Distinguishability

Recall A *deterministic finite automaton* is a five-tuple $M = (S, \Sigma, T, s_0, F)$ where

- S is a finite set of “states”,
- Σ is an alphabet — the “input alphabet”,
- $T : S \times \Sigma \to S$ is the “transition function”,
- $s_0 \in S$ is the “initial state”,
- $F \subseteq S$ is the set of “final” or “accepting” states.

We define the multi-step transition function $T^* : S \times \Sigma^* \to S$ as follows.

1. For any $s \in S$, $T^*(s, \Lambda) = s$.
2. For any $s \in S$, $x \in \Sigma^*$ and $a \in \Sigma$,
 \[T^*(s, xa) = T(T^*(s, x), a). \]

A string $x \in \Sigma^*$ is *accepted* by M if
\[T^*(s_0, x) \in F. \]

The language *recognized* by M, denoted $L(M)$, is the set of strings accepted by M. That is,
\[L(M) = \{ x \in \Sigma^* \mid T^*(s_0, x) \in F \}. \]
Distinguishing Strings

The use of a DFA to recognize an infinite language depends on the ability to adequately distinguish strings from one another without remembering everything about them.

Definition For any language L over Σ, and any $x, y, z \in \Sigma^*$, we say x and y are *distinguished by z wrt L* if exactly one of xz, yz is in L. That is,

$$xz \in L \text{ iff } yz \notin L.$$

Similarly, we say that x and y are *distinguishable wrt L* if there is some $z \in \Sigma^*$ that distinguishes them.

Example Consider the language

$$L = (\{0, 1\}\{0, 1\})^*.$$

The strings 0 and 01 are distinguishable wrt L. In fact, any string in $\{0, 1\}^*$ distinguishes them. The strings Λ and 01 are indistinguishable wrt L. (In fact, for this language, strings x and y are distinguishable iff exactly one of them belongs to L.)
Distinguishing Strings — Continued

For any language L over Σ, and any $x, y, z \in \Sigma^*$, we say x and y are distinguished by z wrt L if exactly one of xz, yz is in L. That is,

$$xz \in L \text{ iff } yz \notin L.$$

Similarly, we say that x and y are distinguishable wrt L if there is some $z \in \Sigma^*$ that distinguishes them.

Example Consider the language

$$L = \{0, 1\}^* \{01\}.$$

The strings 1 and 10 are distinguishable wrt L. They are distinguished by only one string: 1.
Distinguishability Lemma For any DFA

\[M = (S, \Sigma, T, s_0, F), \]

for any \(x, y \in \Sigma^* \), if \(x \) and \(y \) are distinguishable wrt \(L(M) \), then

\[T^*(s_0, x) \neq T^*(s_0, y). \]

Proof. Consider any \(x, y \in \Sigma^* \) s.t. \(T^*(s_0, x) = T^*(s_0, y) \). No \(z \in \Sigma^* \) can distinguish \(x \) and \(y \) wrt \(L(M) \). To see this, consider any \(z \in \Sigma^* \).

\[
T^*(s_0, xz) = T^*(T^*(s_0, x), z) \quad \text{(previous result)}
\]
\[
= T^*(T^*(s_0, y), z) \quad \text{(} T^*(s_0, x) = T^*(s_0, y) \text{)}
\]
\[
= T^*(s_0, yz) \quad \text{(previous result)}
\]

Consequently,

\[T^*(s_0, xz) \in F \iff T^*(s_0, yz) \in F, \]

which shows that \(xz \in L(M) \) iff \(yz \in L(M) \).
Distinguishability Theorem For any language L over Σ, if there are n strings over Σ s.t. each is distinguishable from all the others wrt L, then any DFA that recognizes L has at least n states.

Proof. Assume that x_1, x_2, \ldots, x_n are all distinguishable from one another wrt L. Assume that DFA $M = (S, \Sigma, T, s_0, F)$ recognizes L. By the Distinguishability Lemma, since any two distinct strings from x_1, x_2, \ldots, x_n are distinguishable wrt L, we can conclude that each of the states $T^*(s_0, x_1), T^*(s_0, x_2), \ldots, T^*(s_0, x_n)$ is distinct. Hence, M has at least n states.

