Transforming "Circle Limit III" Patterns -First Steps

Douglas Dunham

Department of Computer Science University of Minnesota, Duluth Duluth, MN 55812-3036, USA E-mail: ddunham@d.umn.edu Web Site: http://www.d.umn.edu/~ddunham/

Outline

- History
- Theory of general (p,q,r) "Circle Limit III" patterns and hyperbolic geometry.
- The p = q subfamily.
- The p = r = 3 subfamily.
- A possible solution for the general case.
- Future work.

History

- Early 1958: H.S.M. Coxeter sends M.C. Escher a reprint containing a hyperbolic triangle tessellation.
- Later in 1958: Inspired by that tessellation, Escher creates *Circle Limit I*.
- Late 1959: Solving the "problems" of *Circle Limit I*, Escher creates *Circle Limit III*.
- 1979: In a *Leonardo* article, Coxeter uses hyperbolic trigonometry to calculate the "backbone arc" angle.
- 1996: In a *Mathematical Intelligencer* article, Coxeter uses Euclidean geometry to calculate the "backbone arc" angle.
- 2006: In a *Bridges* paper, D. Dunham introduces general (p, q, r) "Circle Limit III" patterns and gives an "arc angle" formula for (p, 3, 3).
- 2007: L. Tee derives an "arc angle" formula for general (p, q, r) patterns, reported in *Bridges 2008*.

The hyperbolic triangle pattern in Coxeter's paper

A Computer Rendition of *Circle Limit I*

Escher: Shortcomings of *Circle Limit I*

"There is no continuity, no 'traffic flow', no unity of colour in each row ..."

A Computer Rendition of *Circle Limit III*

Coxeter's *Leonardo* and *Intelligencer* Articles

In *Leonardo* 12, (1979), pages 19–25, Coxeter used hyperbolic trigonometry to find the following expression for the angle ω that the backbone arcs make with the bounding circle in *Circle Limit III*.

 $\cos(\omega) = (2^{1/4} - 2^{-1/4})/2$ or $\omega \approx 79.97^{\circ}$

Later Coxeter derived the same result using elementary Euclidean geometry in *The Mathematical Intelligencer* 18, No. 4 (1996), pages 42–46.

Mathematical Intelligencer Cover

Mathematical Intelligencer Contents Page

Departments		Articles	
6	Letters	5	New Column on the Way
9	Opinion The "Indexed" Theorem	7	Marjorie Senechal Remarks on Hilbert's 23rd Problem
	Making Sense of Experimental Mathematics J. Borwein, P. Borwein, R. Girgensohn, and S. Parnes	19	Patchworking Algebraic Curves Disproves the Ragsdale Conjecture Jia Itenberg and Oleg Viro
9	Mathematical Entertainments David Gale and Michał Misiurewicz	34	Evariste Galois (Sum Total) Ilona Bodden (translated by Kurt Bretterbauer)
51	Years Ago Enriques and the Popularisation of Mathematics Jeremy J. Gray	35	Lifelong Symmetry: A Conversation with H.S.M. Coxeter Introde Hamiltoni
6	The Mathematical Tourist The Bone that Began the Space Odyssey D. Huylebrouck	42	The Trigonometry of Escher's Woodcut "Circle Limit III"
	The English Hammer-Beam Roof		H.S.M. Coxeter
	Penrose Tiling in Helsinki and Tokyo K.H. Kuo	Turns 105 Gilbert Helmberg and Karl Sigmund	
	Penrose Tiling at Miami University David E. Kullman	81	The Mathematical Intelligencer Index Volume 18
67	Reviews Calculus from Graphical, Numerical, and Symbolic Points of View by Arnold Ostebee and Paul Zorn Reviewed by Herb Clemens		
	Number Words and Language Origins by J. Lambek		
	Eight Recent Mathematics Books Reviewed by Jet Wimp		
10	Stamp Corner Robin Wilson	Indexed in Wilson General Science Abstracts and General Science Index (since 1984)	

"On The Cover:"

Coxeter's enthusiasm for the gift M.C. Escher gave him, a print of Circle Limit III, is understandable. So is his continuing curiosity. See the articles on pp. 35–46. He has not, however said of what general theory this pattern is a special case. Not as yet. *Annonymous Editor*

A General Theory

We use the symbolism (p,q,r) to denote a pattern of fish in which p meet at right fin tips, q meet at left fin tips, and rfish meet at their noses. Of course p and q must be at least three, and r must be odd so that the fish swim head-to-tail (as they do in *Circle Limit III*).

The *Circle Limit III* pattern would be labeled (4,3,3) in this notation.

