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Abstract

The Poincaré disk model is one model for hyperbolic non-Euclidean 

geometry. It resides inside a circle called the "Boundary Circle". The inside 

of this boundary circle is the graphing area of the screen and it models the 

entire, infinite, two-dimensional hyperbolic plane. This geometry can be 

studied in a manner like Euclidean geometry, with axioms about points and 

lines, but as for Euclidean geometry, it is helpful to have physical models 

and models on which to draw.

In the past, to use the Poincaré model, we started with a Euclidean circle and 

points inside the circle. In this thesis we check for points on the circle i.e. 

points at infinity. They are not true points of the model. They represent 

directions at infinity. We use them to make some constructions in the model.
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    Chapter 1

Introduction

Euclidean geometry is a mathematical system attributed to the Greek 

mathematician Euclid of Alexandria. It is an axiomatic system in which 

all theorems are derived from a finite number of axioms. Hyperbolic 

geometry is similar to Euclidean geometry in many respects. It has 

concepts of distances and angle and there are many theorems common to 

both. But there are also striking differences.

Euclidean geometry is usually the most convenient to describe the 

physical world around us. On the other hand hyperbolic geometry 

describes relativistic space-time more conveniently.

The primary goal of this thesis is to incorporate points at infinity into a 

hyperbolic drawing program to draw geometric objects.

      Subsequent chapters will deal with basic principles of hyperbolic 
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     geometry, its models, incorporating points at infinity, results, and   

     directions of future research.



3

Chapter 2

Discovery of Hyperbolic Geometry

2.1 Euclidean Geometry

Euclidean geometry is a mathematical system attributed to the Greek 

mathematician Euclid of Alexandria. Euclid’s text “Elements” was the first 

systematic discussion of geometry. It has been one of the most influential 

books in history, as much for its method as for its mathematical content. The 

method consists of assuming a small set of intuitively appealing axioms, and 

then proving many other propositions (theorems) from those axioms. 

Although many of Euclid’s results had been stated by earlier Greek 

mathematicians, Euclid was the first to show how these propositions could 

be fitted together into a comprehensive deductive and logical system.

For over two thousand years, the adjective “Euclidean” was unnecessary 

because no other sort of geometry had been conceived. Euclid’s axioms 

seemed so intuitively obvious that any theorem proved from them was 



4

deemed true in an absolute sense. Today, however, many other self-

consistent geometries are known, the first ones having been discovered in 

the early 19th century. It also is no longer taken for granted that Euclidean 

geometry described physical space. An implication of Einstein’s theory of 

general relativity is that Euclidean geometry is only a good approximation to 

the properties of physical space if the gravitational field is not too strong.  

Euclidean geometry is an axiomatic system, in which all theorems are 

derived from a finite number of axioms. Euclid gives five postulates 

(axioms)

1) Any two points can be joined by a straight line.

2) Any straight line segment can be extended indefinitely in a straight 

line.

3) Given any straight line segment, a circle can be drawn having the 

segment as radius and one endpoint as center. 

4) All right angles are congruent.
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5) Parallel Postulate: If two lines intersect a third line in such a way that 

the sum of the inner angles on one side is less than the two right 

angles, then the two lines inevitably must intersect each other on that 

side if extended far enough.

2.2 Non Euclidean Geometry

Euclid’s fifth postulate had always been thought of mathematicians as 

special. Mathematicians never doubted its truth, but always thought of it as a 

theorem, which could be proved from the other four.

By the latter half of the 18th century, this problem of proving the fifth 

postulate had become really famous and many mathematicians had 

attempted to prove it. It was only a matter of time before the difficulty of the 

problem would cause some to conclude that this problem was unsolvable. It 

did not in any way mean that Postulate 5 was not provable. But this 

unproven idea made the discovery of non-Euclidean geometry inevitable. 

The logical transition behind it was that since neutral geometry, the 
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geometry was Euclid’s first four axioms, itself did not imply Postulate 5, 

there must be a new geometry different from Euclid’s based on the first four 

axioms and the negation of Postulate 5.

