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Abstract

Centuries ago, Celtic knot patterns were used to decorate religious texts. Celtic knots are formed by
weaving bands in an alternating over-and-under pattern. Originally, these were finite patterns on the
Euclidean plane. Recently such patterns have also been drawn on spheres, thus utilizing a second of the
three “classical geometries”. We complete the process by exhibiting Celtic knot patterns in hyperbolic
geometry, the third classical geometry. Our methods lead toa unified framework for discussing knot
patterns in each of the classical geometries. Because of theprecision and many calculations required to
construct hyperbolic patterns, it is natural to generate such patterns by computer. Thus, the patterns we
show are created by using computers, mathematics, and aesthetic considerations.

Introduction

In about the 6th century Irish monks started using what we nowcall Celtic knot patterns as ornamentation
for religious texts. The monks also created spiral patterns, key patterns, zoomorphic patterns, and decorated
lettering, but we will only consider knot patterns. Figure 1shows a simple example of a knot pattern. The

Figure 1: A simple Celtic knot pattern

use of this kind of decoration went out of style in about the 10th century, and the methods for creating
such patterns were lost as well. Subsequently, people who wanted to make Celtic knot patterns had to copy
existing patterns. That is, until the early 1950’s when George Bain invented a method for creating such
patterns [1].
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In the late 1950’s, the Dutch artist M. C. Escher became the first person to create hyperbolic art in
his four Circle Limit patterns. The pattern of interlocking rings near the edge ofhis last woodcutSnakes
(Catalog Number 448 of [6]) also exhibits hyperbolic symmetry. The goal of this paper is to take a first step
toward combining Celtic knot art and hyperbolic geometry. Thus Celtic knot patterns will have been drawn
on each of the threeclassical geometries: Euclidean, spherical (or elliptical), and hyperbolic geometry.
Celtic knot patterns have also been drawn on convex polyhedra, which are very closely related to spherical
patterns.

We will begin with a brief review of Celtic knots and hyperbolic geometry, followed by a discussion of
regular tessellations, which form the basis for our hyperbolic Celtic knot patterns. Finally, we will develop
a theory of such patterns, showing some samples, and indicate directions of future work.

Celtic Knot Patterns

Celtic knot patterns were used in the British Isles to decorate stonework and religious texts from the sixth
through the tenth centuries. The methods used by monks to create such patterns have been lost. However, in
1951, George Bain published a method to create such patternswhich he discovered after years of studying
those ancient patterns. Later, his son, Iain Bain, published a simplified algorithm for making knot patterns
in 1986 [2]. It is Iain Bain’s method, as explained by Andrew Glassner [3], that we will discuss here.

The simplest knot patterns can be constructed from a rectangular grid of squares as shown in Figure 2.
The set of vertices of this grid, thought of as a graph, form the starting point for Iain Bain’s construction
and is called theprimary grid by Glassner. The center points of the squares form the vertices of another
rectangular grid of squares as shown in Figure 3 (with its edges extended to the boundary of the primary
grid). This is thesecondary grid. Thetertiary grid, shown in Figure 4, is formed by the union of the primary
grid and the secondary grid. Thus, the tertiary grid is a gridof squares of half the edge width of the squares
in the primary and secondary grids.
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Figure 2: The primary grid for a Celtic knot con-
struction.
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Figure 3: The secondary grid for a Celtic knot con-
struction.

Diagonal lines are drawn in each of the interior small squares of the tertiary grid using the lower-left
to upper-right diagonal for the upper-left interior square, and then drawing the rest of the diagonals in an
alternating pattern of lower-left to upper-right and upper-left to lower-right diagonals as in Figure 5. These
diagonals will form what is called theinternal weaving.The internal weaving in this example will be a plait,
seen in the interior pattern of Figure 1.
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Figure 4: The tertiary grid — the union of the pri-
mary grid (heavy lines) and the secondary grid (light
lines).

Figure 5: The diagonals in the interior of the tertiary
grid that form the internal weaving.

Diagonals are also placed in the small edge squares of the tertiary grid in the same pattern but only
going halfway to the outer edge as shown in Figure 6. These diagonals form theexternal weaving,which
will connect the ends of the internal weaving. Next, at each of the tertiary grid points where four diagonals
meet, form two paths by connecting the lower-left to the upper-right diagonal, and connecting the upper-left
to the lower-right diagonal. Following one of the paths, letit go alternately above and below the paths it
crosses. This can be done in a consistent way by using one kindof crossing on each row of crossing points
and then using the other kind of crossing on the next row, as inFigure 7.

