0 0.50 45 2.9 11.6 19.1 27.695 332.34 5.780 4.235 5.78 0.73

2f-15 4.0 1.00 15 1.7 6.8 20.4 9.292 208.08 1.849 5.235 6.90 0.76
2f-30 4.0 1.00 30 4.8 19.2 24.1 66.788 694.08 3.984 5.235 6.90 0.76
2f-45 4.0 1.00 45 4.0 16.0 20.2 80.800 484.80 6.900 5.235 6.90 0.76

2g-15 4.0 2.00 15 3.8 15.2 21.2 43.172 483.36 2.422 7.178 9.04 0.79
2g-30 4.0 2.00 30 3.2 12.8 18.5 68.358 355.20 5.219 7.178 9.04 0.79
2g-45 4.0 2.00 45 2.8 11.2 23.0 128.800 386.40 9.040 7.178 9.04 0.79

2h-15 4.0 5.00 15 2.2 8.8 16.0 47.159 211.20 4.067 12.847 15.18 0.85
2h-30 4.0 5.00 30 2.8 11.2 22.1 178.632 371.28 8.764 12.847 15.18 0.85
2h-45 4.0 5.00 45 4.0 16.0 16.0 320.000 384.00 15.180 12.847 15.18 0.85

Results summarized in this table consider a scaled internal pressure at the crown, p̃s = ps/(γ a) = 1.5 p̃o
s and a scaled ground

surcharge load, q̃s = 0. The columns labelled as FSA and FSN correspond to the numerator and denominator of equation (31),
respectively.
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Figure 41. Representation similar to that in Figure 38 for cylindrical expanding cavity corresponding to Case
2f-30 in Table 7.
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Figure 42. Representation of contours of magnitude of displacements for the same sequence of numerical
(FLAC) models shown in Figure 41.
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7. Final comments
Introduction of a scalar factor of safety for evaluation of stability conditions of shallow cavities, as done tradi-
tionally when evaluating stability of slopes, allows various relevant observations of theoretical-practical nature
to be made with regard to stability of shallow cavities. For example, for the case of shallow cavities in cohesive
ground, Sections 3.3 and 3.4 show that the factor of safety for a spherical cavity is twice the factor of safety
for a section of long cylindrical tunnel of the same radius and depth, when all other (strength and loading) vari-
ables are the same. For the case of contracting cavities, Section 3.3 shows that the factor of safety decreases
as the scaled depth of the cavity increases. This counterintuitive observation is explained by the fact that as the
depth of the cavity increases, so do the magnitudes of stresses around the cavity that induce plastic failure, and
eventually lead to development of a collapse mechanism. Also for the case of contracting cavities, the factor
of safety increases when the crown internal pressure increases, with the factor of safety approaching infinite
as the crown internal pressure tends to the in-situ reference pressure (the vertical in-situ stress at the crown
level prior to excavation). For the case of expanding cavities, Section 3.4 shows that the opposite to the last
observation holds: the factor of safety decreases when the crown internal pressure increases, with the factor
of safety approaching to infinity as the crown internal pressure tends to the in-situ reference pressure. Also,
for the case of expanding cavities, Section 3.4 shows that factor of safety corresponding to a crown internal
pressure that is twice the value of the reference (in-situ) internal pressure, is the same as the factor of safety
for a cavity with zero internal pressure. The observations above can assist in establishing stability conditions
of existing mining works (e.g., drifts and shafts) when doing preliminary analyses of their suitability for air
storage in CAES systems, which as discussed in Section 1, was the primary motivation for the developments
reported in this paper.
In Section 4, by comparison of analytical results and numerical (FLAC) results obtained by application of the
strength reduction technique, the proposed statically admissible solution for computing factors of safety for cav-
ities in cohesive ground was shown to provide factors of safety that are reasonably conservative (‘reasonably’
meaning within 10% or less of the expected true factor of safety).
In Section 5, limit equilibrium (Terzaghi’s type) solutions that are still popular for designing shallow cavities
(in particular for expanding cavities for gas and air storage) have been shown to provide unreliable estimates of
factors of safety, being conservative in some cases, and non-conservatives in others.
In Section 6, the analytical solution presented in Section 3 has been extended to consider the case of Mohr-
Coulomb cohesive-frictional ground. By comparison of analytical results and numerical (FLAC) results ob-
tained by application of the strength reduction technique, the analytical solution for computing factors of safety
for cavities in cohesive-frictional ground is shown to give values of factors of safety that are significantly
conservative. Despite the limitations of the proposed solution for cohesive-frictional ground, the analytical
formulation shows that the factor of safety can be normalized with the tangent of the internal friction angle,
and that this normalized factor of safety is a function of the scaled cohesion also normalized with the tangent of
the internal friction angle, the scaled depth, scaled crown internal pressure and scaled ground surface surcharge
load. This is a relevant observation that can be exploited to produce dimensionless representations of factors
of safety for openings in ground satisfying the Mohr-Coulomb failure criterion, for example, using numerical
models as done by other authors in the past with the case of slopes (Bell 1966; Hoek & Bray 1981; Michalowski
2002; Wyllie & Mah 2004).
The stability analyses for shallow contracting and expanding openings in cohesive ground presented in previous
sections consider dry ground conditions. The analysis can be extended to cases in which the ground is saturated
and there is a water surface above or below the ground surface —see, for example, Carranza-Torres et al.
(2013) and Reich (2016). For the case of contracting cavities in cohesive ground, Reich (2016) quantified the
difference in factors of safety for cases of circular and spherical cavities in saturated ground, when the water
surface is above and below the ground surface, and when two limiting conditions of water inside the cavity are
considered, namely the case of flooded cavity and the case of dry cavity (both cases assuming that hydrostatic
water pressure exists in the ground surrounding the cavity). Reich (2016) showed that the ratio of factors of
safety of cylindrical or spherical cavities in saturated ground and dry ground is approximately equal to two
when the cavity is considered to be flooded (the difference in factors of safety depends on the ratio of shear
strength of dry and saturated ground, the ratio of unit weights of dry ground and water, and the ratio of unit
weights of saturated and dry ground). When the same cavities are assumed dry, the water pressure in the ground
surrounding the cavity is assumed to remain hydrostatic, and the tensile strength of the material is assumed to
be infinite (so that no tensile failure of the walls of the cavity occurs), then the ratio of factors of safety of
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cavities in saturated ground and dry ground is always less than one, and this ratio decreases as the water level
above the ground surface increases.
Additional extensions to the proposed analytical solution for both contracting and expanding cavities are pos-
sible. For example, the Hoek-Brown failure criterion (Hoek & Brown 1980; Hoek & Brown 1997; Hoek
et al. 2002) is a popular shear strength failure criterion for both intact rock and rock masses that has gained
widespread popularity in the design of tunnels and caverns in rock. Using a scaled form of the Hoek-Brown
failure criterion (Londe 1988; Carranza-Torres & Fairhurst 1999), compact expressions defining the relation-
ship between factors of safety for shallow cavities and similar scaled variables introduced in Section 3.1, but
expressed in terms of scaled Hoek-Brown properties, can be developed. Such relationships could be used to
extend the theoretical-practical observations stated earlier on, for particular cases of underground cavities in
rock masses.
The developments presented in this study, together with the extensions mentioned above, could be used as
preliminary tools for estimation of stability conditions for existing and to-be-designed cavities, not only for
application to underground storage CAES systems, which was the original motivation of this study, but also
in civil and mining engineering applications, such analysis and design of shallow subway tunnels, design of
crown pillars in shallow stopes, and others.
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Appendix A. Derivation of the analytical solution for contracting and expanding cavities in dry
cohesive ground
This appendix presents the derivation of the analytical solution for contracting cavities (equations 12 through
15 and for expanding cavities (equations 12 and 13; and equations 17 and 18) in dry cohesive ground, using the
scaling rules introduced by equations (5) through (9).
Figure A-1, which is equivalent to Figure 14 discussed in the main text, shows the problem and variables
involved in the derivation presented in this appendix.
Considering a polar (or spherical) coordinate system, (ρ,θ), the force equilibrium equations inside the inte-
gration circle in Figure A-1 that account for the self weight of the material, are partial differential equations
involving the (scaled) radial and tangential (or hoop) stresses, σ̃r and σ̃θ , respectively (see, for example, Jaeger
et al. 2007). For the radial direction, the equilibrium equation is