It has been observed many times in the history of science and mathematics, 

that when many people are working on the same problem, and when the 

communication between them is infrequent, it leads to multiple independent 

discoveries. In this sense, it seems that non-Euclidean geometry was 

discovered about four times in a span of twenty years. Apparently, Carl 

Friedrich Gauss was the first to discover non-Euclidean geometry. But he 

did not publish any papers related to his discoveries. He worked on this new 

geometry for many years and discovered many theorems.

In the meanwhile, he received a letter from Ferdinand Schweikart which 

indicated that Schweikart had himself discovered non-Euclidean geometry 

and had basically reached similar conclusions and results as Gauss.
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Neither of them published any papers though, and hence, when Janós Bolyai 

published his work on non-Euclidean geometry in the Appendix of his 

father’s book, it established the field of non-Euclidean geometry.

Bolyai was not the first person to have a paper published on non-Euclidean 

geometry. A Russian mathematics professor, Nocolai Lobachevsky had 

already published a paper on the topic. But since the paper was published in 

Russian, it was not well known in the European mathematical circles. Its 

translation into French and German later on reaffirmed Lobachevsky’s work 

and discoveries in the field of non-Euclidean geometry. 

Non-Euclidean geometry is technically any geometry which is not 

Euclidean. One of the most useful non-Euclidean geometries is the 

hyperbolic geometry, the geometry of hyperbolic space. This is the geometry 

discovered by Bolyai, Gauss, Lobachevsky and Schweikart [4]. Spherical or 

Elliptical geometry, the geometry of sphere, is another non-Euclidean 

geometry. 
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2.3 Hyperbolic Geometry

Hyperbolic geometry is defined as 

The geometry you obtain by assuming all the axioms for neutral geometry 

(geometry without a parallel postulate) and replacing Hilbert’s parallel 

postulate by its negation, which we call the “hyperbolic axiom”. [2]

Basically, in hyperbolic geometry, all of Euclid’s postulates hold, other than 

Postulate 5. Instead of the fifth postulate, an axiom called the Hyperbolic 

axiom is used. 

According to the Hyperbolic axiom:

If there exists a line l and a point P not on the line l, there are at least two 

distinct lines parallel to l passing through P. 

                                                              

                                 Figure 2.1 : Hyperbolic Axiom
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This postulate in turn, is used to prove and obtain many other useful results 

including:

 There exists a triangle whose angle sum is less than 180°.

 All quadrilaterals have angle sum less than 360°.

 If two triangles are similar, they are congruent, that is, if the angles of 

the triangle are equal, so are the sides.

To prove that any geometry is consistent, we need a model of it. A model is 

an interpretation of the primitive terms under which the axioms become true 

statements. Here interpretation does not allude to the “understanding of the 

meaning”, but in a more basic sense of “giving a meaning”. 

Unlike Euclidean geometry models that are infinite, some models of 

hyperbolic space can represent hyperbolic objects in a finite portion of 

Euclidean 2-space. The Beltrami-Klein model and the Poincaré circle model 

are examples of such finite models, while the Poincaré Upper half plane 

model, the Weierstrass model, and the Minkowski model are infinite 

structures embedded in Euclidean space. The finite models have boundaries, 



10

which play an important role in the definition of parallel lines in hyperbolic 

space. 

In the following sections, we discuss three of these models which are 

relevant to the present work.
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Chapter 3

Models of Hyperbolic geometry

3.1 The Weierstrass Model

Weierstrass demonstrated the consistency of hyperbolic geometry by 

constructing a model for it on a certain surface in Euclidean 3-space [1].

We now provide a brief development of this model following [1]. We will 

look at the interpretation of the primitive terms like “point”, “line”, “lies on” 

and “between” given by it. Before that, we need some preliminaries.