Figure 6: The outer diagonals that form the external
weaving (in addition to the internal weaving).

Figure 7: The over-and-under specification of the
path.

Using knot theory terminology, the over-and-under patternformed by the diagonals is theregular pro-
jection(onto the plane) of a knot (a circle embedded in 3-space); it is regular because only two strands cross
at a point. A “multi-knot” formed by more than one circle in 3-space is called alink. There will be only one
path if the numbers of rows and columns of vertices in the primary grid are relatively prime. Most Celtic
knot patterns are the regular projections of knots: there isonly one path. The path or paths serve as the

3



centerlines of the bands of the final pattern, which is formedby thickening the paths to form the bands. The
bands are usually thickened to a width equal to the distance between them (so the standard band thickness
and the space between them are both equal to half the length ofthe diagonal of a primary grid square).
Figure 1 shows the final result for the example we have been studying. Some Celtic patterns use wider
bands with almost no space between them. Other patterns use thin doubled bands that follow the edges of
the standard thickness bands.

More General Patterns

The interior weaving of the pattern described above is very regular — it amounts to a tiling by alter-
nate rows of left- and right-handed crossings. These crossings are enclosed in kite-shaped tiles, actually
square tiles tilted at 45 degrees, as shown in Figure 8 (except that the center tile contains a non-crossing,
as discussed below). The top and bottom vertices of these kite tiles are both primary grid vertices or both
secondary grid vertices; the left and right vertices of the kites are vertices of the other grid.

To obtain more general patterns, one can replace some or all of the “crossing” tiles by either of the
avoidingtiles shown in Figure 9. We call those tilesvertical or horizontalavoiding tiles because their paths
avoid either the vertical or horizontal axis of their kite-shaped tile. Each such replacement may increase or
decrease the number of loops in a link by one, or it may leave the number unchanged. If, after replacing all
the crossing tiles by avoiding tiles, there is only one loop,it is called asnakeby Glassner [4].

Figure 8: The kite-shaped tiles underlying a Celtic
knot pattern.

Figure 9: The vertical (left) and horizontal (right)
avoiding tiles.

One can also create a non-rectangular pattern by arranging the crossing and avoiding tiles in any simply-
connected way and then joining the ends of the bands around the perimeter. One method for creating such
patterns by hand involves lightly drawing the primary and secondary grids and then drawing more darkly
some of the edges of either grid, with the rule that no dark edges may cross. These dark edges arebarrier
edges that the band cannot cross. In Figure 8 there is a horizontal barrier edge (not shown) connecting the
left and right (secondary grid) vertices of the center kite.Glassner [3] and Christian Mercat [7] describe their
versions of this method. Barrier edges are calledbreaklinesby Glassner, andlongitudinal and transverse
walls by Mercat depending on whether they are edges of the primary or secondary grid.

With the goal of generalizing these techniques to the hyperbolic plane, we next discuss hyperbolic
geometry, repeating patterns, and regular tessellations,which will form the basis for hyperbolic Celtic knot
patterns.
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Hyperbolic Geometry, Repeating Patterns, and Regular Tessellations

Among the classical geometries, the Euclidean plane, the sphere, and the hyperbolic plane, the latter
is certainly the least familiar. This is probably due to the fact that there is no smooth distance-preserving
embedding of the hyperbolic plane into ordinary 3-space, asthere is for the sphere (and the Euclidean
plane). However, there aremodelsof hyperbolic geometry in the Euclidean plane, which must therefore
distort distance.

Figure 10: The regular tessellation{6, 4} in heavy
lines with dots at its vertices, its dual tessellation
{4, 6} in light lines, and common radii of the6-gons
and4-gons in dashed lines.

ℓ P

Figure 11: An example of the hyperbolic parallel
property: a lineℓ, a pointP not onℓ, and two lines
throughP not meetingℓ.

One of these models is thePoincaŕe circle model, which has two useful properties: (1) it is conformal
(i.e. the hyperbolic measure of an angle is equal to its Euclidean measure) — consequently a transformed
object has roughly the same shape as the original, and (2) it lies entirely within abounding circlein the
Euclidean plane — allowing an entire hyperbolic pattern to be displayed. In this model, the hyperbolic points
are the interior points of the bounding circle and the hyperbolic lines are interior circular arcs perpendicular
to the bounding circle, including diameters. For example, all the arcs are hyperbolic lines in Figure 10.