∂ σ̃r

∂ρ
+ k

σ̃r− σ̃θ

ρ
+ sinθ = 0 (A-1)

and for the tangential direction, it is
1
ρ

∂ σ̃θ

∂θ
+ cosθ = 0 (A-2)

In equation (A-1), the parameter k is such that k = 1 implies that the cavity is cylindrical, while k = 2 implies
that the cavity is spherical.
In the derivation that follows, the cavity in Figure A-1 is assumed to be at the verge of equilibrium; in particular,
the cohesion, c, of the ground is assumed to be the critical cohesion that leads to collapse of the cavity. The
Tresca shear failure criterion (see equations 3 and 4) is expressed in terms of scaled principal stresses, σ̃1 and
σ̃3, as follows

σ̃1 = σ̃3 +2 c̃ (A-3)

where c̃ is the scaled cohesion defined by equation (7).
Note that in this appendix, in contrast with the notation used in the equations in Section 3.2, the critical scaled
cohesion associated with the cavity in a critical state of equilibrium is denoted simply as c̃, rather than as c̃cr.

The first step to derive the solution of the problem in Figure A-1 is to solve for the stress quantities along
the vertical segment defined by points A and B. The superscript ‘AB’ is used to denote stresses along this
segment (see Figure A-1). For the case of contracting cavities, the hoop stresses are considered to be major
principal stresses, while radial stresses are considered to be minor principal stresses —i.e., σ̃ AB

θ
= σ̃1 and

σ̃ AB
r = σ̃3, respectively. For the case of expanding cavities, the opposite assumption is made —i.e., σ̃ AB

θ
= σ̃3

and σ̃ AB
r = σ̃1, respectively. Therefore, in view of equation (A-3), the relationship between the (scaled) hoop

stresses, σ̃ AB
θ

, and the (scaled) radial stresses, σ̃ AB
r , is written as 1

σ̃
AB

θ = σ̃
AB

r ±2 c̃ (A-4)

Along the segment AB in Figure A-1, the equilibrium equation for the radial direction is obtained from equation
(A-1), making θ = π/2, to yield the following total differential equation of the variable ρ ,

dσ̃ AB
r

dρ
+ k

σ̃ AB
r − σ̃ AB

θ

ρ
+1 = 0 (A-5)

Replacing equation (A-4) in equation (A-5), a total differential equation of the unknown variable σ̃ AB
r only is

obtained. This equation can be solved considering the following boundary condition

σ̃
AB

r = q̃s at ρ = ξ (A-6)

In this way, the solution for σ̃ AB
r (ρ) results (see footnote associated with equation A-4)

σ̃
AB

r (ρ) = q̃s +ξ −ρ±2k c̃ ln
ρ

ξ
(A-7)

1The symbol± in equations (A-4), (A-7), (A-8), (A-14), (A-20) and (A-22) is used to indicate that addition (+) applies to contract-
ing cavities and subtraction (−) applies to expanding cavities.
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Figure A-1. Problem of stability of a cylindrical or spherical (contracting or expanding) shallow cavity. Note
the representation of the stress states on the segment AB and on the integration circle boundary.

Also, in view of equation (A-4), the solution for σ̃ AB
θ

(ρ) results (see footnote associated with equation A-4)

σ̃
AB

θ (ρ) = σ̃
AB

r (ρ)±2 c̃ (A-8)

Note that equations (A-7) and (A-8), with positive last terms, are the same equations (14) and (15) in the main
text for the case of contracting cavities, while equations (A-7) and (A-8), with negative last terms, are the same
equations (17) and (18) in the main text for the case of expanding cavities. As explained earlier on, the cohesion
is denoted as c̃cr in the equations in the main text, while the same cohesion is denoted as c̃ in the equations in
this appendix.

The scaled internal pressure at the crown of the cavity, p̃A
s , (see Figure A-1) can be found by applying the

following boundary condition to equation (A-7)

σ̃
AB

r = p̃A
s at ρ = 1 (A-9)

This yields 2

p̃A
s = q̃s +ξ −1∓2k c̃ lnξ (A-10)

Note that equation (A-10) with a negative last term is the same equation (16) presented in the main text for the
case of contracting cavities, while equation (A-10) with a positive last term is the same equation (19) presented
in the main text for the case of expanding cavities.

The second step to derive the solution of the problem in Figure A-1 is to integrate the equilibrium equation
for the tangential direction (equation A-2) throughout the integration circle. Integrating equation (A-2) with
respect to the variable θ , the general solution for the scaled hoop stress, σ̃θ (ρ,θ), results

σ̃θ (ρ,θ) =−ρ sinθ +C̃1(ρ) (A-11)

where C̃1(ρ) is an integration function of the variable ρ (i.e., of the variable disregarded in the integration). At
θ = π/2 (on the segment AB) the solution for σ̃θ (ρ,θ) given by equation (A-11) must be equal to the solution
for σ̃ AB

θ
(ρ) given by equation (A-8). In this way, the integration function, C̃1(ρ), is found to be

C̃1(ρ) = ρ + σ̃
AB

θ (ρ) (A-12)

2The symbol ∓ in equation (A-10) is used to indicate that subtraction (−) applies to contracting cavities and addition (+) applies
to expanding cavities.
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Replacing equation (A-12) into equation (A-11), the final solution for the scaled hoop stress, σ̃θ (ρ,θ), becomes

σ̃θ (ρ,θ) = σ̃
AB

θ (ρ)+ρ (1− sinθ) (A-13)

Note that equation (A-13) is the same equation (13) in the main text that applies to both contracting and
expanding cavities.
The third step to derive the solution of the problem in Figure A-1 is to integrate the equilibrium equation for
the radial direction (equation A-1) throughout the integration circle. Replacing equation (A-13) into equation
(A-1) and integrating with respect to the variable ρ , the general solution for the scaled radial stress, σ̃r(ρ,θ),
results (see footnote associated with equation A-4)

σ̃r(ρ,θ) = q̃s +ξ ±2k c̃ ln
ρ

ξ
−ρ sinθ +ρ

−k C̃2(θ) (A-14)

where C̃2(θ) is an integration function of the variable θ (i.e., of the variable disregarded in the integration). At
θ = π/2 (on the segment AB) the solution for σ̃r(ρ,θ) given by equation (A-14) must be equal to the solution
for σ̃ AB

r (ρ) given by equation (A-7). In this way the integration function, C̃2(θ), is found to be

C̃2(θ) = 0 (A-15)

Replacing equation (A-15) into equation (A-14), the final solution for the scaled radial stress, σ̃r(ρ,θ), be-
comes

σ̃r(ρ,θ) = σ̃
AB

r (ρ)+ρ (1− sinθ) (A-16)

Note that equation (A-16) is the same equation (12) in the main text that applies to both contracting and
expanding cavities.