A “point” in real 3-dimensional space is represented by a triplet of real 

numbers such as X = (x, y, z). Such a triplet can also represent a vector in 3-

space. This vector can be visualized as an arrow from the origin O = (0, 0, 0)

to X. This lets us use the terms “vector” and “point” interchangeably. 
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Consider two vectors X1 = (x1, y1, z1) and X2 = (x2, y2, z2). Their Euclidean 

inner product or dot product is defined as:

X1.X2 = x1x2 + y1y2 + z1z2

To construct the model we also need another inner product, called the 

hyperbolic inner product.  For the above two vectors it can be defined as 

<X1, X2> = x1x2 + y1y2 – z1z2                                                                (3.1)

Two vectors X and Y are said to be e-orthogonal if X.Y = 0 and h-orthogonal

if <X, Y> = 0.

Now the equation of the plane in R³ is of the form <A, X> = b, where A is an 

h-normal of the plane. This means that A is h-orthogonal to any point that 

lies on this plane. 

We are now ready to develop the model. As noted earlier we provide 

interpretations of “point”, “line”, “lies on” and “between”. We will also use 

the symbol R³ to mean the Euclidean 3-space. 

A “point” is defined to be a point (or vector) X = (x, y, z) of R³ such that 
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<X, X> = -k² and z > 0. Such points comprise the “upper sheet” of a two 

sheeted hyperboloid in R³. We call this sheet H². The constant k is a measure 

of the curvature of the hyperbolic plane.

A “line” is defined to be the intersection of H² with a plane through the 

origin of R³. We know from Euclidean geometry that such intersection is one

branch of a hyperbola (Fig. 3.1).

                                    

                      Figure 3.1 : A “line” in the Weierstrass Model [1]

Now, a plane through the origin is given by an equation of the form 

<X, l> = 0, where l is an h-normal of the plane. Since l is an h-normal, any 

scalar multiple of l will also be an h-normal to the plane. We shall choose l

in such a way that <l, l> = k². This means that l is a point of the single-

sheeted hyperboloid with the equation <X, X> = k². (Fig. 3.2).
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Summarizing, a “line” is a section of H² by a plane through the origin of R³. 

There is a vector l, such that <l, l> = k² and the line consists of all X of H²

such that <X, l> = 0.

                              

                            

Figure 3.2 : The vector l on the hyperboloid of one sheet <X, X> = k²

corresponds to a “line” in the Weierstrass Model [1].

“Lines” are thus in one-to-one correspondence with the vectors l on <X, X> 

= k². We shall now refer to a “line” by either giving its equation <X, l> = 0

or by just giving its vector l.

A point X “lies on” the line if and only if <X, l> = 0.
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Given three distinct points A, B and C on the line, we will say that C “lies 

between” A and B if, when the line is traversed in either direction, the three 

points are encountered in one of the orders ACB or BCA.

Now we define a distance on H².

The Lobachevskian distance between two points P and Q of H² is the unique 

non–negative number d = dPQ  satisfying 

                                                                    (3.2)

With distance thus defined, we can look at the concept of an equidistant 

curve. We saw that a “line” in the Weierstrass model is defined by the 

section of H² cut by a plane passing through origin. Equidistant curves to 

one such line are defined as sections of H² cut by planes that are parallel to

the defining plane of the line. Note that the term “parallel” is used in the 

Euclidean sense here.
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This completes discussion of the concepts of the Weierstrass model that are 

relevant to the present work. The inquisitive reader may refer to [1] for a 

detailed treatment of the model.



     3.2 The Poincaré Disk Model

This model was formulated by the French mathematician Henri Poincaré. It 

is an example of a finite model for hyperbolic geometry and is conformal in 

nature. This means that angles are represented faithfully in this model. 

However, distance is distorted. We will now look at how this model 

interprets the primitive terms.

A “point” is the Poincaré Model is defined to be a point X = (x, y) in a 

Euclidean 2-space (R²), such that x² + y² < 1. Such points compromise the 

interior of a circle in R² with center at the origin and unit radius. Note that 

the points on the circumference are not included in the model. We shall refer 

to this circle as D or “The Poincaré Disk” interchangeably.
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   Figure 3.3 : The Poincaré model, showing lines l, m and n. We say l and n

are divergently parallel, m and n are intersecting and l and m are 

asymptotically parallel.

