The topics here are regular expressions (Section 11.1), finite automata (Section 11.2), and equivalence of regular expressions and finite automata (Section 11.3).

(We will skip most of the material in Section 11.4; the un-skipped material will be treated in the “Distinguishability” notes.) Here are some sample exercises: from Section 11.1, Exercises 1–4, 8, 9 (pages 702-704), from Section 11.2, Exercises 1–6 (pages 726-728), from Section 11.3, Exercises 1, 3b, 12 (pages 743-745).

1 Find a string of minimal length among those that belong to (the language represented by the regular expression) \((10 + 0)^*0\) but do not belong to (the language represented by the regular expression) \(0(1^*01^*0)^* + 1(0 + 1)^*\).

\(00\)

2 Give a regular expression for the language over \(\{a, b, c\}\) consisting of the strings that begin with \(a\) or don’t end with \(c\).

\[a(a + b + c)^* + \Lambda + (a + b + c)^*(a + b)\]

3 Give a regular expression for the language over \(\{a, b\}\) consisting of the strings that do not end with \(aaa\).

\[\Lambda + a + aa + (a + b)^*(b + ba + baa)\]

4 In proving things about DFAs it is convenient to use the following inductive definition of \(\Sigma^*\).

- **Basis**: \(\Lambda \in \Sigma^*\).
- **Induction**: If \(x \in \Sigma^*\) and \(a \in \Sigma\), then \(xa \in \Sigma^*\).

In accordance with this definition, we can define the reverse \(x^R\) of a string \(x\) recursively, as follows.

\[
\begin{align*}
\Lambda^R &= \Lambda \\
(xa)^R &= ax^R \quad (x \in \Sigma^*, a \in \Sigma)
\end{align*}
\]

Prove that for all \(a \in \Sigma\), \(a^R = a\).

\[
\begin{align*}
a^R &= (\Lambda a)^R \\
&= a\Lambda^R \quad \text{(recursive defn of reverse)} \\
&= a\Lambda \quad \text{(recursive defn of reverse)} \\
&= a
\end{align*}
\]
5 Prove that for all \(x \in \Sigma^* \),
\[
(x^R)^R = x
\]
by structural induction on \(x \) (using the inductive definition of \(\Sigma^* \) shown in the previous problem).

You may use the following two lemmas without proof.

Lemma 1. For all \(a \in \Sigma \), \(a^R = a \). (Result from previous problem.)

Lemma 2. For all \(x, y \in \Sigma^* \), \((xy)^R = y^Rx^R\).

Claim: For all \(x \in \Sigma^* \), \((x^R)^R = x\).

Proof by structural induction on \(x \).

Basis: \((\Lambda^R)^R = (\Lambda)^R = \Lambda\).

Induction: \(x \in \Sigma^* \), \(a \in \Sigma \).

IH: \((x^R)^R = x\).

NTS: \(((xa)^R)^R = xa\).

\[
\begin{align*}
((xa)^R)^R & = (ax^R)^R \quad \text{(defn reverse)} \\
& = (x^R)a^R \quad \text{(Lemma 2)} \\
& = xa^R \quad \text{(IH)} \\
& = xa \quad \text{(Lemma 1)}
\end{align*}
\]

6 Recall the inductive definition of the set of regular languages. The set of regular languages over an alphabet \(\Sigma \) is the least set of languages over \(\Sigma \) s.t.

1. \(\emptyset \) is a regular language,
2. \(\{\Lambda\} \) is a regular language,
3. For all \(a \in \Sigma \), \(\{a\} \) is a regular language,
4. If \(A \) is a regular language, so is \(A^* \),
5. If \(A \) and \(B \) are regular languages, so are \(A \cup B \) and \(AB \).

(Here, conditions 1–3 are the basis part of the inductive definition, and conditions 4 & 5 are the induction part.)

Prove by structural induction (on the inductive definition of the set of regular languages) that for every regular language \(L \), the language \(L^R = \{x^R \mid x \in L\} \) is regular.
You may use without proof the following two lemmas.

Lemma 1: For any language L, $(L^*)^R = (L^R)^*$.

Lemma 2: For any languages L_1, L_2, $(L_1 L_2)^R = L_2^R L_1^R$.

Claim: For every regular language L, the language L^R is regular.

Proof by structural induction on L (that is, on the inductive definition of the set of regular languages).

For convenience, we divide the presentation of the basis part of the proof into three cases (cases 1, 2 & 3 below). Similarly, we divide the presentation of the induction part of the proof into two cases (cases 4 & 5 below).

Case 1: $\emptyset^R = \emptyset$, which is regular (by condition 1 of the inductive defn of regular languages).

Case 2: $\{\Lambda\}^R = \{\Lambda^R\} = \{\Lambda\}$, which is regular (by condition 2 of the inductive defn of regular languages).

Case 3: For all $a \in \Sigma$, $\{a\}^R = \{a^R\} = \{a\}$, which is regular (by condition 3 of the inductive defn of regular languages).

Case 4: L is a regular language.
*IH: L^R is regular.
NTS: $(L^)^R$ is regular.

By IH, L^R is regular. It follows by condition 4 of the inductive defn of regular languages that $(L^R)^*$ is regular. And by Lemma 1, $(L^R)^* = (L^*)^R$.

Case 5: L_1 and L_2 are regular languages.
*IH: L_1^R and L_2^R are regular.
*NTS: $(L_1 \cup L_2)^R$ and $(L_1 L_2)^R$ are regular.

By IH, L_1^R and L_2^R are regular. It follows by condition 5 of the inductive defn of regular languages that $L_1^R \cup L_2^R$ and $L_2^R L_1^R$ are regular. It is clear that $L_1^R \cup L_2^R = (L_1 \cup L_2)^R$, and by Lemma 2, $L_2^R L_1^R = (L_1 L_2)^R$.