A (5,3,3) Pattern

A General Formula for the Intersection Angle

The general formula for the angle of intersection between the backbone arcs and the bounding circle for a (p,q,r) pattern (which agrees with Coxeter's result for *Circle Limit III*).

$$\cos(\omega) = \frac{\sin(\frac{\pi}{2r}) \left(\cos(\frac{\pi}{p}) - \cos(\frac{\pi}{q})\right)}{\sqrt{\cos(\frac{\pi}{p})^2 + \cos(\frac{\pi}{q})^2 + \cos(\frac{\pi}{r})^2 + 2\cos(\frac{\pi}{p})\cos(\frac{\pi}{q})\cos(\frac{\pi}{r}) - 1)}}$$

An alternative formula:

$$\cot(\omega) = \frac{\tan(\frac{\pi}{2r})(\cos(\frac{\pi}{q}) - \cos(\frac{\pi}{p}))}{\sqrt{(\cos(\frac{\pi}{p}) + \cos(\frac{\pi}{q}))^2 + 2\cos(\frac{\pi}{r}) - 2}}$$

The Need for Models of Hyperbolic Geometry

In 1901 David Hilbert proved that (unlike the sphere) there was no smooth embedding of the hyperbolic plane in Euclidean 3-space.

Thus we must use Euclidean *models* of hyperbolic geometry.

Three useful models are the Poincaré circle model (used by Escher), the Klein model, and the Weierstrass model.

The Poincaré Circle Model of Hyperbolic Geometry

- Points: points within the bounding circle
- Lines: circular arcs perpendicular to the bounding circle (including diameters as a special case)

The Klein Model of Hyperbolic Geometry

- Points: points within the bounding circle
- Lines: chords of the bounding circle (including diameters as a special case)
- The chord corresponds to the Poincaré circular arc with the same endpoints on the bounding circle.

Weierstrass Model of Hyperbolic Geometry

- Points: points on the upper sheet of a hyperboloid of two sheets: $x^2 + y^2 z^2 = -1, z \ge 1$.
- Lines: the intersection of a Euclidean plane through the origin with this upper sheet (and so is one branch of a hyperbola).

A line can be represented by its **pole**, a 3-vector $\begin{bmatrix} \ell_x \\ \ell_y \\ \ell_z \end{bmatrix}$ on the dual hyperboloid $\ell_x^2 + \ell_y^2 - \ell_z^2 = +1$, so that the

line is the set of points satisfying $x\ell_x + y\ell_y - z\ell_z = 0$.

The Relation Between the Poincaré and Weierstrass Models

The models are related via stereographic projection from the Weierstrass model onto the (unit) Poincaré disk in the xy-plane toward the point $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$,

Given by the formula: $\begin{bmatrix} x \\ y \\ z \end{bmatrix} \mapsto \begin{bmatrix} x/(1+z) \\ y/(1+z) \\ 0 \end{bmatrix}$.

Patterns with p = **q**

When p = q, the fish are symmetric, so half a fish can serve as the fundamental region for the pattern since the other half of the fish may be obtained by reflection. The figure shows a (4, 4, 3) pattern.

A (5,5,3) Pattern

A (3,3,5) Pattern

Patterns with p = r = 3

When p = r = 3, the backbone lines of the three center fish form a Euclidean equilateral triangle. This equilateral triangle can be scaled to correspond to different values of q. Unfortunately, this only transforms the right sides of the fish correctly. The figure shows a (3, 4, 3) pattern

A (3,5,3) Pattern

The Right Halves of the Fish of the (3,5,3) Pattern

A (3,4,3) Pattern of Right Fish Halves

A (3,6,3) Pattern of Right Fish Halves

A Possible Solution for the General Case

- In the two subcases above, the transformations worked because half a fish motif could be made to fit inside a Euclidean isosceles triangle, and one isosceles triangle can be transformed into another by (differential) scaling.
- Thus, in the general case, to transform the fish motif of a (p,q,r) pattern to a (p',q',r') fish motif might involve separate processes to transform the left and right halves of the fish.
- To transform right fish halves, one possible idea would be to find a model of hyperbolic geometry the right "distance" in between the Poincaré model and the Klein model so that the backbone line (equidistant curve) would "flatten out" to a Euclidean line. Then the transformation would just be a Euclidean scaling.
- To transform a left fish half, we could hyperbolically translate its fin tip to the origin (making it like a right fish half), find the correct "in between" hyperbolic model (probably different than for the right half), apply the transformation, then hyperbolically translate back.

Future Work

- Find a general method, possibly the one outlined above, to transform the fish motif of a (p,q,r) pattern to a (p',q',r') fish motif.
- Find an algorithm to automatically color (p, q, r) patterns with the minimum number of colors as Escher's did in *Circle Limit III*: all fish along a backbone line are the same color, and adjacent fish are different colors (the "map-coloring principle").

The End

Many thanks to Nat, Ergun, and the other organizers of ISAMA '09!