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Background

◮ Over the past two years we have constructed several triply periodic
polyhedra with patterns on them.

◮ Prior to that, we constructed many repeating patterns in the
hyperbolic plane, and as we will see there is a relationship between
such patterns and patterns on triply periodic polyhedra.

◮ So far we have not discussed the color symmetry of the patterns on
our triply periodic polyhedra. We rectify that in this talk.



Triply Periodic Polyhedra
◮ A triply periodic polyhedron is a (non-closed) polyhedron that

repeats in three different directions in Euclidean 3-space.

◮ We will consider the special case of triply periodic polyhedra whose
faces are all regular p-sided polygons and which are uniform: there
is a symmetry of the polyhedron that takes any vertex to any other
vertex.

◮ We will also discuss a speciallization of uniform triply periodic
polyhedra: regular triply periodic polyhedra which are
“flag-transitive” — there is a symmetry of the polyhedron that
takes any vertex, edge containing that vertex, and face containing
that edge to any other such (vertex, edge, face) combination.

◮ In 1926 John Petrie and H.S.M. Coxeter proved that there are
exactly three regular triply periodic polyhedra, which Coxeter
denoted {4, 6|4}, {6, 4|4}, and {6, 6|3}, where {p, q|r} denotes a
polyhedron made up of p-sided regular polygons meeting q at a
vertex, and with regular r -sided holes.



Hyperbolic Geometry and Regular Tessellations

◮ In 1901, David Hilbert proved that, unlike the sphere, there was no
isometric (distance-preserving) embedding of the hyperbolic plane
into ordinary Euclidean 3-space.

◮ Thus we must use models of hyperbolic geometry in which Euclidean
objects have hyperbolic meaning, and which must distort distance.

◮ One such model is the Poincaré disk model. The hyperbolic points
in this model are represented by interior point of a Euclidean circle
— the bounding circle. The hyperbolic lines are represented by
(internal) circular arcs that are perpendicular to the bounding circle
(with diameters as special cases).

◮ This model is appealing to artests since (1) angles have their
Euclidean measure (i.e. it is conformal), so that motifs of a
repeating pattern retain their approximate shape as they get smaller
toward the edge of the bounding circle, and (2) it can display an
entire pattern in a finite area.



Repeating Patterns and Regular Tessellations

◮ A repeating pattern in any of the 3 “classical geometries”
(Euclidean, spherical, and hyperbolic geometry) is composed of
congruent copies of a basic subpattern or motif.

◮ The regular tessellation, {p, q}, is an important kind of repeating
pattern composed of regular p-sided polygons meeting q at a vertex.

◮ If (p − 2)(q − 2) < 4, {p, q} is a spherical tessellation (assuming
p > 2 and q > 2 to avoid special cases).

◮ If (p − 2)(q − 2) = 4, {p, q} is a Euclidean tessellation.

◮ If (p − 2)(q − 2) > 4, {p, q} is a hyperbolic tessellation. The next
slide shows the {6, 4} tessellation.

◮ Escher based his 4 “Circle Limit” patterns, and many of his
spherical and Euclidean patterns on regular tessellations.



The Regular Tessellation {4, 6}



The tessellation {4, 6} superimposed on a pattern of angular fish

used to decorate the {4, 6|4} polyhedron of the title slide



Relation between periodic polyhedra and regular tessellations

— a 2-Step Process

◮ (1) Some triply periodic polyhedra approximate TPMS’s.

◮ (2) As a minimal surface, a TPMS has negative curvature (except
for isolated points of zero curvature), and so its universal covering
surface also has negative curvature and thus has the same
large-scale geometry as the hyperbolic plane.

So the polygons of the triply periodic polyhedron can be transferred
to the polygons of a corresponding regular tessellation of the
hyperbolic plane.

Also, if the polyhedron has a pattern on it that lifts to a repeating
pattern on the hyperbolic plane, we call that pattern the universal

covering pattern of the patterned polyhedron.

◮ We show this relationship in the next slides.