A “line” is defined to be a set of interior points of D that constitute an arc of 

a circle that is orthogonal to D (Fig 3.3). Open diameters of D are also 

defined as “lines” (open diameters can be thought of as arcs of a circle of 

infinite radius and obviously intersect D orthogonally). 

The term “lies on” and “between” have the same meaning as in the 

Euclidean case in this model.
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Since the Poincaré Model is conformal, the angle between two intersecting 

“lines” can be measured by measuring the angle between the tangents to the 

“lines” at the point of intersection.

     3.3 Isomorphism between the Poincaré and Weierstrass    

           Models 

Quoting from [1], 

An isomorphism between two models of a given set of postulates is a 

one-to-one correspondence between the elements, relations and 

operations (respectively) of one model and those of the other, such 

that whenever a given relationship holds among certain elements in 

one model, the corresponding relationship holds among the 

corresponding element in the other [1].

In the present work we use the Poincaré Model for a visual display of the 

results and do all the computations for the transformations using the 

Weierstrass Model. The following is a discussion of various aspects of the 
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isomorphism between the Weierstrass Model and the Poincaré Model that 

are relevant in this regard.

Consider the upper sheet of the hyperboloid <X, X> = -k². Without loss of 

generality we can take the value of k² to be 1. Now we have the upper sheet 

of the hyperboloid <X, X> = -1, which intersects the z–axis at the point (0, 0, 

1). If we project a point on this sheet down stereographically toward the 

point (0, 0, -1), the projected point lies in a circle of unit radius with its 

center at the origin, in the xy-plane. This is the Poincaré Disk that 

corresponds to the upper hyperboloid sheet (Fig 3.4).

The projection from the Weierstrass Model to the Poincaré model is given 

by: 

                                                                        (3.4)
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Figure 3.4 : Stereographic projection between the Weierstrass model (H²) 

and the Poincaré Model (D)

And the inverse projection is given by:
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                                           (3.5)

      3.4 The Klein Model

In geometry, the Klein Model, also called the projective model, the 

Beltrami-Klein model, the Klein-Beltrami model and the Cayley-Klein 

model, is a model of n-dimensional hyperbolic geometry in which the points 

of the geometry are in an n-dimensional disk, or ball, and the lines of the 

geometry are line segments contained in the disk; that is, with endpoints on 

the boundary of the disk. Along with the Poincaré half-plane model and the 

Poincaré disk model, it was first proposed by Eugenio Beltrami who used 

these models to show hyperbolic geometry was equiconsistent with 

Euclidean geometry. The distance function was first originated by Arthur 

Cayley and interpreted geometrically in hyperbolic geometry by Felix Klein.



22

          3.4.1 Relation to the Poincaré disk model 

Both the Poincaré disk model and the Klein model are models of hyperbolic 

space on the unit n-disk. If u is a vector of norm less than one representing a 

point of the Poincaré disk model, then the corresponding point of the Klein 

model is given by,

Conversely, from a vector s of norm less than one representing a point of the 

Klein model, the corresponding point of the Poincaré disk model is given by

Given two points on the boundary of the unit disk, which are called ideal 

points, the Klein model line is the chord between them, and the 

corresponding Poincaré model line is a circular arc on the two-dimensional 

subspace generated by the two boundary point vectors, orthogonal to the 

boundary of the disk. The relationship between the two is simply a 

projection from the center of the disk; a ray from the center passing through 
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a point of one model line passes through the corresponding point of the other 

model line.

Fig 3.5 : Relation between the Klein Model and the Poincaré Model.

Both types of disks, Poincaré’s and Klein’s, are superimposed on each other. 

On Poincaré’s disk model, a straight line looks like a circular arc (red) that is 

perpendicular to the disk edge (circumference at infinity). But on Klein’s 

disk, a straight line is straight (green).

