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Abstract

This paper discusses repeating patterns on infinite skew polyhedra, which are triply periodic polyhedra. We exhibit
patterns on each of the three regular skew polyhedra. These patterns are each related to corresponding repeating
patterns in the hyperbolic plane. This correspondence willbe explained in the paper.

1. Introduction

A number of people, including M.C. Escher, created convex polyhedra with patterns on them. Later, in 1977
Doris Schattschneider and Wallace Walker designed non-convex rings of polyhedra, called Kaleidocycles,
that could be rotated, which are described in [Sch05]. The goal of this paper is to start an investigation of
repeating patterns on infinite skew polyhedra — i.e. triply periodic polyhedra. Figure 1 shows a finite piece
of such a pattern.

Figure 1: A pattern of fish on the tessellation{6, 6|3}.

We begin with a discussion of infinite skew polyhedra and showhow they are related to tessellations of
the hyperbolic plane. This relationship can also be appliedto repeating patterns on those respective surfaces.
Then we present patterns on each of the three regular triply periodic polyhedra. Finally, we indicate possible
directions of further investigation.



2. Patterns, Hyperbolic Geometry, and Infinite Skew Polyhedra.

A repeating patternis a pattern made up of congruent copies of a basic subpatternor motif. There can be
repeating patterns on the Euclidean plane, hyperbolic plane, sphere, and polyhedra. For hyperbolic geom-
etry, we use thePoincaŕe diskmodel whose points are represented by Euclidean points within a bounding
circle. Hyperbolic lines are represented by (Euclidean) circular arcs orthogonal to the bounding circle (in-
cluding diameters). This model distorts distances in such away that equal hyperbolic distances correspond
to ever-smaller Euclidean distances as figures approach theedge of the disk.

A regular tessellationis a special kind of repeating pattern on the Euclidean plane, the sphere, or the
hyperbolic plane. It is formed by regularp-sided polygons orp-gons withq of them meeting at each vertex,
and is denoted by the Schläfli symbol{p, q}. If (p− 2)(q− 2) > 4, the tessellation is hyperbolic, otherwise
it is Euclidean or spherical. Figure 2 shows the regular hyperbolic tessellation{4, 6}, and

Figure 2: The{4,6} tessellation.

An infinite skew polyhedron(in Euclidean 3-space) has regular polygon faces, a non-planar vertex figure,
and repeats infinitely in three independent directions [Wiki1]. Such polyhedra have been calledhyperbolic
tessellationssince they have negative angle defects at their vertices, but we don’t use this designation since
it conflicts with our definition above. (They have also been namedpolyhedral spongessince they can be
seen to divide space into polyhedral cells.)

Regular skew polyhedraare special cases of infinite skew polyhedra whose symmetry groups are flag-
transitive. There are three of them, as discovered by John Petrie in 1926 [Wiki1]. H.S.M. Coxeter used the
modified Schläfli symbol{p, q|n} to denote them, indicating that there areq p-gons around each vertex and
n-gonal holes [Cox73, Cox99]. Figure 1 above shows a fish pattern on{6, 6|3}. The other possibilities are
{4, 6|4} and{6, 4|4}, which we show below.

A smooth surface has auniversal covering surface: a simply connected surface with a covering map onto
the original surface. If the original surface is negativelycurved, universal covering surface is the hyperbolic
plane. We can extend this idea to regular skew polyhedra: thehyperbolic tessellation{p, q} is the universal
covering polyhedron for{p, q|n}. Since regular skew polyhedra have negative angle defect, their universal
covering polyhedra must be hyperbolic. We also extend the covering idea to repeating patterns on infinite
skew polyhedron.



Infinite skew polyhedra are also related to triply periodic minimal surfaces (TPMS), since some TRMS
surfaces are the (unique) minimal surfaces formed from the wire-frames (collection of edges) of infinite
skew polyhedra. Alan Schoen has done extensive investigations into TPMS [Schoen].

In the next three sections we show examples of patterns on theregular skew polyhedra and their associ-
ated hyperbolic patterns.