In the remainder of this appendix some observations about particular features of the solution derived above are
highlighted.
The first observation to be made is about the distribution of internal pressure for the cavity predicted by the
proposed solution. The scaled internal pressure function, p̃s(θ), is obtained by making ρ = 1 in equation
(A-16). This yields

p̃s(θ) = p̃A
s +1− sinθ (A-17)

As expected, equation (A-17) predicts that at the crown of the cavity (i.e., θ = π/2, see point A in Figure A-1)
the scaled internal pressure becomes equal to p̃A

s . Also, equation (A-17) predicts that at the spring line of the
cavity (i.e., at θ = 0, see point C in Figure A-1) and at the invert of the cavity (i.e., at θ = −π/2, see point D
in Figure A-1) the scaled internal pressures p̃C

s and p̃D
s are, respectively

p̃C
s = p̃A

s +1; p̃D
s = p̃A

s +2 (A-18)

Considering the scaling rule for internal pressure (see left-side equation 8), equation (A-18) predicts the fol-
lowing (unscaled) internal pressures at the spring line and invert of the cavity, respectively,

pC
s = pA

s + γ a; pD
s = pA

s +2γ a (A-19)

Equation (A-19) indicates that the cavity internal pressure increases with depth in a lithostatic manner, as if the
internal pressure is provided by an imaginary pressurized gas which has the same unit weight as the ground
surrounding the cavity.
The second observation to be made is about the stress state of the ground inside the integration circle in Figure
A-1. When deriving the solution of the problem stated in this figure, the assumption was made that the radial and
hoop stresses on the vertical segment AB were compatible with a plastic state (see equation A-4); nevertheless
no assumption was made about the relationship between radial and hoop stresses elsewhere throughout the
integration circle (e.g., whether these stresses are compatible with a plastic or with an elastic state). Subtracting
the solution for scaled hoop and radial stresses given by equations (A-13) and (A-16), respectively, gives (see
footnote associated with equation A-4)

σ̃θ (ρ,θ)− σ̃r(ρ,θ) = σ̃
AB

θ − σ̃
AB

r =±2 c̃ (A-20)

57



International Conference on Geomechanics, Geo-energy and Geo-resources IC3G 2016

Equation (A-20) indicates that in the proposed analytical solution the ground is in plastic state throughout the
entire integration circle and not just on the segment AB.

The third and last observation to be made is about the continuity of the stress field across the integration circle
boundary (see Figure A-1). For the proposed analytical solution to be a statically admissible solution, continuity
of radial and shear stresses must exist across the integration circle boundary; the hoop stress, though, may be
discontinuous (see, for example, Davis & Selvadurai 2002; Pietruszczak 2010).
The scaled radial stress on the integration circle boundary, inside the integration circle, is obtained from equa-
tion (A-16) making ρ = ξ . This gives

σ̃r(ξ ,θ) = q̃s +ξ (1− sinθ) (A-21)

The scaled hoop stress on the integration circle boundary, inside the integration circle, is similarly obtained
from equation (A-13) (see also equation A-20) and results (see footnote associated with equation A-4)

σ̃θ (ξ ,θ) = σ̃r(ξ ,θ)±2 c̃ (A-22)

The scaled vertical stress on the integration circle boundary, outside the integration circle, is obtained from the
left-side equation (9) considering y/a = ξ sinθ (see Figure A-1). This gives

σ̃
o

y (ξ ,θ) = q̃s +ξ (1− sinθ) (A-23)

The scaled horizontal stress on the integration circle boundary, outside the integration circle, is similarly ob-
tained from the right-side equation (9) and from equation (A-23) and results

σ̃
o

x (ξ ,θ) = Ko q̃s +Ko ξ (1− sinθ) (A-24)

The scaled radial and shear stresses, σ̃ o
n and τ̃ o

s respectively, on the integration circle boundary, outside the
integration circle, can be obtained with the following classical stress transformation formulae (see, for example,
Jaeger et al. 2007)

σ̃
o

n = σ̃
o

x cos2
θ + σ̃

o
y sin2

θ (A-25)

and

τ̃
o
s =

σ̃ o
y − σ̃ o

x

2
sin2θ (A-26)

Replacing equations (A-23) and (A-24) into equations (A-25) and (A-26), the scaled radial stress results

σ̃
o

n =
(
sin2

θ +Ko cos2
θ
)
[q̃s +ξ (1− sinθ)] (A-27)

and the scaled shear stress results

τ̃
o
s =−Ko−1

2
sin2θ [q̃s +ξ (1− sinθ)] (A-28)

Considering the case Ko = 1 (i.e., the horizontal and vertical in-situ stresses are the same) in equations (A-27)
and (A-28), the stresses σ̃ o

n and τ̃ o
s result to be, respectively

σ̃
o

n = q̃s +ξ (1− sinθ) (A-29)

and
τ̃

o
s = 0 (A-30)

Equation (A-29) is the same as equation (A-21), implying continuity of radial stresses across the integration
circle boundary (for the assumed case Ko = 1). Also, equation (A-30) and the fact that the shear stresses are
assumed null inside the integration circle (see Figure A-1), imply that there is also continuity of shear stresses
across the integration circle boundary (again for the assumed case Ko = 1). With regard to the hoop stresses on
the integration circle boundary, equation (A-22) indicates these stresses are discontinuous across the boundary;
the difference in hoop stresses when passing from the external to the internal sides of the integration circle
boundary are equal to 2 c̃ for contracting cavities and equal to −2 c̃ for expanding cavities. The observations
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regarding the continuity of radial and shear stresses across the integration boundary show that the proposed
solution is a statically admissible solution when the coefficient of earth pressure at rest is considered to be
equal to one.

Appendix B. Effect of internal pressure distribution and in-situ stresses on stability of shallow cavities
This appendix discusses the effect of considering two types of distributions of internal pressure for the cavity
as well as considering different values of coefficient of earth pressure at rest for the ground, on the factor of
safety.

The effect of the distribution of internal pressure on the factor of safety is discussed first.

