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ABSTRACT: In 1952, the Dutch artist M.C. Escher created his striking Notebook Drawing 85. It
is a repeating Euclidean pattern of three animals, lizards, fish, and bats, representing the “three
elements”: earth, water, and air respectively. In this pattern, three of each animal meet head-to-
head at the tails of other animals. He also realized a version of this pattern on a sphere, but he did
not create a hyperbolic version of it. We fill in this “gap” by showing some hyperbolic versions of
the pattern, and explain how they fit into a general family of “three element” patterns.
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LINTRODUCTION

The Dutch artist M.C. Escher was known for
his repeating patterns in the Euclidean plane.
But he also created a few spherical patterns
and some hyperbolic patterns. His Notebook
Drawing Number 85 1is one of his most
striking Euclidean patterns. It is composed of
lizards, fish, and bats, representing the “three
elements”: earth, water, and air respectively.
We use the same animal motifs to create an
entire family of “three element” patterns.
Since Escher created the only possible
Euclidean and spherical patterns in this
family, we concentrate on hyperbolic three
element patterns. Figure 1 shows one such
three element hyperbolic pattern.

We first review some hyperbolic geometry,
and specifically the Poincaré disk model.
Then we discuss repeating patterns and their
symmetries. Next, we will discuss families of
repeating patterns.  Each “three element”
pattern can be classified by three parameters,
the number of lizards that meet nose-to-nose,
the number of fish that meet nose-to-nose, and
the number of bats that meet head-to-head.
We will show some examples of these
patterns. For comparison, we also discuss a
family of “Circle Limit I’ patterns. Finally,

we will summarize the results and indicate
directions of future research.

Figure 1: A hyperbolic “three element”
pattern.

2.HYPERBOLIC GEOMETRY AND THE
POINCARE DISK MODEL

Hyperbolic geometry is one of the three
“classical” geometries, which also include
(plane) Euclidean and spherical geometry. In
hyperbolic geometry, given a line and a point



not on it, there is more than one line through
the point that does not meet the original line,
unlike Euclidean geometry in which there is
only on parallel. Of course there are no
parallels at all in spherical geometry. In
contrast to the latter two geometries,
hyperbolic geometry has no smooth isometric
(distance preserving) embedding in Euclidean
3-space, a fact proved by David Hilbert more
than 100 years ago [3]. Thus hyperbolic
geometry is much less familiar to most
people, even mathematicians, and especially
artists. So it is amazing that Escher was able
to create hyperbolic patterns.

Since there is no “nice” embedding of
hyperbolic geometry in the 3-space of our
experience, we must rely on models of it — in
which Euclidean constructions are given
hyperbolic interpretations. One such model is
the Poincaré disk model. =~ The hyperbolic
points of this model are the interior points of a
Euclidean circle. Hyperbolic lines are
represented by circular arcs within the
bounding circle that are perpendicular to it
(with diameters as a special case). Escher had
long sought to represent an infinite repeating
pattern within a finite area, so that the viewer
could see the entire pattern, unlike Euclidean
“wallpaper” patterns in which the viewer can
only see a finite part of the infinite pattern.
The Poincaré disk model has another feature
that appealed to Escher, namely it is
conformal, meaning that the hyperbolic
measure of an angle is the same as its
Euclidean measure, consequently copies of a
motif of a repeating pattern retain their same
approximate shape regardless of their size.
Here we remark that equal hyperbolic
distances are represented by ever smaller
Euclidean distances as one approaches the
bounding circle. In Figure 1, the backbones
of the animals lie along hyperbolic lines, and
each fish is the same hyperbolic size, and the
same is true of the lizards and bats. Figure 2
also shows these features of the disk model in
a rendition of Escher's first hyperbolic pattern,

Circle Limit 1. The backbones of the fish lie
along hyperbolic lines, as do the trailing
edges of the fins of both the black and white
fish. All of the white fish are hyperbolically
congruent, as are all of the black fish.
However, the white fish are not congruent to
the black fish, since the noses of the white
fish (and thus the tails of the black fish) form
90-degree angles, whereas the noses of the
black fish (and tails of the white fish) form
60-degree angles.

K

Figure 2: A rendition of Escher's hyperbolic
pattern Circle Limit I.

3.REPEATING PATTERNS AND
SYMMETRIES

A repeating pattern is a pattern composed of
congruent copies of a basic sub-pattern or
motif. This definition of a repeating pattern is
equally valid in each of the three ‘“classical”
geometries. In Figure 1, the motif is formed
from halves of each of three adjacent animals
inside a triangle whose vertices are at the
noses of a fish and lizard, and the top of the
head of a bat. That motif is shown in Figure 3
below. Similarly, in Figure 2 the motif is
formed from half a white fish together with an
adjacent half of a black fish — such a motif is
shown in Figure 4 below.

A symmetry of a repeating pattern is an
isometry (distance-preserving transformation)
that takes the pattern onto itself. So each



copy of the motif goes onto another copy of
the motif. In each of the three “classical”
geometries, any symmetry can be formed
from one, two, or three reflections. In the
Poincaré disk model, reflection across a
circular arc representing a hyperbolic line is
just inversion with respect to that circular arc
(with Euclidean reflections across diameters
as special cases). Thus the animals' backbone
lines form reflection lines of the pattern in
both Figure 1 and Figure 2.

Figure 3: The motif for Figure 1.

Figure 4: The motif for Figure 2.

In hyperbolic geometry, as in Euclidean

geometry, successive reflections across two
intersecting lines produces a rotation about
the intersection point by twice the angle of
intersection. Thus there are rotations about
points where backbone lines cross in Figures
1 and 2. And since the trailing edges of the
fish in Figure 2 also lie along hyperbolic lines
and make a 90 degree angle, there is a 180
degree rotation about points where the fins
meet. For more on hyperbolic geometry and
its models, see [2].

