3.1 Inductively defined sets

Take

\[A = \{3, 5, 7, \ldots \} . \]

Although we can’t be entirely certain, presumably this means that

\[A = \{2n + 3 \mid n \in \mathbb{N}\} . \]

Another way to describe \(A \) is to say:

\[3 \in A \text{ and, for all } n \in \mathbb{N}, \text{ if } n \in A, \text{ then } n + 2 \in A . \]

If we want to understand this last description of \(A \) as a definition, it has three (!) parts, as follows:

- There is an “initial” element of \(A \), namely 3.
- You construct additional elements of \(A \) by adding 2 to any element of \(A \).
- Nothing else belongs to \(A \).

We call this an “inductive definition” of \(A \).
General form of inductive definition of a set

An inductive definition of a set S has the following form:

- **Basis**: Specify one or more “initial” elements of S.
- **Induction**: Give one or more rules for constructing “new” elements of S from “old” elements of S.
- **Closure**: Understand that S consists of exactly the elements that can be obtained by starting with the initial elements of S and applying the rules for constructing new elements of S.

Typically the closure condition is assumed (that is, left *unstated*), since it is standard.

There is another, more mathematically elegant way to understand the closure condition: *S is the least set satisfying both the basis and induction conditions.*

Another way to understand this: *S is the intersection of all sets that satisfy both the basis and induction conditions.*
Example: Let S be defined as follows:

- **Basis:** $0 \in S$.
- **Induction:** If $n \in S$, then $n + 1 \in S$.

Then $S = \mathbb{N}$.

And we can check this. How? We can verify that \mathbb{N} is the *least* set that satisfies the basis and induction conditions in the definition of the set S. [Actually, we'll check that \mathbb{N} is minimal, which for reasons we won't fully explain (yet?), guarantees that it is least.]

1. \mathbb{N} satisfies the basis condition.
2. \mathbb{N} satisfies the induction condition.
3. No proper subset of \mathbb{N} satisfies both conditions. Let's check this...

Take any proper subset X of \mathbb{N}. [We need to show that X doesn't satisfy both conditions. Why?] There is a *least* natural number n missing from X. (That's a powerful claim.) Consider two cases. [Why are these cases exhaustive?]

Case 1: $n = 0$. Then X doesn't satisfy the basis condition.

Case 2: $n = k + 1$ for some $k \in X$. Then X doesn't satisfy the induction condition. (Why?)
Another example: Let S be defined as follows:

- **Basis**: $0 \in S$.
- **Induction**: If $n \in S$, then $2n + 1 \in S$.

So what is S?

Notice: $2^0 - 1 = 0$, and for all $x \in \mathbb{N}$,

$$2^{x+1} - 1 = 2(2^x - 1) + 1.$$
An inductive definition of A^* and other languages

If A is an alphabet (a finite set), the set of all strings over A, A^*, can be defined as follows:

- **Basis:** $\Lambda \in A^*$.
- **Induction:** If $s \in A^*$ and $x \in A$, then $xs \in A^*$.

[What happens if we replace xs above by sx?]

Let L be the language over $\{0, 1\}$ defined as follows:

- **Basis:** $\Lambda \in L$.
- **Induction:** If $s \in L$, then $0s1 \in L$.

Let L be the language over $\{0, 1\}$ defined as follows:

- **Basis:**
 1. $\Lambda \in L$.
 2. If $x \in \{0, 1\}$, then $x \in L$.
- **Induction:** If $s \in L$ and $x \in \{0, 1\}$, then $xsx \in L$.
The set of binary trees over \(A \)

Define the set \(B \) of binary trees over set \(A \) as follows:

- **Basis**: \(\langle \rangle \in B \).
- **Induction**: If \(L, R \in B \) and \(x \in A \), then \(\langle L, x, R \rangle \in B \).

Note: This is the list representation of binary trees, given as a shorthand for the longer notation “tree\((L, x, R)\)” which is also presented in the text.

Define the set \(Twins \) over set \(A \) as follows:

- **Basis**: \(\langle \rangle \in Twins \).
- **Induction**: If \(x \in A \) and \(T \in Twins \), then \(\langle T, x, T \rangle \in Twins \).
For any nonempty binary tree $T = \langle L, x, R \rangle$, let
\[\text{left}(T) = L, \quad \text{root}(T) = x, \quad \text{right}(T) = R. \]

Define the set Opps over set $\{0, 1\}$ as follows:

- **Basis**: If $x \in \{0, 1\}$, then $\langle \langle \rangle, x, \langle \rangle \rangle \in \text{Opps}$.

- **Induction**: If $x, y \in \{0, 1\}$, $T \in \text{Opps}$, and $y \neq \text{root}(T)$,
 then $\langle T, x, \langle \text{right}(T), y, \text{left}(T) \rangle \rangle \in \text{Opps}$.
Define the set F of subsets of \mathcal{N} as follows:

- **Basis:** $\emptyset \in F$.
- **Induction:** If $n \in \mathcal{N}$ and $S \in F$, then $S \cup \{n\} \in F$.

What is F?

Can we prove this? (By showing that it is a minimal set satisfying the basis and induction conditions.)