Appendix A shows that the analytical solution for cohesionless ground proposed in this paper considers a
lithostatic distribution of internal pressure in the cavity, as if provided by an imaginary pressurized gas which
has the same unit weight as the ground surrounding the cavity. All the numerical finite-element (FLAC) models
discussed in the main text (Sections 4 and 6) consider such lithostatic distribution of internal pressure. Since
other authors have proposed lower bound solutions for which the distribution of internal pressure in contracting
cavities is uniform (see, for example, Davis et al. 1980; Mühlhaus 1985), numerical finite-difference (FLAC)
models have been set up and computed considering uniform distribution of internal pressure, to observe the
differences in resulting factors of safety with respect to the lithostatic distribution.
Figure B-1a represents the lithostatic distribution of internal pressure. The figure indicates the values of internal
pressure at four distinct points on the periphery of the cavity, namely the crown point A, the spring line point C,
the invert point D, and a point E located above point C, at a height equal to one half the radius of the opening.
Figure B-1b represents the uniform distribution of internal pressure. The figure indicates the three values of
uniform internal pressure to be investigated, corresponding to the values of lithostatic pressure at points a) A,
b) C and c) E.
Figures B-2 and B-3 show similar diagrams as in Figure 28, representing values of factor of safety as a function
of scaled cohesion for cylindrical contracting cavities at scaled depths, ξ = 2 and 4, respectively. In these
figures, the continuous lines correspond to the analytical solution given by equation (21), while the symbols
correspond to the different cases of internal pressure distribution shown in Figure B-1b. Note that in Figures
B-2 and B-3, the square symbols represent the lithostatic distribution of internal pressure (i.e., these symbols
are the same ones represented in Figure 28) while the circle symbols represent the uniform distribution for
case c) in Figure B-1b (i.e., the case of uniform distribution with a magnitude equal to the lithostatic pressure
value at point E in Figure B-1a). Table B-1 summarizes the input parameters and results for the different
cases represented by symbols in Figures B-2 and B-3. Inspection of the relative position of the symbols and
lines in Figures B-2 and B-3, together with values of factors of safety reported in Table B-1, suggests that
considering the uniform distribution for case a) in Figure B-1b gives the closest (conservative) equivalence with
the lithostatic distribution considered by the analytical solution. This means that if the analytical solution for
factor of safety presented in the main text is to be applied to cases in which the internal pressure is uniform,
then the reference scaled pressure at the crown, p̃s = p̃A

s (see Figure 14), will lead to a conservative estimate
of factor of safety. For completeness, Figure B-4 shows the shape of plastic zones in the numerical finite-
difference (FLAC) models for the first unstable situation for Case 2c in Table B-1, considering the various
distributions of internal pressure shown in Figure B-1. Without considering the extent of plastic failure region,
the shapes of the plastic failure region for uniform internal pressure distributions seem to be equivalent to those
obtained for the lithostatic internal pressure distribution.

A similar analysis of the effect of internal pressure distributions on the factor of safety was carried out for
cylindrical expanding cavities. Figures B-5, B-6 and B-7 and Table B-2 are equivalent to Figures B-2, B-3 and
B-4 and Table B-1, respectively, this time for the case of expanding cavities with scaled internal pressure (at
the crown) equal to two times the reference internal pressure given by equation (10) (i.e., p̃s = 2 p̃o

s ). Similar
observations as for the case of contracting cavities are made for the case of expanding cavities: if the analytical
solution for factor of safety presented in the main text is to be applied to cases in which the internal pressure is
uniform, then the reference scaled pressure at the crown, p̃s = p̃A

s (see Figure 14), has to be corrected by adding
the quantity 1/2 (or adding the quantity γ a/2 to the unscaled crown pressure, ps = pA

s ) to get a conservative
estimate for the factor of safety.
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Figure B-1. a) Lithostatic distribution of internal pressure for the cavity considered in the analytical model in
this study. Points A and C are located at the crown and spring line levels on the periphery of the cavity,

respectively, while point E is located at a vertical distance a/2 from the axis of the cavity. b) Uniform internal
pressure distribution considered for the cavity. The cases indicated as p(a)

sU , p(b)
sU and p(c)

sU correspond to
uniform pressure distributions with magnitudes equal to the pressure at points A, C and E, respectively.

Figure B-2. Graphical representation similar to that in Figure 28, showing the relationship between factor of
safety and scaled ground cohesion for cylindrical contracting cavities at the scaled depth, ξ = 2. The symbols
in the diagram represent the factors of safety obtained with the numerical (FLAC) models for the lithostatic

distribution of internal pressure and for the three cases of uniform pressure distributions represented in Figure
B-1b.
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Figure B-3. Graphical representation similar to that in Figure B-2 for cylindrical contracting cavities at the
scaled depth, ξ = 4.

Table B-1. Summary of input data and results for different cases of cylindrical contracting cavities and
internal pressure distributions solved with numerical (FLAC) models, represented in Figures B-2 and B-3.

Case ξ c̃ ps p(a)
sU p(b)

sU p(c)
sU FS FS (a)

psU FS (b)
psU FS (c)

psU
[-] [-] [kPa] [kPa] [kPa] [kPa] [-] [-] [-] [-]

2a 2.0 0.2 0.00 0.00 97.52 48.760 0.30 0.23 0.58 0.36
2b 2.0 0.5 0.00 0.00 46.17 23.085 0.75 0.59 1.44 0.90
2c 2.0 1.0 0.00 0.00 55.90 27.950 1.50 1.17 2.88 1.80
2d 2.0 2.0 0.00 0.00 72.80 36.400 3.00 2.35 5.77 3.59
2e 2.0 5.0 0.00 0.00 45.36 22.680 7.50 5.87 14.41 8.98

4a 4.0 0.2 0.00 0.00 28.60 14.300 0.19 0.17 0.23 0.19
4b 4.0 0.5 0.00 0.00 71.64 35.820 0.48 0.41 0.57 0.48
4c 4.0 1.0 0.00 0.00 28.00 14.000 0.97 0.83 1.14 0.96
4d 4.0 2.0 0.00 0.00 38.19 19.095 1.94 1.65 2.28 1.92
4e 4.0 5.0 0.00 0.00 104.81 52.405 4.84 4.13 5.71 4.80

The column labelled as FS lists the values of factor of safety for the case of lithostatic internal pressure with scaled crown
internal pressure, p̃s = 0 (this column is the same as the column labelled FSN in Table 2). The columns labelled as FSpsU(a),
FSpsU(b) and FSpsU(c) list the values of factor of safety for uniform internal pressure corresponding to scaled values, p̃sU ,
equal to a) 0; b) γ a; and c) γ a/2, respectively (see Figure B-1).
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Figure B-4. First unstable situation in the computation of factor of safety with numerical (FLAC) models for
cases of cylindrical contracting cavities with various distributions of internal pressure, corresponding to Case
2c in Table B-1. The cases correspond to the following internal pressure distributions: a) lithostatic, with zero

crown pressure; uniform pressure equal to b) zero; c) γa and d) γa/2.
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Figure B-5. Graphical representation similar to that in Figure B-2 for cylindrical expanding cavities at the
scaled depth, ξ = 2.