By definition, (plane) hyperbolic geometry satisfies all theaxioms of (plane) Euclidean geometry except
the Euclidean parallel axiom, which is replaced by its negation. Figure 11 shows an example of this hyper-
bolic parallel property: there is a line,ℓ, in Figure 10 (the vertical diameter), a point,P , not on it, and more
than one line throughP that does not intersectℓ.

Because distances must be distorted in any model, equal hyperbolic distances in the Poincaré model are
represented by ever smaller Euclidean distances toward theedge of the bounding circle (which is an infinite
hyperbolic distance from its center). All the curvilinear hexagons (actually regular hyperbolic hexagons) in
Figure 10 are the same hyperbolic size, even thought they arerepresented by different Euclidean sizes.

A repeating patternin any of the classical geometries is a pattern made up of congruent copies of a
basic subpattern ormotif. The motif for the pattern of Figure 10 is a curvilinear righttriangle with a dashed
hypotenuse and thick and thin lines for legs. Also, we assumethat a repeating pattern fills up its respective
plane. It is useful that hyperbolic patterns repeat in orderto show their true hyperbolic nature.
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An important kind of repeating pattern in any of the classical geometries is theregular tessellationby
regularp-sided polygons, orp-gons, meetingq at a vertex; it is denoted by the Schläfli symbol{p, q}. We
need(p − 2)(q − 2) > 4 to obtain a hyperbolic tessellation; if(p − 2)(q − 2) = 4 or (p − 2)(q − 2) < 4,
one obtains tessellations of the Euclidean plane and the sphere, respectively. Figure 10 shows the hyperbolic
tessellation{6, 4} in heavy lines with a6-gon centered in the bounding circle (the center of the bounding
circle is not a special point in the Poincaré model, it just appears so to our Euclidean eyes). Figure 10 also
shows the hyperbolic tessellation{4, 6} in light lines with one of its vertices centered in the bounding circle.
The dashed lines in Figure 10 do not form a regular tessellation, but whenp = q the analogous dashed lines
form the regular tessellation{4, p}.

If we assume for simplicity thatp ≥ 3 andq ≥ 3, there are five solutions to the “spherical” inequality
(p − 2)(q − 2) < 4: {3, 3}, {3, 4}, {3, 5}, {4, 3}, and{5, 3}. These tessellations may be obtained by
“blowing up” the Platonic solids: the regular tetrahedron,the octahedron, the icosahedron, the cube, and
the dodecahedron, respectively, onto their circumscribing spheres. In the Euclidean case, there are three
solutions to the equality(p − 2)(q − 2) = 4: {3, 6}, {4, 4}, and{6, 3}, the tessellations of the plane by
equilateral triangles, squares, and regular hexagons. There are infinitely many solutions to the hyperbolic
inequality(p − 2)(q − 2) > 4. This is summarized in Table 1 below.

...
...

...
...

...
...

...
...

...
...

11 * * * * * * * * * · · ·

10 * * * * * * * * * · · ·

9 * * * * * * * * * · · ·

8 * * * * * * * * * · · ·

7 * * * * * * * * * · · ·

q 6 * * * * * * * * · · ·

5 © * * * * * * * * · · ·

4 © * * * * * * * · · ·

3 © © © * * * * * · · ·

2

1

1 2 3 4 5 6 7 8 9 10 11 · · ·

p

- Euclidean tessellations

© - spherical tessellations

* - hyperbolic tessellations

Table 1. The relationship between the values ofp andq, and the geometry of the tessellation{p, q}.

For each tessellation{p, q}, its dual tessellationis {q, p}, whose vertices are at the centers of thep-
gons of{p, q} and whose edges are perpendicular bisectors of the edges of{p, q}. Figure 10 shows the
tessellation{6, 4} in heavy lines and its dual tessellation{4, 6} in thin lines. Of course the dual of the dual
of a regular tessellation is just the original tessellation. If p = q, the tessellation is self-dual:{3, 3} is the
spherical version of the regular tetrahedron,{4, 4} is familiar Euclidean tiling by squares, and{5, 5}, {6, 6},
{7, 7}, . . . are hyperbolic.