[1]: The red and green curves are the same hyperbolic straight line. The 

points on these lines correspond to each other as shown.

[2]: Hyperbolic circles have a hyperbolic radius 1. Their centers are located 

at a hyperbolic distance of 1.5 from the origin. A circle is drawn as a circle 
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(red) on Poincaré disk, but as an ellipse (green) on Klein’s disk. As we can 

see, both centers are not at the visual centers of the circle or the ellipse. 
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Chapter 4

Tessellations and Hyperbolic Patterns

      4.1Tessellations

A tessellation is a pattern formed by arranging a basic sub-pattern in a 

mosaic fashion. The word “tessellate” is derived from the Ionic version of 

Greek word “tesseres”, which in English means “four”. The first tilings were 

made from square tiles. A regular tessellation is made up of congruent 

regular polygons. An example of a tessellation is shown below.
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Fig 4.1 : A Euclidean tessellation made using hexagons

     4.2 Repeating Hyperbolic Patterns

A repeating pattern is formed by replicating a basic sub-pattern called a 

motif. 
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Examples of a repeating hyperbolic pattern are the regular tessellations 

{p, q} of the hyperbolic plane. The notation {p, q} is used to denote a 

pattern which is comprised of regular p-sided polygons, q congruent copies 

of which meet at a vertex. The tessellation {6, 4} is shown in Fig 4.2. The 

polygon can be irregular also. But in this document, {p, q} is used to denote 

a regular tessellation of the hyperbolic plane.
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Fig 4.2 : A {6,4} tessellation.

Also, it is necessary that (p-2)(q-2) > 4 to obtain tessellation of the 

hyperbolic plane. Tessellations with (p-2)(q-2) = 4 or (p-2)(q-2) < 4 are 

Euclidean tessellation and spherical tessellations respectively. An example 

of a repeating hyperbolic pattern is shown in the figure below.
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Fig 4.3 : A repeating hyperbolic pattern. It is a computer generated version 

of Escher’s Circle Limit 1 pattern.
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Chapter 5

User Interface

      5.1 Description

The program is designed to allow the user to create a repeating pattern of the 

hyperbolic plane whose motif (or basic subpattern) is contained in one of the 

polygons that make up the regular hyperbolic tessellation {p,q} by p-sided 

polygons meeting q at a vertex.  Note that (p-2)(q-2) must be greater than 4 

for the tessellation to be hyperbolic.

      5.2 Using the Program

The program needs a data file on which to operate.  The name of the data file 

can be entered on the command line (e.g.:  % design cl1.dat ) or by clicking 

on the "Load" button at the top of the command area, which pops up a file 

selection dialog, which you can then use to select the desired data file.  A 

brief description of the format of the data file is contained in the file 

DATA_FORMAT.
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Depending on the data file, you may see a "framework" of hyperbolic 

triangles in the center of the bounding circle. One or more of these triangles 

make up the fundamental region of the symmetry group.  To get rid of the 

"framework" (which is for guidelines only -- not part of the pattern), click on 

the "Replicate" button --> a dialog will pop up asking you if you want a 

framework (click on "No"); Replicate will replicate out to the currently 

selected number of layers (see the "Layers" array below the command 

menu).

The "Move To" and "Draw To" are used to (inconveniently) draw Euclidean 

polylines in the motif.  Clicking on "Move To" allows you to start a new 

polyline at any place in the bounding circle where you click.  Click on 

"Draw To" and then on a point in the bounding circle to draw a line segment 

from the "Move To" point. Continue clicking "Draw To" then points in the 

bounding circle to extend the polyline.  The "Polyline" option (below) is a 

more convenient way of drawing polylines.
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To draw a "Circle" or a "Filled Circle" click down on its center and then, 

holding the mouse button down, drag out a radius. When you release the 

mouse button, the circles will be drawn.