Figure B-6. Graphical representation similar to that in Figure B-5 for cylindrical expanding cavities at the
scaled depth, ξ = 4.
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Table B-2. Summary of input data and results for different cases of cylindrical expanding cavities and internal
pressure distributions solved with numerical (FLAC) models, represented in Figures B-5 and B-6.

Case ξ c̃ ps p(a)
sU p(b)

sU p(c)
sU FS FS (a)

psU FS (b)
psU FS (c)

psU
[-] [-] [kPa] [kPa] [kPa] [kPa] [-] [-] [-] [-]

2a 2.0 0.2 195.04 195.04 292.56 243.800 0.30 0.36 0.14 0.21
2b 2.0 0.5 92.34 92.34 138.51 115.425 0.75 0.89 0.34 0.53
2c 2.0 1.0 111.80 111.80 167.70 139.750 1.50 1.78 0.68 1.06
2d 2.0 2.0 145.60 145.60 218.40 182.000 3.01 3.56 1.37 2.12
2e 2.0 5.0 90.72 90.72 136.08 113.400 7.52 8.89 3.43 5.30

4a 4.0 0.2 171.60 171.60 200.20 185.900 0.19 0.22 0.16 0.18
4b 4.0 0.5 429.84 429.84 501.48 465.660 0.49 0.55 0.40 0.46
4c 4.0 1.0 168.00 168.00 196.00 182.000 0.97 1.10 0.79 0.92
4d 4.0 2.0 229.14 229.14 267.33 248.235 1.94 2.20 1.59 1.85
4e 4.0 5.0 628.86 628.86 733.67 681.265 4.85 5.49 3.97 4.61

The column labelled as FS lists the values of factor of safety for the case of lithostatic internal pressure with scaled crown internal
pressure, p̃s = 2 p̃o

s (this column is the same as the column labelled FSN in Table 2). The columns labelled as FSpsU(a), FSpsU(b)
and FSpsU(c) list the values of factor of safety for uniform internal pressure corresponding to scaled values, p̃sU , equal to a) 2 p̃o

s ;
b) 2 p̃o

s + γ a; and c) 2 p̃o
s + γ a/2, respectively (see Figure B-1).

Figure B-7. First unstable situation in the computation of factor of safety with numerical (FLAC) models for
cases of cylindrical expanding cavities with various distributions of internal pressure, corresponding to Case

2c in Table B-2. The cases correspond to the following internal pressure distributions: a) lithostatic, with
pressure equal to 2 p̃o

s ; uniform pressure equal to b) 2 p̃o
s ; c) 2 p̃o

s + γ a and d) 2 p̃o
s + γ a/2.
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The effect of the coefficient of earth pressure at rest, Ko, on the factor of safety is discussed next.

The analytical solution presented in Section 3 and Appendix A was shown to be a statically admissible solution
satisfying continuity of radial and shear stresses across the integration circle boundary when the coefficient
Ko associated with the in-situ stresses is equal to one (see Figure A-1). Numerical finite-difference (FLAC)
models considering coefficients Ko different from one have been set up and computed to inspect the differences
in (factor of safety) results with respect to the base case, Ko = 1.
With regard to equations (1) and (2) (see also equation 9) and in view that the ground is assumed to satisfy
a Tresca shear failure criterion, considering an arbitrary point below the ground surface before the opening is
made (e.g., point S in Figure B-8a), the scaled in-situ horizontal stress, σ o

x , must lie in between the values σ̃ o
x min

and σ̃ o
x max to avoid the ground being in plastic state prior to excavation.

In the analysis that follows, the ground is assumed not to reach the plastic state (i.e., to be in elastic state) prior
to excavation above the level of the invert of the cavity (i.e., above the level of point D, at the ordinate y =−a,
in Figure B-8a).
Considering that the scaled in-situ vertical stress, σ o

y , is lithostatic, the minimum scaled in-situ horizontal stress,
σ̃ o

x min, is said to be associated with a minimum coefficient of earth pressure at rest, K min
o , i.e.,

σ̃
o

x min = K min
o σ̃

o
y (B-1)

In view of equations (3) and (4), and the fact that horizontal and vertical in-situ stresses are assumed to be
principal stresses, the scaled stress σ̃ o

x min is also related to the scaled cohesion, c̃, as follows (see point FA in
Figure B-8b)

σ̃
o

x min = σ̃
o

y −2 c̃ (B-2)

Equating the right-sides of equations (B-1) and (B-2), and replacing σ̃ o
y by the left-side equation (9), consid-

ering also y/a = −1 (i.e., the ground above the elevation of point D in Figure B-8a being in elastic state), the
minimum coefficient of earth pressure at rest, K min

o , results to be

K min
o = 1− 2 c̃

q̃s +ξ +1
(B-3)

A similar analysis as above can be done with regard to the maximum coefficient of earth pressure at rest, K max
o .

The maximum scaled in-situ horizontal stress, σ̃ o
x max, is said to be associated with the coefficient K max

o as
follows

σ̃
o

x max = K max
o σ̃

o
y (B-4)

In view of equations (3) and (4), the scaled stress σ̃ o
x max is related to c̃ as follows (see point FP in Figure B-8b)

σ̃
o

x max = σ̃
o

y +2 c̃ (B-5)

Equating the right-sides of equations (B-4) and (B-5), and again replacing σ̃ o
y by the left-side of equation (9)

(considering y/a =−1), the maximum coefficient of earth pressure at rest, K max
o , results to be

K max
o = 1+

2 c̃
q̃s +ξ +1

(B-6)

Figure B-9 shows the graphical representation of equations (B-3) and (B-6). In Figure B-9, the vertical axis
represents the minimum or maximum values of coefficients of earth pressure at rest, K min

o or K max
o , respectively,

while the horizontal axis represents the scaled cohesion, c̃. In Figure B-9, the different sets of curves below and
above the ordinate 1.0 correspond to limiting values of coefficents K min

o and K max
o , respectively, computed with

equations (B-3) and (B-6), respectively, to avoid the ground reaching the plastic state above the level of the
invert before excavation. The symbols in the diagram in Figure B-9 represent the values of coefficients of earth
pressure at rest, Ko, considered in the finite-difference (FLAC) models. The selected values of coefficients Ko

cover the range 0 to 2 in increments of 0.5 and consider only cases for which the ground is initially in elastic
state above the level of the invert of the opening.

