SubTile 2013, Marseille

An Algorithm to Create Hyperbolic Escher Tilings

Douglas Dunham
University of Minnesota Duluth
Duluth, Minnesota USA
Email: ddunham@d.umn.edu
Web: http://www.d.umn.edu/~ddunham
Outline

- Motivation — M.C. Escher examples
- Hyperbolic geometry, Repeating patterns, and regular tessellations
- The replication algorithm
- Other hyperbolic patterns inspired by Escher patterns
- Future research
Hyperbolic Art Pioneer: M.C. Escher
Four “Circle Limit” Patterns: Circle Limit I
Circle Limit II
Creating Repeating Hyperbolic Patterns

A two-step process:

1. Design the fundamental tile or motif
2. Transform copies of the tile about the hyperbolic plane: replication
Poincaré Disk Model of Hyperbolic Geometry
Repeating Patterns
A repeating pattern is composed of congruent copies of the motif.
The Regular Tessellations \(\{p, q\} \)

- The regular tessellation \(\{p, q\} \) is a tiling composed of regular \(p \)-sided polygons, or \(p \)-gons meeting \(q \) at each vertex.
- It is necessary that \((p - 2)(q - 2) > 4\) for the tessellation to be hyperbolic.
- If \((p - 2)(q - 2) = 4\) or \((p - 2)(q - 2) < 4\) the tessellation is Euclidean or spherical respectively.
The Regular Tessellation \{6, 4\}
A Table of the Regular Tessellations

<table>
<thead>
<tr>
<th>q</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>⋯</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>⋯</td>
</tr>
<tr>
<td>7</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>⋯</td>
</tr>
<tr>
<td>6</td>
<td>□</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>⋯</td>
</tr>
<tr>
<td>5</td>
<td>○</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>⋯</td>
</tr>
<tr>
<td>4</td>
<td>○</td>
<td>□</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>⋯</td>
</tr>
<tr>
<td>3</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>□</td>
<td>*</td>
<td>*</td>
<td>⋯</td>
</tr>
</tbody>
</table>

- □ - Euclidean tessellations
- ○ - spherical tessellations
- * - hyperbolic tessellations
The Replication Algorithm

To reduce the number of transformations and to simplify the replication process, we form the p-gon pattern from all the copies of the motif touching the center of the bounding circle.

- Thus in order to replicate the pattern, we apply transformations to the p-gon pattern rather than to each individual motif.
- Some parts of the p-gon pattern may protrude from the enclosing p-gon, as long as there are corresponding indentations, so that the final pattern will fit together like a jigsaw puzzle.
- The p-gon pattern is often called the translation unit in repeating Euclidean patterns.
The p-gon pattern for Circle Limit I
Layers of p-gons

We note that the p-gons of a \(\{p, q\} \) tessellation are arranged in layers as follows:

- The first layer is just the central p-gon.
- The \(k + 1^{st} \) layer consists of all p-gons sharing an edge or a vertex with a p-gon in the \(k^{th} \) layer (and no previous layers).
- Theoretically a repeating hyperbolic pattern has an infinite number of layers, however if we only replicate a small number of layers, this is usually enough to appear to fill the bounding circle to our Euclidean eyes.
Exposure of a p-gon

We also define the exposure of a p-gon in terms of the number of edges it has in common with the next layer (and thus the fewest edges in common with the previous layer).

- A p-gon has maximum exposure if it has the most edges in common with the next layer, and thus only shares a vertex with the previous layer.

- A p-gon has minimum exposure if it has the least edges in common with the next layer, and thus shares an edge with the previous layer.

- We abbreviate these values as MAX_EXP and MIN_EXP respectively.
The Replication Algorithm

The replication algorithm consists of two parts:

- A top-level “driver” routine `replicate()` that draws the first layer, and calls a second routine, `recursiveRep()`, to draw the rest of the layers.
- A routine `recursiveRep()` that recursively draws the rest of the desired number of layers.