Distinguishability Corollary For any language L over Σ, if there are infinitely many strings over Σ s.t. each is distinguishable from all the others wrt L, then there is no DFA that recognizes L. Consequently L is not regular.
Distinguishability Theorem For any language L over Σ, if there are n strings over Σ such that each is distinguishable from all the others wrt L, then any DFA that recognizes L has at least n states.

For any $n \in \mathbb{N}$, let

$$L_n = \{0, 1\}^* \{1\} \{0, 1\}^n.$$

So, in words, L_n is the set of all binary strings that end with a 1 followed by exactly n symbols.

Claim For any $n \in \mathbb{N}$, any DFA that recognizes L_n has at least 2^{n+1} states.

As you might imagine, we will prove this by constructing a set of 2^{n+1} binary strings that are all distinguishable from one another wrt L_n.

Then we can apply the Distinguishability Theorem.

Before proving this claim, let’s construct DFA’s for L_1 and L_2...
A DFA for $\{0, 1\}^* \{1\} \{0, 1\}^1$
A DFA for \(\{0, 1\}^* \{1\} \{0, 1\}^2 \)
Claim For any \(n \in \mathbb{N} \), any DFA that recognizes
\[
L_n = \{0, 1\}^* \{1\}\{0, 1\}^n.
\]
has at least \(2^{n+1} \) states.

Proof. First notice that any two distinct strings over \(\{0, 1\} \) of length \(n + 1 \) are distinguishable wrt \(L_n \).

Indeed, any two such strings \(x, y \) differ on the \((k + 1)\)st character, for some \(k \) (\(0 \leq k \leq n \)).

Assume wlog that the \((k + 1)\)st character of \(x \) is 1 and the \((k + 1)\)st character of \(y \) is 0. So
\[
x \in \{0, 1\}^k \{1\}\{0, 1\}^{n-k} \subseteq \{0, 1\}^* \{1\}\{0, 1\}^{n-k}
\]
and
\[
y \in \{0, 1\}^k \{0\}\{0, 1\}^{n-k} \subseteq \{0, 1\}^* \{0\}\{0, 1\}^{n-k}.
\]

Consequently, \(x \) and \(y \) are distinguished by the string \(1^k \), with \(x1^k \in L_n \), while \(y1^k \notin L_n \).

Finally, since there are \(2^{n+1} \) distinct strings over \(\{0, 1\} \) of length \(n + 1 \), we conclude by the Distinguishability Theorem that any DFA that recognizes \(L_n \) has at least \(2^{n+1} \) states.
\{ 0^n1^n \mid n \in \mathbb{N} \} \text{ is not recognized by any DFA}

Claim The language \(L = \{ 0^n1^n \mid n \in \mathbb{N} \} \) is not recognized by any DFA.

We prove this by showing that there is an infinite set of binary strings that are all distinguishable from one another wrt \(L \). (The result then follows by the Distinguishability Corollary.)

Proof. There are infinitely many strings of the form \(0^n \ (n \in \mathbb{N}) \), and all are distinguishable from one another wrt \(L \).

Indeed, for any \(m, n \in \mathbb{N} \), if \(m \neq n \), then \(0^m \) and \(0^n \) are distinguished wrt \(L \) by \(1^n \), since \(0^m1^n \not\in L \) while \(0^n1^n \in L \).

It follows by the Distinguishability Corollary that no DFA recognizes \(L \).
Indistinguishability wrt L: an “equivalence relation” on strings

Definition For any $L \subseteq \Sigma^*$, let I_L be the binary relation on Σ^* s.t.
for all $x, y \in \Sigma^*$,

$$xI_L y \iff x \text{ and } y \text{ are indistinguishable wrt } L.$$

Recall: x and y are distinguishable wrt L iff there is a $z \in \Sigma^*$ s.t.

$$xz \in L \text{ iff } yz \notin L.$$

So $xI_L y$ iff, for all $z \in \Sigma^*$, $xz \in L$ iff $yz \in L$.