Figure B-10 shows a similar diagram as in Figure 28, representing values of factor of safety as a function of
scaled cohesion for cylindrical contracting cavities at scaled depths, ξ = 2 and 4, respectively. In Figure B-10,
the continuous lines correspond to the analytical solution given by equation (21), while the symbols correspond
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to the different cases of coefficients of earth pressure at rest, Ko, (i.e., represented as symbols in Figure B-9).
Table B-3 summarizes the input parameters and results for the various numerical models. In Table B-3, the
column labelled as FS lists the values of factor of safety obtained with the numerical models that consider
a coefficient, Ko = 1, while the columns labelled as FS (a)

Ko , FS (b)
Ko , FS (c)

Ko and FS (d)
Ko , correspond to factors of

safety obtained with the numerical models that consider coefficients equal to 1.5, 0.5, 2, and 0, respectively.
Inspection of the position (and superposition) of the various symbols in Figure B-10, and comparison of the
values of factors of safety in the columns of Table B-3, reveal that the values of factor of safety obtained with
the numerical models are the same for all considered values coefficients, Ko. This suggests that the proposed
analytical solution that corresponds to a coefficient Ko = 1 may also be applicable to situations in which the
coefficient Ko is different from one. For completeness, Figure B-11 shows the shape of plastic zones in the
numerical finite-difference (FLAC) models for the first unstable situation for Case 2d in Table B-3, for values
of coefficients Ko equal to 1, 0.5 and 1.5. Without considering the development of plastic failure for the ground
below the invert of the cavities, the development of the plastic failure region at the sides and above the cavity
for the case Ko = 1 results equivalent to that obtained for the cases Ko = 0.5 and 1.5.

A similar analysis of the effect of the coefficient Ko on the factor of safety was carried out for cylindrical
expanding cavities. Figures B-12 and B-13 and Table B-4 are equivalent to Figures B-10 and B-11 and Table
B-3, respectively, this time for the case expanding cavities. Similar observations about the resulting factors of
safety in numerical models that consider values of coefficients Ko equal to one and different from one can be
made from Figures B-12 and B-13 and Table B-4.

Figure B-8. Determination of the minimum and maximum values of coefficients of earth pressure at rest, K min
o

and K max
o , respectively, compatible with an elastic in-situ stress field above an arbitrary depth, prior to

excavation.

66



International Conference on Geomechanics, Geo-energy and Geo-resources IC3G 2016

Figure B-9. Graphical representation of the relationship between the minimum and maximum values of
coefficients of earth pressure at rest, K min

o and K max
o , respectively, as a function of scaled cohesion for zero

scaled surcharge load on the ground surface. The symbols in the diagram represent the cases solved with the
numerical (FLAC) models.

Figure B-10. Graphical representation similar to that in Figure 28, showing the relationship between factor of
safety and scaled ground cohesion for cylindrical contracting cavities at the scaled depths, ξ = 2 and 4. The

symbols in the diagram represent the factors of safety obtained with the numerical (FLAC) models for
different values of coefficients of earth pressure at rest indicated in the vertical axis of Figure B-9.

67



International Conference on Geomechanics, Geo-energy and Geo-resources IC3G 2016

Table B-3. Summary of input data and results for different cases of cylindrical contracting cavities and
coefficients of earth pressure at rest solved with numerical (FLAC) models, represented in Figure B-10.

Case ξ c̃ ps FS FS (a)
Ko FS (b)

Ko FS (c)
Ko FS (d)

Ko
[-] [-] [kPa] [-] [-] [-] [-] [-]

2c 2.0 1.0 0.00 1.50 NA NA NA NA
2d 2.0 2.0 0.00 3.00 3.00 3.00 NA NA
2e 2.0 5.0 0.00 7.50 7.50 7.51 7.50 7.50

4c 4.0 1.0 0.00 0.97 NA NA NA NA
4d 4.0 2.0 0.00 1.94 1.94 1.94 NA NA
4e 4.0 5.0 0.00 4.84 4.84 4.84 4.84 4.84

The column labelled as FS lists the values of factor of safety for the case of hydrostatic in-situ
stresses, Ko = 1 (this column is the same as the column labelled FSN in Table 2). The columns
labelled as FSKo(a), FSKo(b), FSKo(c) and FSKo(d) list the values of factor of safety for coefficients
of earth pressure at rest, Ko, equal to a) 1.5; b) 0.5; c) 2; and d) 0, respectively.
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Figure B-11. First unstable situation in the computation of factor of safety with numerical (FLAC) models for
cases of cylindrical contracting cavities with different values of coefficients of earth pressure at rest

corresponding to Case 2d in Table B-3. The plots on the left side represent the elements that undergo plastic
failure in tension or compression, while the plots on the right side represent the corresponding contours of

magnitude of displacements. The three pairs of plots correspond to coefficients of earth pressure at rest, Ko,
equal to a) 1.0; b) 0.5; and c) 1.5, respectively.
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Figure B-12. Graphical representation similar to that in Figure B-10 for cylindrical expanding cavities.

Table B-4. Summary of input data and results for different cases of cylindrical expanding cavities and
coefficients of earth pressure at rest solved with numerical (FLAC) models, represented in Figure B-12.

Case ξ c̃ ps FS FS (a)
Ko FS (b)

Ko FS (c)
Ko FS (d)

Ko
[-] [-] [kPa] [-] [-] [-] [-] [-]

2c 2.0 1.0 111.80 1.50 NA NA NA NA
2d 2.0 2.0 145.60 3.01 3.01 3.01 NA NA
2e 2.0 5.0 90.72 7.52 7.52 7.51 7.52 7.52

4c 4.0 1.0 168.00 0.97 NA NA NA NA
4d 4.0 2.0 229.14 1.94 1.94 1.94 NA NA
4e 4.0 5.0 628.86 4.85 4.85 4.85 4.85 4.85

The column labelled as FS lists the values of factor of safety for the case of hydrostatic in-situ
stresses, Ko = 1 (this column is the same as the column labelled FSN in Table 2). The columns
labelled as FSKo(a), FSKo(b), FSKo(c) and FSKo(d) list the values of factor of safety for coefficients
of earth pressure at rest, Ko, equal to a) 1.5; b) 0.5; c) 2; and d) 0, respectively.
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Figure B-13. Graphical representation similar to that in Figure B-11 for cylindrical expanding cavities,
corresponding to Case 2d in Table B-4.
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Appendix C. Derivation of Limit Equilibrium (Terzaghi) solution for contracting and expanding
cavities in dry cohesive ground
This appendix presents the derivation of equations (32) and (38) in the main text. The derivation follows a
similar analysis (including the use of the same notation) as in Terzaghi (1943) when describing arching effect
in soils.
Figure C-1 shows the problem to be analyzed. A block (representing the ground above the opening) of height,
D, and unit weight, γ , rests above the (assumed flat) roof of an opening of (in-plane) width 2B. The flat roof
of the opening in question is either the flat roof of long tunnel (of in-plane width 2B and unit length along
the out-of-plane direction) or the flat roof of a square cavern (of width 2B in both in-plane and out-of-plane
directions). The cases of long tunnel and square cavern are distinguished by introduction of the same parameter
k used in the formulation in Appendix A.

Figure C-1. Limit equilibrium analysis of a rectangular prismatic block representing the ground above the flat
roof of a tunnel or square cavern —adapted from Terzaghi (1943).