3. A Pattern on the{4, 6|4} Polyhedron

The{4, 6|4} polyhedron is the easiest to understand. It is based on the tessellation of 3-space by cubes. One
way to visualize it is to index the cubes by integers in each ofthe three directions and include only those
with one or three even indices as a solid figure (the complement is congruent to it). The{4, 6|4} polyhedron
is the boundary of that solid figure. Escher’s “Heaven and Hell” pattern was the only one that he realized
in each of the classical geometries: Euclidean, spherical,and hyperbolic. So it seems appropriate to also
place such an “angels and devils” pattern on a regular skew polyhedron, the{4, 6|4} polyhedron as shown
in Figure 3.

Figure 3: A pattern of angels and devils on the{4, 6|4} polyhedron.

Figure 4 shows the corresponding universal covering pattern based on the{4, 6} tessellation, which is
shown in red. One can see the six hyperbolic “squares” aroundeach vertex.

4. A Pattern on the{6, 4|4} Polyhedron

The {4, 6|4} polyhedron is the dual of the{4, 6|4} polyhedron. The{4, 6|4} polyhedron is based on the
Bitruncated cubic space-filling tessellation by truncatedoctahedra [Wiki3]. If we index rectangular lattice
positions in 3-space as in the previous section, we can placeone set of truncated octahedra at positions of
all even indices, and a complementary set a positions of all odd indices such that all octahedra are congruent
and fill space. The boundary between these two sets is the{4, 6|4} polyhedron. Figure 5 shows another
pattern of angels and devils on that polyhedron, with axes ofbilateral symmetry of the angels and devils
shown in red, blue, and green.

Figure 6 shows the corresponding universal covering pattern based on the{6, 4} tessellation. In Figure 6
we have emphasized the bilateral symmetry of the figures withthree families of lines colored red, green, and



Figure 4: A pattern of angels and devils showing the underlying{4, 6} tessellation.

Figure 5: A pattern of angels and devils on the{6, 4|4} polyhedron.



Figure 6: A pattern of angels and devils based on the{6, 4} tessellation.

blue, such that no two lines of a family intersect. These lines correspond zigzagging polylines in Figure 5,
with the red lines going roughly left-to-right, the blue lines going front-to-back, and the green lines oriented
approximately vertically. We could have similarly emphasized the bilateral symmetry in Figure 3, in which
the axes of bilateral symmetry would be square “loops” around the cubic arms and holes.

5. A Pattern on the{6, 6|3} Polyhedron

The {6, 6|3} polyhedron may be the trickiest to understand. It is formed from truncated tetrahedra with
the triangular faces removed. Such triangular faces from four truncated tetrahedra are then placed in a
tetrahedral arrangement (around a small invisible tetrahedron) [Wiki2]. A side view is shown in Figure 1.
Figure 7 shows a “top” view looking down at one of the vertices(where six hexagons meet). We placed
a pattern of angular fish on this polyhedron. Figure 8 shows the corresponding universal covering pattern
based on the{6, 6} tessellation.

All the fish along a backbone line in Figure 8 are the same colorand swim the same direction. No two
backbone lines of the same color intersect. In fact the pattern has (perfect) 3-color symmetry. The same
comments also apply to the pattern of Figures 1 and 7. In the upward facing planes in Figure 1, the red fish
swim lower right to upper left, the blue fish swim lower left toupper right, and the green fish swim toward
the viewer. In fact the backbone lines on the{6, 6|3} polyhedron are embedded Euclidean lines.

6. Observations and Future Work

We have shown patterns on each of the regular skew polyhedra,but certainly many more patterns could be
drawn on them. It would also be possible to draw patterns on other infinite but non-regular skew polyhedra.
In creating such patterns, it is desirable to take advantageof the combinatorics and any underlying geometry



Figure 7: A top view of a pattern of fish on the
{6, 6|3} polyhedron.

Figure 8: A pattern of fish based on the{6, 6}
tessellation.

of the skew polyhedra. This was perhaps best done above by thepattern on the{6, 6|3} polyhedron. It
would also be nice to similarly take advantage of the embedded lines in the{6, 4|4} polyhedron, which
could be done if we used the hexagon pattern of fish that we usedfor the{6, 6|3} polyhedron. However, the
fish would then alternate directions along a backbone line. In summary, there are many more patterns on
skew polyhedra to investigate.
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