"Filled Poly" creates a filled (Euclidean) polygon.  Clicking the left mouse 

button down establishes the first point; holding the button down allows you 

to "drag out" the first line segment; releasing the button establishes that line 

segment.  Repeated down-clicks, drags, and releases establish additional 

segments. Click on the middle button to end the polygon -- this 

automatically closes up the polygon.

"Filled pgon" works the same way as "Filled Poly" except that it creates a 

polygon whose edges are (approximations to) hyperbolic line segments.

"Polyline" works the same way as "Filled Poly" and "Filled pgon" except 

that it creates a Euclidean polyline (i.e. not filled and not necessarily closed).

"Hyperline" creates a single hyperbolic line segment (the program has no 

hyperbolic polylines yet). “Hyperline (inf)” creates a single hyperbolic line 
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segment having its endpoints at infinity. “Hyperline (ray)” creates a single 

hyperbolic ray having its endpoint at infinity. Click down on one endpoint, 

hold the button down and drag to the other endpoint; releasing the mouse 

button establishes the hyperbolic line.

"Divided Line" creates a Euclidean line segment that is divided into a 

number of subsegments.  The number of subsegments is specified in a dialog 

that pops up.  As with a "Hyperline", click down on one endpoint, hold the 

button down and drag to the other endpoint; releasing the mouse button 

establishes the line.

Note that the original line segment is straight, but transformed copies of it 

may be bent (into the number of specified subsegments).

"Euclid. Line", "Equidistant", and "Perpendicular" are just for drawing 

"guidelines" (that can be "traced" by drawing over them with other 

primitives) and are not part of the motif, and go away after a "Replicate".  

"Euclid. Line" just requires its two endpoints.  "Equidistant" and 
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"Perpendicular" require 3 points to be specified by the mouse: the first two 

point establish a hyperbolic line, the third point establishes a distance from it

in the "Equidistant" case, and it establishes a point through which the unique 

hyperbolic line passes that is perpendicular to the first hyperbolic line.

"Erase" simply erases the last primitive in the motif file – so it isn't the most 

convenient to use.

"Zoom" works -- just click on it a drag out a square -- the zoomed area 

("Normal" returns to the original picture).

The "Convert" feature allows user to "warp" a motif so that it works with 

new values of p and q.  After clicking on the "Convert" button, a dialog pops 

up asking for the new values of p and q. After these are entered, the program 

draws a garbled pattern (this is a bug).  To see the correct pattern, (1) click 

the "Save" button at the top of the command menu, which pops up a file

specification dialog, and save the warped motif to a new file, then (2) click 

the "Load" button and re-load the new file. Then the pattern will be more 

correct.  
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Clicking on "Print" brings up a print dialog; clicking on the Print button in 

the dialog sends the "Escher.ps" file to your default printer (you can name a 

different printer by filling in its name in the "printer name" text area).

The program currently supports 10 colors, number 1 through 10. 

Clicking on one of the "Layers" buttons will replicate the pattern to that 

many layers.
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Chapter 6

Points at Infinity

6.1 Research Problem

In the past, to use the Poincaré model, we started with a Euclidean circle and 

points inside the circle. In this thesis we check for points on the circle i.e. 

points at infinity. They are not true points of the model. They represent 

directions at infinity. We use them to make some constructions in the model.

6.2 Drawing lines and rays.

We consider two cases: to draw lines and rays in hyperbolic geometry in the 

Poincaré disk Model which have endpoints at infinity.

Case A: Line having endpoints at infinity i.e. when endpoints are anywhere 

on the circle whose equation is x² + y² = 1. 
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Fig 6.1 : Endpoints of the Line “Segment” are at Infinity.

From Fig 6.1 we see that ( xm ,ym ) is the mid point of the line connecting 

two points at infinity.

Therefore, we can say that

Also, we see that, 
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and

From the above two equations we can write,

This is true because, the circle is a unit circle.

Also, 
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Case B: We now consider a ray which has its endpoint at infinity.

Fig 6.2. Ray with Endpoint at Infinity.