A support pressure, ps, is assumed to act at the base of the rectangular prismatic block in Figure C-1 (i.e., on
the roof of the tunnel/cavern). A surcharge load, qs, is assumed to act at the top of the block (i.e., on the ground
surface). The rectangular prismatic block in Figure C-1 is assumed to be at the limit state of equilibrium.
Therefore, full shear resistance is assumed to develop on the sides of the prismatic block. Considering the case
of purely cohesive ground, the shear resistance is provided by the cohesion, c, of the ground. For the case
of contracting openings, the shear resistance per unit area of prism side is represented by vectors, c, pointing
upward, as indicated in Figure C-1. For the case of expanding openings, the shear resistance (per unit area of
prism side) is represented by the same vectors, c, but pointing downward (note that in Figure C-1, the symbol
± is used as a prefix label of the cohesion vector to indicate either of the cases mentioned above).
Note that in this appendix, in contrast with the notation used in the equations in Section 5, the critical cohesion
associated with the cavity in a critical state of equilibrium is denoted simply as c, rather than as ccr.
Figure C-1 shows the free body diagram of a horizontal slice of block of differential height, dz, at a depth, z,
below the ground surface. On the top surface of this (differential) slice, the acting force is the vertical stress, σv,
multiplied by the slice area, (2B)k, where k = 1 for the tunnel case, and k = 2 for the square cavern case. On
the bottom surface of the (differential) slice, the acting force is the vertical stress, σv + dσv, multiplied by the
same area. On the sides of the (differential) slice, the acting forces are 2cdz for the tunnel case, and 4(2B)cdz
for the square cavern case. The weight of the (differential) slice is the unit weight, γ , of the slice multiplied by
the volume of the slice, (2B)k dz, again, with k = 1 for the tunnel case and k = 2 for the square cavern case.
Considering equilibrium of the acting forces for the horizontal slice in Figure C-1, the following total differen-
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tial equation of the unknown function, σv, is obtained 3

dσv

dz
± k

c
B
− γ = 0 (C-1)

Equation (C-1) can be integrated to obtain the solution for the function, σv, using the following boundary
condition

σv = qs at z = 0 (C-2)

The integration and application of the boundary condition gives 4

σv(z) = qs + z
(

γ∓ k
c
B

)
(C-3)

The cavity roof pressure, ps, required to maintain equilibrium of the prismatic block in Figure C-1 is found
using the following condition

σv = ps at z = D (C-4)

Application of equation (C-4) in equation (C-3) gives (see footnote associated with equation C-3)

ps = qs +D
(

γ∓ k
c
B

)
(C-5)

Equation (C-5) allows definition of the equations for the required support pressure presented in the main text
for the cases of contracting and expanding openings as follows.
For the case of contracting cavity, the limit equilibrium model by Terzaghi specifies that the required pressure
on the flat roof of the opening is to be computed considering a prismatic block of width 2B1 (see Figure 5). This
width is obtained by adding the width of the cavity, 2B0, and the top width of two active wedges developing on
the sides of the opening (see Figure 5). For the case of purely cohesive ground, the top width of the two active
wedges is two times the height of the opening, H (see Figure 5). Based on Terzaghi’s specifications, Figure
33 shows how the limit equilibrium model by Terzaghi (Figure 5) applies to the case of contracting circular
or spherical openings of radius, a, and depth, h, as considered in Section 3. In such case, the width, B, of the
prismatic block in Figure C-1 becomes (see Figure 33)

B = B1 = 3a (C-6)

while the height, D, of the prismatic block in Figure C-1 becomes

D = h−a (C-7)

Equation (32) in the main text is obtained by replacing equations (C-6) and (C-7) into equation (C-5) and
applying the scaling rules introduced by equations (6) through (8); also, as explained earlier on, the critical
cohesion in equation (C-5) is simply referred to as c rather than as ccr.

Figure 35 shows how the limit equilibrium model proposed by Terzaghi (1943) (see Figure 5) applies to the
case of circular or spherical expanding openings of radius, a, and depth, h, as considered in Section 3. For
expanding cavities, the most conservative estimation of the maximum pressure, ps, is obtained considering the
smallest possible width of the prismatic block above the opening in Figure 7; this is in view that the self weight
of the block contributes favorably to the stability, as it opposes the internal pressure. In such case, the width, B,
of the prismatic block in Figure C-1 becomes

B = a (C-8)

Equation (38) in the main text is obtained by replacing equations (C-7) and (C-8) into equation (C-5) and
applying the scaling rules introduced by equations (6) through (8); also, as explained earlier on, the critical
cohesion in equation (C-5) is simply referred to as c rather than as ccr.

3The symbol ± in equation (C-1) is used to indicate that addition (+) applies to contracting cavities and subtraction (−) applies to
expanding cavities.

4The symbol ∓ in equations (C-3) and (C-5) is used to indicate that subtraction (−) applies to contracting openings and addition
(+) applies to expanding openings.

73



International Conference on Geomechanics, Geo-energy and Geo-resources IC3G 2016

Appendix D. Derivation of analytical solution for contracting and expanding openings in cohesive-
frictional ground
This appendix presents the derivation of the analytical solution for contracting and expanding cavities (equa-
tions 49 and 50, respectively), for the case of cohesive-frictional ground. The derivation of the solution is
similar to the derivation provided for the case of purely cohesive ground in Appendix A.
To simplify the formulation, the derivation considers a transformation rule for stresses that applies to the Mohr-
Coulomb shear failure criterion and which was used by several authors in the past (see, for example, Anagnostou
& Kovari 1993; Carranza-Torres 2003). For a material that obeys the Mohr-Coulomb failure criterion given by
equation (42), together with equations (43) and (44), the transformation rule consists in adding the term c/ tanφ

to all stress variables. Denoting the transformed stresses with capital letters, the transformed major principal
stress, S1, and the transformed minor principal stress, S3, are, respectively,

S1 = σ1 +
c

tanφ
; S3 = σ3 +

c
tanφ

(D-1)

Considering the transformed principal stresses S1 and S3 given by equation (D-1), the Mohr-Coulomb failure
criterion given by equation (42) becomes, after some algebra manipulation

S1 = Nφ S3 (D-2)

where Nφ is the passive reaction coefficient that is computed based on the internal friction angle, φ , using
equation (43).
The same transformation rule is then applied to all stress quantities in Figure A-1. The transformed radial and
hoop stresses, Sr and Sθ , respectively, at an arbitrary point P (see Figure A-1) are,

Sr = σr +
c

tanφ
; Sθ = σθ +

c
tanφ

(D-3)

The transformed (crown) cavity pressure and the transformed ground surcharge load (see Figure A-1), Ps and
Qs, respectively, are,

Ps = ps +
c

tanφ
; Qs = qs +

c
tanφ

(D-4)

When expressed in terms of the transformed stresses, Sr and Sθ , the same equilibrium equations discussed in
Appendix A (equations A-1 and A-2) are as follows.
For the radial direction

∂Sr

∂ρ
+ k

Sr−Sθ

ρ
+ γ a sinθ = 0 (D-5)

and for the tangential direction
1
ρ

∂Sθ

∂θ
+ γ a cosθ = 0 (D-6)

As explained in Appendix A, the first step to derive the solution of the problem in Figure A-1 is to solve for the
transformed stress quantities along the vertical segment defined by points A and B. The transformed stresses on
this segment are denoted with the superscript ‘AB’.
For the case of contracting cavities, as done in Appendix A, the assumption SAB