A tiling pattern is determined by how the p-gon pattern is transformed across p-gon edges. These transformations are in the array `edgeTran[]`
The Top-level Routine `replicate()`

Replicate (motif) {
 drawPgon (motif, IDENT); // Draw central p-gon
 for (i = 1 to p) { // Iterate over each vertex
 qTran = edgeTran[i-1];
 for (j = 1 to q-2) { // Iterate about a vertex
 exposure = (j == 1) ? MIN_EXP : MAX_EXP;
 recursiveRep (motif, qTran, 2, exposure);
 qTran = addToTran (qTran, -1);
 }
 }
}

The function `addToTran()` is described next.
The Function addToTran()

Transformations contain a matrix, the orientation, and an index, pPosition, of the edge across which the last transformation was made (edgeTran[i].pPosition is the edge matched with edge i in the tiling). Here is addToTran():

```
addToTran( tran, shift ) {
    if ( shift % p == 0 ) return tran ;
    else return computeTran( tran, shift ) ;
}
```

where computeTran() is:

```
computeTran( tran, shift ) {
    newEdge = (tran.pPosition +
               tran.orientation * shift) % p ;
    return tranMult(tran, edgeTran[newEdge]) ;
}
```

and where tranMult(t1, t2) multiplies the matrices and orientations, sets the pPosition to t2.pPosition, and returns the result.
The Routine recursiveRep()

recursiveRep (motif, initialTran, layer, exposure) {
 DrawPgon (motif, initialTran) ; // Draw p-gon pattern
 if (layer < maxLayer) { // If any more layers
 pShift = (exposure == MIN_EXP) ? 1 : 0 ;
 verticesToDo = (exposure == MIN_EXP) ? p-3 : p-2 ;
 for (i = 1 to verticesToDo) { // Do each vertex
 pTran = computeTran (initialTran, pShift) ;
 qSkip = (i == 1) ? -1 : 0 ;
 qTran = addToTran (pTran, qSkip) ;
 pgonsToDo = (i == 1) ? q-3 : q-2 ;
 for (j = 1 to pgonsToDo) { // Go around a vertex
 newExposure = (j == 1) ? MIN_EXP : MAX_EXP ;
 recursiveRep(motif, qTran, layer+1, newExposure);
 qTran = addToTran (qTran, -1) ;
 }
 pShift = (pShift + 1) % p ; // Go to next vertex
 }
 }
}
Special Cases

The algorithm above works for \(p > 3 \) and \(q > 3 \).

If \(p = 3 \) or \(q = 3 \), the same algorithm works, but with different values of \(p_{\text{shift}}, \text{verticesToDo}, q_{\text{skip}}, \text{etc.} \).
Sample Patterns

Escher’s Euclidean Notebook Drawing 20, based on the \(\{4, 4\} \) tessellation.
Escher’s Spherical Fish Pattern Based on \{4, 3\}
A Hyperbolic Fish Pattern Based on \(\{4, 5\}\)
Escher’s Euclidean Notebook Drawing 25, based on the \{6, 3\} tessellation.
Escher’s Print Reptiles based on Notebook Drawing 25
A Hyperbolic Lizard Pattern Based on \{8, 3\}
Escher’s Euclidean Notebook Drawing 42, based on the \{4, 4\} tessellation.
A Hyperbolic Shell Pattern Based on \(\{4, 5\} \)
Escher’s Euclidean Notebook Drawing 45, based on the \{4, 4\} tessellation.
Escher’s Spherical “Heaven and Hell” Based on \(\{4, 3\}\)
A Hyperbolic “Heaven and Hell” Pattern Based on \(\{4, 5\} \)
Escher’s Euclidean Notebook Drawing 70, based on the \(\{6, 3\} \) tessellation.
A Hyperbolic Butterfly Pattern Based on \{8, 3\}
A Hyperbolic Butterfly Pattern Based on \{7, 3\}
A Hyperbolic Butterfly Pattern Based on \(\{3, 7\}\)
A Hyperbolic Butterfly Pattern Based on \{5, 4\}
A Hyperbolic Butterfly Pattern Based on \(\{5, 5\} \)
Future Work

- Extend the algorithm to handle tilings by non-regular polygons.
- Extend the algorithm to the cases infinite regular polygons: \(\{p, \infty\} \) of infinite \(p \)-sided polygons, or \(\{\infty, q\} \) of infinite-sided polygons meeting \(q \) at a vertex.
- Create a program to transform between different fundamental polygons.
- Automatically generate patterns with color symmetry.
Thank You

To CIRM and all the organizers of SubTile 2013

Contact Information:
Doug Dunham
Email: ddunham@d.umn.edu
Web: http://www.d.umn.edu/~ddunham