We can write

-------- ( I )

Also,
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                           -------- (II)

(II) – (I) gives, 

From

  

we get 

Similarly,

From Case 1 and Case 2 of our calculations, we find the center of the circle 

of which the arc is a part.
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Chapter 7

Results

Using the calculations from the previous chapter, we draw lines and rays on 

the Poincaré disk model.

Result 1:

Fig 7.1 : Line Segment with its Endpoints at Infinity.
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Result 2:

Fig 7.2 : Ray with Endpoint at Infinity.
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In the following figures we see the output with repeating patterns.

Fig 7.3 : Repeating Patterns (Line Segment with Endpoints at Infinity).
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Fig 7.4 : Repeating Patterns (Ray with Endpoint at Infinity).
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Fig 7.5 : Repeating Patterns (Line Segment with none of its Endpoints at   

              Infinity).



46

CONCLUSION

In this research we designed and implemented methods to draw hyperbolic 

lines and rays having endpoints at infinity. The Poincaré model of 

hyperbolic geometry was used for representation of the patterns.

We tested the method by considering various points at infinity. The results 

obtained were correct. The user interface, which was a part of the design 

program, was also enhanced to handle the lines having endpoints at infinity. 

This research is a contribution to Dr. Dunham’s research on points at

infinity.
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Future Work

We propose the integration this combination of data structures and algorithm 

that draws complete hyperbolic lines and hyperbolic rays with Tarun 

Kapoor’s [3] work which draws repeating patterns based on the regular 

tessellation {p, ∞} and {∞, q}.
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Appendix 1 

Data Format

Here we explain the format of the data file that the hyperbolic “design” 

pattern uses. In most cases, it is not necessary to understand how it works. 

Unfortunately, the design program is not at all robust, so that any error in a 

data file will probably cause the program to crash.

This program can only create hyperbolic patterns that are based on the 

regular tessellations (p, q) of regular p-sided polygons meeting q at a vertex 

( (p-2), (q-2) must be > 4 to be hyperbolic). For simplicity, we will call a 

regular p-sided polygon a “pgon” and we always arrange that one of them, 

the “central pgon” is centered within the bounding circle.

Here is a sample data file, “cl2.dat” that creates Escher’s Circle Limit II 

pattern:

8 3 2 0 3 1
1 2 3
1 2 3
2 2 3 1
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1 3 1 2
2 2 3 1
1 3 1 2
2 2 3 1
1 3 1 2
2 2 3 1
1 3 1 2
20
0.000000e+00 0.000000e+00 1 4 6
1.368406e-01 1.379250e-01 1 5 6
2.575625e-01 2.575625e-01 1 5 6
2.575625e-01 1.893719e-01 1 5 6
1.837032e-01 1.160219e-01 1 5 6
1.215594e-01 5.387817e-02 1 5 6
6.756561e-02 0.000000e+00 1 5 6
0.000000e+00 0.000000e+00 1 6 6
6.756561e-02 0.000000e+00 2 4 6
1.215594e-01 5.387817e-02 2 5 6
1.837032e-01 1.160219e-01 2 5 6
2.575625e-01 1.893719e-01 2 5 6
2.575625e-01 2.575625e-01 2 5 6
3.747406907514156e-01 1.552226764822982e-01 2 5 6
2.188499e-01 0.000000e+00 2 5 6
6.756561e-02 0.000000e+00 2 6 6
2.188499e-01 0.000000e+00 3 4 6
3.747406907514156e-01 1.552226764822982e-01 3 5 6
3.645668590273164e-01 0.000000000000000e+00 3 5 6
2.188499e-01 0.000000e+00 3 6 6

In the first line, 8 3 2 0 3 1

The first number is the value of p, i.e. p = 8 in this case.

The second number is the value of q, i.e. q = 3 in this case (thus this pattern 

is based on the tessellation (8.3) ).
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The third number, 2 in this case, is the number of “different” sides of the 

central p-sided polygon that are used to form the fundamental region that 

contains the motif ( the other sides of the fundamental region are two radii 

from the center to two vertices of that p-sided polygon separated by 

2*(2*pi/p) ). This number must divide p, and p divided by this number is the 

number of copies of the motif that appears in the central p-sided polygon.