θ
= S1 and SAB

r = S3 is made
(i.e., the material along segment AB is assumed to be in plastic state), so equation (D-2) is written as

SAB
θ = Nφ SAB

r (D-7)

From equation (D-7), it also follows that
SAB

θ −Nφ SAB
r = 0 (D-8)

Similarly, for the case of expanding cavities, the assumption SAB
r = S1 and SAB

θ
= S3 is made (i.e., again the

material along segment AB is assumed to be in plastic state), so equation (D-2) is written as

SAB
θ = SAB

r /Nφ (D-9)
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From equation (D-9), it also follows that
SAB

θ −SAB
r /Nφ = 0 (D-10)

Along the segment AB, the equilibrium equation for the radial direction is obtained from equation (D-5), making
θ = π/2, to yield the following total differential equation of the variable ρ ,

dSAB
r

dρ
+ k

SAB
r −SAB

θ

ρ
+ γ a = 0 (D-11)

Considering the relationships between transformed hoop and radial stresses given by equations (D-7) and (D-9)
(for the case of contracting and expanding cavities, respectively), equation (D-11) can be integrated to obtain
the unknown transformed radial stress function, SAB

r (ρ), using the following boundary condition

SAB
r = Qs at ρ = ξ (D-12)

For the case of a contracting cavity, integration and application of the mentioned boundary condition give

SAB
r (ρ) = Qs

(
ξ

ρ

)−k(Nφ−1)

+
γ aρ

1− k(Nφ −1)

[(
ξ

ρ

)1−k(Nφ−1)

−1

]
(D-13)

and for the case of an expanding cavity

SAB
r (ρ) = Qs

(
ξ

ρ

)k(Nφ−1)/Nφ

+
γ aρ

1+ k(Nφ −1)/Nφ

[(
ξ

ρ

)1+k(Nφ−1)/Nφ

−1

]
(D-14)

The transformed internal pressure at the crown of the cavity, Ps (see Figure A-1), can be found applying the
following boundary condition to equations (D-13) and (D-14)

SAB
r = PA

s at ρ = 1 (D-15)

for the case of a contracting cavity, this yields

PA
s = Qs ξ

−k(Nφ−1)+
γ a

1− k(Nφ −1)

[
ξ

1−k(Nφ−1)−1
]

(D-16)

and for the case of an expanding cavity,

PA
s = Qs ξ

k(Nφ−1)/Nφ +
γ a

1+ k(Nφ −1)/Nφ

[
ξ

1+k(Nφ−1)/Nφ −1
]

(D-17)

Note that equation (D-16) is the same equation (49) presented in the main text for the case of contracting
cavities, while equation (D-17) is the same equation (50) presented in the main text for the case of expanding
cavities.

As explained in Appendix A, the second and third steps to derive the solution of the problem in Figure A-
1 involve integration of the equilibrium equations (in this case, equations D-5 and D-6) for the radial and
tangential directions, respectively. The process of integration is identical to the one presented in Appendix A.
To avoid repetition, only the final resulting expressions are presented below.
For both, contracting and expanding cavities, the solution of the transformed hoop stress, Sθ (ρ,θ), in the
integration circle is

Sθ (ρ,θ) = SAB
θ (ρ)+ γ aρ (1− sinθ) (D-18)

while the solution of the transformed radial stress, Sr(ρ,θ), is

Sr(ρ,θ) = SAB
r (ρ)+ γ aρ (1− sinθ) (D-19)

As done already in Appendix A, some observations about particular features of the solution presented above
are highlighted next.

The first observation is about the distribution of internal pressure. The transformed internal pressure function,
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Ps(θ), is obtained making ρ = 1 in equation (D-19). This gives

Ps(θ) = PA
s + γ a (1− sinθ) (D-20)

As with the case of cavities in purely cohesive ground, the cavity internal pressure increases with depth in a
lithostatic manner, as if the internal pressure is provided by an imaginary pressurized gas which has the same
unit weight as the ground surrounding the cavity. In particular, the transformed internal pressure at the spring
line and invert levels of the cavity, are, respectively,

PC
s = PA

s + γ a; PD
s = PA

s +2γ a (D-21)

The second observation is about the stress state inside the integration circle in Figure A-1. To derive the solution
of transformed stresses above, the assumption that stresses on the segment AB are compatible with a plastic state
was made for both, cases of contracting and expanding cavities (see equations D-7 and D-9, respectively).
For the case of contracting cavities, using the solution for Sθ (ρ,θ) given by equation (D-18) and the solution
for Sr(ρ,θ) given by equation (D-19), the operation, Sθ −Nφ Sr (as in equation D-8) results to be

Sθ −Nφ Sr =−γ aρ (1− sinθ)
(
Nφ −1

)
< 0 when θ 6= π/2 (D-22)

Equation (D-22) indicates that with the exception of the case θ = π/2, the operation Sθ −Nφ Sr is different
from zero. In view of equation (D-8), the stresses throughout the full integration circle (with the exemption of
the segment AB) are compatible with an elastic state (i.e., the ground is failing plastically only on the segment
AB).
A similar analysis as above can be made for the case of expanding cavities. Using the solution for Sθ (ρ,θ)
given by equation (D-18) and the solution for Sr(ρ,θ) given by equation (D-19), the operation, Sθ −Sr/Nφ (as
in equation D-10) results to be

Sθ −Sr/Nφ = γ aρ (1− sinθ)
Nφ −1

Nφ

> 0 when θ 6= π/2 (D-23)

Again, equation (D-23) indicates that with the exception of the case θ = π/2, the operation Sθ − Sr/Nφ is
different from zero. In view of equation (D-10), the stresses throughout the full integration circle (with the
exemption of the segment AB) are compatible with an elastic state (i.e., the ground is failing plastically only on
the segment AB).
The third and last observation is about continuity of the stress field across the integration circle boundary
(see Figure A-1). As discussed already in Appendix A, for the proposed analytical solution to be a statically
admissible solution, continuity of radial and shear stresses must exist across the integration circle boundary. It
was shown already that on the integration circle boundary, outside the integration circle, the initial stresses are
compatible with stresses inside the integration circle only when the coefficient of earth pressure at rest, Ko, is
considered to be equal to one. Only in this case the insitu shear stress, τ o

s , becomes null. Also, when Ko = 1 the
normal stress, σ o

n , on the integration circle boundary, outside the integration circle, takes the following form
(see equation A-29)

σ
o

n = qs + γ aξ (1− sinθ) (D-24)

On the integration circle boundary, inside the integration circle, the transformed radial stress can be computed
by making ρ = ξ in equation (D-19). This gives

Sr(ξ ,θ) = Qs + γ aξ (1− sinθ) (D-25)

Applying the inverse of the transformation in equation (D-3) to equation (D-25), the radial stress results,

σr(ξ ,θ) = qs + γ aξ (1− sinθ) (D-26)

Equation (D-26) being equal to equation (D-24) implies continuity of radial stresses across the integration
circle boundary (when Ko = 1) and implies that the proposed solution for cohesive-frictional material is also a
statically admissible solution when Ko = 1.
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