This completes our discussion of hyperbolic geometry, repeating patterns, and regular tessellations.
Next, we use these concepts to develop a theory of hyperbolicCeltic knot patterns, which is actually valid
in all three of the classical geometries.
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A Theory of Hyperbolic Celtic Knot Patterns

As we saw above, the method for creating knot patterns that was developed by Iain Bain and others is
based on the regular tessellation of the Euclidean plane by squares. We extend that method to one based on
any regular tessellation of one of the classical geometries. The tessellation{p, q} itself serves as the primary
grid, its dual,{q, p}, defines the secondary grid, and their union is the tertiary grid. In Figure 10, where
p = 6 andq = 4, the primary grid is shown in heavy lines and the secondary grid in thin (solid) lines. The
dashed lines in Figure 10 define a tessellation by kite-shaped tiles — rhombuses with vertex angles of2π/p,
2π/q, 2π/p, and2π/q (with vertices alternately at the centers and vertices ofp-gons of the tessellation
{p, q}). If one starts with the Euclidean{4, 4} tessellation, the rhombuses are actually squares tilted ata
45-degree angle, as shown in Figure 8.

Celtic knot patterns have two characteristics: (1) no more than two bands cross at a point, and (2) any
one band goes alternately over and under other bands that it crosses. Such a pattern can be obtained if all the
rhombuses are filled in only with left crossing tiles or only with right crossing tiles. Looking at a rhombus
from a primary grid vertex, if the nearest band coming from the right is on top, it is aright crossing tile,
otherwise it is aleft crossing tile; both kinds are shown in Figure 12 (the rhombuses shown are the ones to
the right of the center of the bounding circle in Figure 10). Figure 13 shows a complete pattern composed
of right crossing tiles based on the{4, 5} tessellation. Such a Celtic pattern is called aregular weavingor
plait. The central pattern in Figure 1 is another example — of the standard Euclidean weaving.

Figure 12: A left crossing tile (left) and a right cross-
ing tile (right), with dots at the primary grid vertices.

Figure 13: A regular weaving or plait based on the
{4, 5} tessellation.

The bands of a regular weaving based on the tessellation{p, q} follow the edges of theuniform tessel-
lation (p.q.p.q) (also calledArchimedeanor semiregulartilings by some authors). The edges of (p.q.p.q)
are formed by connecting the midpoints of adjacent edges of thep-gons of{p, q}. Those midpoints serve
as the vertices of (p.q.p.q), each of which is surrounded by ap-gon, aq-gon, ap-gon, and aq-gon (which
explains the notation). Figure 14 shows the uniform tessellation (4, 5, 4, 5) underlying the regular weaving
knot pattern of Figure 14. Sincep-gon edge midpoints are alsoq-gon edge midpoints in the dual tessellation
{q, p}, a regular tessellation and its dual produce the same regular weaving — which is not surprising since
p andq play symmetrical roles in (p.q.p.q).
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There are three regular spherical weavings, which are basedon the self-dual tessellation{3, 3}, and on
the two pairs of duals,{3, 4} and{4, 3}, and{3, 5} and{5, 3}. The weaving based on{3, 3} traces the
edges of the “uniform” tessellation (3.3.3.3), which is actually the regular tessellation{3, 4}, the blown-
up version of the octahedron. There is a band in each of three mutually perpendicular planes through the
center of the sphere containing the{3, 3}. These three bands are linked, forming Borromean rings. Glassner
shows such a weaving based on a cube rather than an octahedron(Figure 10a of [5]). The octahedron is
the intersection of the tetrahedron{3, 3} and its dual, which together form the stella octangula. In fact, the
regular weaving based on any self-dual tessellation{p, p} traces the edges of the regular tessellation{p, 4}.
The weaving based on the pair{3, 4} and{4, 3} traces the edges of uniform tessellation (3.4.3.4), which is
the spherical version of the cuboctahedron. Last, the weaving based on the pair{3, 5} and{5, 3} traces the
edges of uniform tessellation (3.5.3.5), which is the spherical version of the icosadodecahedron.Glassner
shows a version of this weaving in Figure 18 of [5].