For any $L \subseteq \Sigma^*$, I_L is an “equivalence relation”.

We won’t study this notion independently this semester, although it is very useful.

An equivalence relation on a set “partitions” the set — that is, it divides the set into disjoint subsets — and these disjoint subsets are called “equivalence classes”...
Equivalence classes wrt L

For any $x \in \Sigma^*$, we will write $[x]$ to stand for the set

$$\{ y \in \Sigma^* \mid xL_{}y \}.$$

So, in words, $[x]$ is the set of all strings that are indistinguishable from x wrt L.

We call $[x]$ the *equivalence class* of x (wrt L).

Some nice properties of equivalence classes wrt L:

0. For all $x \in \Sigma^*$, $x \in [x]$.
1. For all $x, y \in \Sigma^*$, $[x] \cap [y] = \emptyset$ or $[x] = [y]$.
2. For all $x \in \Sigma^*$, $x \in L$ iff $[x] \subseteq L$.
3. $\{ [x] \mid x \in \Sigma^* \}$ is a partition of Σ^*. That is,
 (a) the elements of the set are disjoint subsets of Σ^*, and
 (b) their union is Σ^*.
4. $\{ [x] \mid x \in L \}$ is a partition of L. That is,
 (a) the elements of the set are disjoint subsets of L, and
 (b) their union is L.
Example Consider the language

\[L = ((0 + 1)(0 + 1))^* . \]

Even length strings are indistinguishable wrt \(L \).
Similarly, odd length strings are indistinguishable wrt \(L \).

Hence,

\[I_L = \{ (x, y) \mid x, y \in \{0, 1\}^*, |xy| \text{ is even} \} . \]

So

\[[\Lambda] = [00] = [01] = [0000] = \{ x \mid x \in \{0, 1\}^*, |x| \text{ is even} \} . \]

And

\[[0] = [1] = [010] = [11111] = \{ x \mid x \in \{0, 1\}^*, |x| \text{ is odd} \} . \]
Observation Consider the language

$$PAL = \{ x \mid x \in \Sigma^*, x = x^R \},$$

where x^R stands for the reverse of x. It turns out that if $|\Sigma| > 1$, then

$$I_{PAL} = \{ (x, x) \mid x \in \Sigma^* \},$$

because all strings over Σ are distinguishable from each other wrt PAL.

Therefore, for all $x \in \Sigma^*$,

$$[x] = \{x\}.$$

BTW: To see that all strings are distinguishable wrt PAL, take any two strings x, y over Σ. Consider two cases.

Case 1: $|x| = |y|$. Then $xx^R \in PAL$, while $yx^R \notin PAL$.

Case 2: $|x| \neq |y|$. Wlog assume that $|x| < |y|$. Let z be a string over Σ s.t. (i) $|xz| = |y|$, and (ii) $xz \neq y$. (For condition (ii), we need the fact that $|\Sigma| > 1$.) Then $xz(xz)^R \in PAL$, while $yz(xz)^R \notin PAL$. Indeed, since $|y| = |xz|$, $yz(xz)^R$ cannot belong to PAL unless $y = xz$, which by choice of z is not the case.
Minimal DFA Theorem

Theorem For any language L over Σ, let

$$S_L = \{ [x] \mid x \in \Sigma^* \} , \quad F_L = \{ [x] \mid x \in L \}$$

and let $T_L : S_L \times \Sigma \to S_L$ be the unique function s.t. for all $x \in \Sigma^*$ and $a \in \Sigma$, $T_L([x], a) = [xa]$.

If S_L is finite, then

$$M_L = (S_L, \Sigma, T_L, [\Lambda], F_L)$$

is a DFA that recognizes L. Moreover, no DFA that recognizes L has fewer states than M_L.

Corollary (Myhill-Nerode Theorem 1957-58) A language L is regular iff there are finitely many equivalence classes of I_L.

Proof sketch. The left-to-right part follows from Kleene’s Theorem and the Distinguishability Corollary. The right-to-left part follows from the Minimal DFA Theorem and Kleene’s Theorem.