Angular fish on the triply periodic polyhedron {4, 6|4}
— showing colored embedded lines



Schwarz’s P-surface — approximated by the previous triply

periodic polyhedron, and showing corresponding embedded lines



A close-up of Schwarz’s P-surface showing corresponding

embedded lines and “skew rhombi”



The angular fish polyhedron “unfolded” onto a repeating pattern

of the hyperbolic plane — showing the embedded lines as

hyperbolic lines, which bound the “skew rhombi”.



Color Symmetry

◮ A colored repeating plane pattern has (perfect) color symmetry if
each symmetry of the pattern disregarding color causes a
permutation of the colors of the motifs. The “plane” can either be
Euclidean or hyperbolic.

◮ We can extend this notion to colored patterns on triply periodic
polyhedra: a patterned polyhedron has color symmetry if each
symmetry of the polyhedron in 3-space permutes the colors of the
motifs comprising the pattern.



A pattern of angular fish with only trivial color symmetry



A close-up of a vertex of the angular fish polyhedron

showing the color symmetry of the backbone lines



Colored Fish on the {6, 4|4} Polyhedron



A top view of the {6, 4|4} polyhedron with fish



The corresponding hyperbolic pattern of fish — a version of

Escher’s Circle Limit I pattern with 6-color symmetry



A Pattern of Fish on the {6, 6|3} Polyhedron

This patterned polyhedron clearly has 3-color symmetry.



A top view of the fish on the {6, 6|3} polyhedron — showing how a

3-fold rotation about the vertex permutes the colors.



The corresponding hyperbolic pattern of fish — based on the

{6, 6} tessellation



A Pattern of Butterflies on a {3, 8} Polyhedron

This butterfly pattern was inspired by Escher’s Regular Division Drawing
# 70. This polyhedron is related to Schwarz’s D-surface, a TPMS with
the topology of a thickened diamond lattice. We show:

◮ Escher’s Regular Division Drawing # 70.

◮ A hyperbolic pattern of butterflies based on the {3, 8} tessellation
— the “universal covering pattern” of the patterned polyhedron.

◮ A view of the patterned {3, 8} polyhedron.

◮ A close-up of a vertex of the patterned polyhedron.



Escher’s Regular Division Drawing # 70



A pattern of butterflies based on the {3, 8} tessellation

— the “universal covering pattern” for the polyhedron.



The {3, 8} polyhedron with butterflies, having 2-fold and 3-fold

color symmetries.



A close-up of a vertex of the patterned polyhedron, looking down

a 2-fold axis of symmetry.



Butterflies on Another {3, 8} Polyhedron

We show the pattern of butterflies on a different the triply periodic {3, 8}
polyhedron. This butterfly pattern was also inspired by Escher’s Regular
Division Drawing # 70. Thus the hyperbolic “covering pattern” is the
same as for the previous polyhedron. This polyhedron has the same
topology as Schwarz’s P-surface, a TPMS with the topology of a
thickened version of the 3-D coordinate lattice. We show:

◮ The {3, 8} polyhedron, which is made up of snub cubes arranged in
a cubic lattice, attached by their (missing) square faces, and
alternating between left-handed and right-handed versions.

◮ A close-up of a vertex of the patterned polyhedron.



Another Patterned {3, 8} Polyhedron —

with only trivial color symmetry.



A close-up of a vertex of the patterned polyhedron.



A Pattern of Fish on a {3, 8} Polyhedron

We show a pattern of fish on the first of the {3, 8} polyhedra above. This
pattern was inspired by Escher’s hyperbolic print Circle Limit III (which is
based on the regular {3, 8} tessellation). The red, green, and yellow fish
swim along those lines (the blue fish swim in loops around the “waists”).
This polyhedron has only 3-color symmetry since the blue fish cannot be
mapped to any other color by a symmetry of the polyhedron. We show:

◮ The patterned polyhedron.

◮ Escher’s Circle Limit III with the equilateral triangle tessellation
superimposed.

◮ Another view of the patterned polyhedron along a 3-fold axis.



The patterned polyhedron



Escher’s Circle Limit III with the equilateral triangle tessellation

superimposed



A view down a 3-fold symmetry axis of the polyhedron



Future Work

◮ Put other patterns on the triply periodic polyhedra shown above.

◮ Place patterns on other triply periodic polyhedra.
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