The fourth number, 0 is not used (it is there to maintain compatibility with 

older versions of this program).

The fifth number, 3 in this case, must be the highest “color” number of the 

colors used. The colors are numbered starting at 1 (black), 2(white), 3(red), 

4(green), and so on.

The sixth number, 1 in this case, indicates the kind of reflection symmetry 

the pattern has within the central p-sided polygon:

     0 indicates that there is no reflection symmetry (only rotation symmetry). 

     1 indicates that there is reflection symmetry across the perpendicular     

     bisector of one of the edges of the p-sided polygon.

     2 indicates that there is reflection symmetry across a radius (from the  

     center to a vertex of the p-sided polygon).
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The second line, 1 2 3, is the color permutation induced by rotating by 

2*(2*pi/p) (i.e., the third number of line 1 times 2*(2*pi/p). Note that this is 

the “array” representation of permutations (not the “mathematical”) one 

using cycles): the values listed are the values of perm[1], perm[2], perm[3], 

etc., so 1 2 3 represents the identity permutation in this case.

The third line, 1 2 3, is the color permutation induced by the reflection if the 

sixth number of line 1 is 1 or 2 (it is just the identity if the sixth number is 

0). In this case, 1 2 3 is the identity permutation.

The next p lines consist of a first number followed by a color permutation.

The first number of the first line indicates which edge (edge 2 in this case) of 

the transformed pgon should lie next to edge 1 of the central pgon. In 

general, if this first number is positive, the transformed pgon is rotated into 

position; if the number is negative, a reflection is used to move the 

transformed pgon into position. Note that the edges are numbered from 1 to 

p, not from 0 to p-1.

The color permutation of the first line, 2 3 1 (i.e. perm[1] = 2, perm[2] = 3, 

perm[3] = 1) is non-trivial in this case (i.e. black --> white --> red --> black)
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The first number of the second line indicates which edge (edge 1 in this 

case) of the transformed pgon should lie next to edge 2 of the central pgon. 

In this case, the color permutation is 3 1 2.

The first number of the third line indicates which edge (edge 2 in this case) 

of the transformed pgon should lie next to edge 3 of the central pgon. In this 

case the color permutation is 2 3 1.

The first number of the fourth line indicates which edge (edge 1 in this case) 

of the transformed pgon should lie next to edge 4 of the central pgon. In this 

case, the color permutation is 3 1 2.

.

.

.

The first number of the eighth line indicates which edge (edge 1 in this case) 

of the transformed pgon should lie next to edge 8 of the central pgon. In this 

case, the color permutation is 3 1 2.

The next line consists of a single number, the number of points that make up 

the motif.  It is 20 in this case.

Following that are 20 lines of 5 numbers each; each lines specifies one point.  

Each line has the following format:
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x-coordinate y-coordinate color type-of-point number-of-layers

where:

the x- and y-coordinates are within the central pgon (and hence within the

unit circle).

the color is one of 1, 2, ... , 10

the type-of-point is one of:

1 -- a "Move To"

2 -- a "Draw To"

3 -- a "Circle" (there should be two of these in succession)

4 -- start a (Euclidean) "Filled Poly"

5 -- continue a (Euclidean) "Filled Poly"

6 -- end a (Euclidean) "Filled Poly"

7 -- a "Hyperline" (there should be two of these in succession)

8 -- a "Filled Circle" (there should be two of these in succession)

9 -- start a (Euclidean) "Polyline"

10 -- continue a (Euclidean) "Polyline"

11 -- end a (Euclidean) "Polyline"

12 -- start a (hyperbolic) "Filled pgon"

13 -- continue a (hyperbolic) "Filled pgon"
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14 -- end a (hyperbolic) "Filled pgon"

the number-of-layers is not used (is there for compatibility with previous 

versions of the program).
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