Math 3298 – Spring 2013
Exam 3 - 75 points
Name____________________

Show your work for full credit!

Some Multiple/Line Integral Stuff:

\[A(S) = \iint_D \sqrt{1 + \left(\frac{\partial z}{\partial x} \right)^2 + \left(\frac{\partial z}{\partial y} \right)^2} \, dA \]

\[\iiint_E f(x, y, z) \, dV = \int_c^d \int_a^b \int_f^g f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi \]

\[\iint_R f(x, y) \, dA = \iint_S f(x(u, v), y(u, v)) \left| \frac{\partial (x, y)}{\partial (u, v)} \right| \, du \, dv \]

\[\left| \frac{\partial(x, y)}{\partial(u, v)} \right| = \left| \begin{array}{cc} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{array} \right| \]

Parametric line segment: \(\mathbf{r}(t) = (1-t)\mathbf{r}_0 + t\mathbf{r}_1 \quad 0 \leq t \leq 1 \)

1. Determine the surface area of the portion of the paraboloid \(z = 9 - x^2 - y^2 \) above the \(xy \)-plane.

2. Rewrite the integral \(\iiint_{E} f(x, y, z) \, dz \, dy \, dx \) as iterated integrals in the order \(dz \, dx \, dy \) and \(dx \, dy \, dz \).

3. Evaluate \(\iiint_E z \, dV \) where \(E \) is the solid region between the spheres \(x^2 + y^2 + z^2 = 1 \) and \(x^2 + y^2 + z^2 = 9 \) in the first octant.
4. Use the transformation, \(u = x + y \) and \(v = x - y \) to change the variables for the integral
\[
\iint_R \ln(x + y) \, dA
\]
where \(R \) is defined as the interior of the square with vertices \((2,1)\), \((3,2)\), \((2,3)\) and \((1,2)\). Write an equivalent integral in terms of \(u \) and \(v \) over the transformed region. **Do not evaluate the integral.**

5. Evaluate the line integral \(\int_C xe^{yz} \, ds \) where \(C \) is the line segment joining the points \((0,0,0)\) to \((2,2,2)\).