4. THE FAMILY OF “THREE
ELEMENT” PATTERNS

There is a 3-parameter family of “three
element” patterns, denoted (p,q,r), in which p
fish meet nose-to-nose, g lizards meet nose-
to-nose, and r bats meet head-to-head. The
pattern of Figure 1 is specified by (4,4,4) in
this notation. Escher's Notebook Drawing
Number 85 would be assigned (3,3,3). Figure
5 shows a (5,4,3) pattern.

Figure 5: A (5,4,3) “three element” pattern.

Shortly after Escher finished Notebook
Drawing 85 in 1952 he drew that pattern on a
rhombic dodecahedron. In 1963 Escher and
C.V.S. Roosevelt commissioned the Japanese
netsuke artist Masatoshi to carve the “three
element” pattern on an ivory sphere. Escher's
Notebook Drawing Number 85, the rhombic



dodecahedron, and the netsuke ball are shown
on pages 184, 246, and 307 respectively in
[5]. Later, in 1977 Doris Schattschneider and
Wallace Walker placed the pattern on a
regular octahedron as one of the polyhedra in
M.C. Escher Kaleidocycles [4]. In each of
these renditions two of each animal met head-
to-head, so they were all (2,2,2) patterns.

The numbers p, g, and r determine the
geometry: if 1/p + 1/q + 1/r > 1, the pattern is
spherical, if 1/p + 1/q + 1/r = 1, the pattern is
Euclidean, and if 1/p + 1/q + 1/r < 1, the
pattern is hyperbolic. In the spherical case
there is an infinite “dihedral” subfamily
2,2,n), (2,n,2), or (n,2,2) in which n animals
meet head-to-head at the north and south
poles of the sphere. The only other spherical
solutions are (2,3,3), (2,3,4), and (2,3,5) (and
permutations), corresponding to the regular
tetrahedron, octahedron, and dodecahedron,
respectively. In addition to the Notebook
Drawing 85 pattern, there are three Euclidean
solutions: (2,4,4), (4,2,4), and (4,4,2). Of
course there are infinitely many hyperbolic
solutions. Figure 6 shows a (4,5,3) pattern —
here the roles of the fish and lizards have been
interchanged from their roles in Figure 5.

Figure 6: A (4,5,3) “three element” pattern.

Figure 7 shows a (5,3,4) pattern, which differs
from Figure 1 in that five fish and three

lizards meet head-to-head, instead of four
each.
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Figure 7: A (5,3,4) “three element” pattern.

Figure 8 shows a (4,4,3) pattern as an
example in which two of the parameters are
the same.

Figure 8: A (4,4,3) “three element” pattern.

Even though there are an infinite number of
hyperbolic “three element” patterns, in those
with large values of p, ¢, or r the animals are
either strongly distorted or quickly pushed to
the edge of the disk (or both). Figure 9 shows
such a pattern, with p = ¢ = 4, and r = 10.
Consequently those patterns with small values



of p, g, and r seem to be most aesthetically
pleasing.

Figure 9: A (4,4,10) “three element” pattern.

5.THE FAMILY OF “CIRCLE LIMIT 1”

PATTERNS

Figure 2 shows a rendition of Escher's Circle
Limit I pattern. This pattern can also form the
basis for a 2-parameter family of patterns.
We let (p,g) denote the pattern in which p
black fish and ¢ white fish meet nose-to-nose.
So Circle Limit I would be denoted (2,3).
Figure 10 shows a (3,3) “Circle Limit I”
pattern.

Figure 10: A (3,3) “Circle Limit I’ pattern.

In the pattern of Figure 10, the black and
white fish are the same hyperbolic size and
shape, unlike Circle Limit 1. In fact the
Figure 10 pattern has 2-color (black/white)
symmetry — a 90 degree rotation about the
meeting point of trailing fin tips interchanges
the black and white fish. Making the
reasonable assumption that p and ¢ are at least
2, there are no possible spherical “Circle
Limit I” patterns and only one possible
Euclidean pattern, (2,2). It seems that Escher
did not create such a pattern. However he did
design similar angular fish for pattern A74
(shown on page 234 of [5]). He used the Al4
pattern in his print Sphere Surface with Fish
(page 322 of [5]), which was completed about
three or four months before Circle Limit I. 1f
either p or g is greater than 2, the pattern is
hyperbolic. = For completeness Figure 11
shows a transformed version of the Circle
Limit I pattern with the roles of the black and
white fish reversed, so it is a (3,2) pattern.

Figure 11: A (3,3) “Circle Limit I’ pattern.

The same comment about large values of p
and g applies to this family too — such values
tend to produce distorted patterns. For more
on creating hyperbolic patterns, see [1].



CONCLUSIONS AND FUTURE WORK
After setting the foundations for hyperbolic
patterns and their symmetries, we investigated
the 3-parameter family (p,q,r) of “three
element” patterns, most of which are
hyperbolic. ~ This family was inspired by
Escher's Euclidean Notebook Drawing
Number 85, which would be denoted (3,3,3).
Escher also realized this pattern on the sphere,
in which two animals meet head-to-head. We
have shown six more (hyperbolic) patterns in
this family.

We also discussed the simpler 2-parameter
family of “Circle Limit I” patterns, and
showed two more patterns in that family.
Viewing a pattern as a member of an entire
family of patterns gives the original pattern
more context, and may lead to more
interesting new patterns, even in different
geometries.

In the future, we would like to investigate
more families of patterns by Escher and
others. And we would like to create new
patterns from such families.
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