There are only two regular Euclidean weavings, which are based on the self-dual tessellation{4, 4}, and
on the dual pair{3, 6} and{6, 3}. The weaving based on{4, 4} is just the standard Euclidean weaving seen
in the center of Figure 1, which is the basis for most Celtic knot patterns. The weaving based on{3, 6} and
{6, 3}, with its triangular and hexagonal holes, is sometimes seenin the caning for the seats of chairs.

There are infinitely many regular hyperbolic weavings— based either on the self-dual tessellations{p, p}
for p ≥ 5, or on the dual pairs{p, q} and{q, p}, wherep 6= q and(p − 2)(q − 2) > 4. Figures 15 and 13
show the weavings based on the self-dual{5, 5} tessellation and on the pair{4, 5} and{5, 4}, respectively.

Figure 14: The uniform tessellation (4.5.4.5) under-
lying the regular weaving of Figure 13.

Figure 15: The regular weaving based on the tessel-
lation {5, 5}.

More general Celtic knot patterns may be obtained by replacing some of the crossing tiles of a regular
weaving withavoiding tiles. Figure 16 shows the two kinds of avoiding tiles, which are distinguished by
the diagonal of the tile rhombus that their paths avoid (as inFigure 12, the rhombuses shown are the ones
to the right of the center of the bounding circle in Figure 10); Figure 9 shows the avoiding tiles for the
standard Eulidean weaving (based on{4, 4}). One of the diagonals of each rhombus is an edge from the
underlying tessellation{p, q}, and the other diagonal is an edge from the dual tessellation{q, p}. Figure 17
shows a pattern of alternating right crossing tiles andp-gon edge avoiding tiles. Figure 18 shows a pattern
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Figure 16: Ap-gon edge avoiding tile (left) and a
q-gon edge avoiding tile (right), with dots at the pri-
mary grid vertices.

Figure 17: A Celtic knot pattern of right crossing
tiles andp-gon edge avoiding tiles.

of alternating right crossing tiles andq-gon edge avoiding tiles.
One of the rules of Celtic knot patterns is that paths cannot avoid both diagonals of a rhombus (there

would be no way to connect the ends the paths coming into that tile). Thus, if we want to construct Celtic
knot patterns from rhombus tiles, our collection of basic tiles is complete, consisting of the two kinds of
crossing tiles and the two kinds of avoiding tiles.

It is possible to further generalize the methods above to apply to non-rhombic quadrilateral tiles. For any
quadrilateral, there are only four ways to connect ends of bands coming into it across each of its four sides:
the two kinds of crossing configurations and the two kinds of avoiding configurations. Glassner has used
non-rhombic quadrilaterals to construct several of his patterns in [5]. As an example, if we have a pattern of
triangles upon which we would like to draw a knot pattern, we could first subdivide the triangles into three
quadrilaterals by connecting the triangle’s center to the midpoints of its sides.

We will apply this method to the construction of what we callCeltic ring patterns— rings interlocked
in the over-and-under pattern characteristic of Celtic knots. We start by subdividing thep-gons of the
tessellation{p, q} into p isosceles triangles with angles2π/p, π/q, andπ/q, as shown in the centralp-gon
in Figure 19 (wherep = 6 andq = 4). Then we subdivide each triangle into three quadrilaterals (shown
for one of the isosceles triangles in Figure 19). Finally, weplace a crossing tile in each of the quadrilaterals,
producing the final ring pattern of Figure 19. Note that the crossing is pushed as far as possible toward one
vertex of the quadrilateral. Figure 19 shows the pattern of interlocking rings that Escher used near the edge
of his last woodcut,Snakes(Catalog Number 448 of [6]).

This finishes our discussion of the theory of hyperbolic Celtic knot patterns and the methods for creating
them. Of course, the theory and methods also apply to each of the three classical geometries as well. In the
final section, we indicate directions of future work.

Future Work

We have presented a theory of Celtic knot patterns and methods for creating such patterns in each of
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Figure 18: A Celtic knot pattern of right crossing
tiles andq-gon edge avoiding tiles.

Figure 19: An interlocking “Celtic ring” pattern
showing part of the underlying{6, 4} and some of
the triangles used in the construction, with one of
them subdivided into three quadrilaterals.

the three classical geometries. Some natural directions offuture work include extensions to hyperbolic knot
patterns not based on regular tessellations, and the creation of hyperbolic versions of other kinds of Celtic
patterns, such as key patterns, spiral patterns and zoomorphics.
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