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Introduction

There are 3 “Classical Geometries”:

• the Euclidean plane

• the sphere

• the hyperbolic plane

The first two have been known since antiquity

Hyperbolic geometry has been known for slightly less
than 200 years.

3



Hyperbolic Geometry Discovered
Independently in Early 1800’s by:

• Bolyai János

• Carl Friedrich Gauss (did not publish results)

• Nikolas Ivanovich Lobachevsky
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Why the Late Discovery of Hyperbolic
Geometry?

• Euclidean geometry seemed to represent the phys-
ical world.

• Unlike the sphere was no smooth embedding of the
hyperbolic plane in familiar Euclidean 3-space.
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Euclid and the Parallel Axiom

• Euclid realized that the parallel axiom, the Fifth
Postulate, was special.

• Euclid proved the first 28 Propositions in his Ele-
ments without using the parallel axiom.
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Attempts to Prove the Fifth Postulate

• Adrien-Marie Legendre (1752–1833) made many
attempts to prove the Fifth Postulate from the first
four.

• Girolamo Saccheri (1667–1733) assumed the nega-
tion of the Fifth Postulate and deduced many re-
sults (valid in hyperbolic geometry) that he thought
were absurd, and thus “proved” the Fifth Postu-
late was correct.
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New Geometries

• A negation of the Fifth Postulate, allowing more
than one parallel to a given line through a point,
leads to another geometry, hyperbolic, as discov-
ered by Bolyai, Gauss, and Lobachevsky.

• Another negation of the Fifth Postulate, allowing
no parallels, and removing the Second Postulate,
allowing lines to have finite length, leads to ellip-
tic (or spherical) geometry, which was also investi-
gated by Bolyai.
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A Second Reason for Late Discovery

• As mentioned before, there is no smooth embed-
ding of the hyperbolic plane in familiar Euclidean
3-space (as there is for the sphere). This was proved
by David Hilbert in 1901.

• Thus we must rely on “models” of hyperbolic ge-
ometry - Euclidean constructs that have hyperbolic
interpretations.
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The Beltrami-Klein Model of Hyperbolic
Geometry

• Hyperbolic Points: (Euclidean) interior points of a
bounding circle.

• Hyperbolic Lines: chords of the bounding circle
(including diameters as special cases).

• Described by Eugenio Beltrami in 1868 and Felix
Klein in 1871.
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Consistency of Hyperbolic Geometry

• Hyperbolic Geometry is at least as consistent as
Euclidean geometry, for if there were an error in
hyperbolic geometry, it would show up as a Eu-
clidean error in the Beltrami-Klein model.

• So then hyperbolic geometry could be the “right”
geometry and Euclidean geometry could have er-
rors!?!?

• No, there is a model of Euclidean geometry within
3-dimensional hyperbolic geometry — they are equally
consistent.
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Henri Poincaré’s Models of Hyperbolic
Geometry

• The circle model (described next).

• The upper half-plane model:

– Hyperbolic points: points in the xy-plane with
positivey-coordinate.

– Hyperbolic lines: upper semi-circles whose cen-
ter is on thex-axis (including vertical half-lines
as special cases).

– Used by M.C. Escher in his “line-limit” patterns.

• Both models areconformal: the hyperbolic mea-
sure of angles is the same as their Euclidean mea-
sure.
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Poincaré Circle Model of Hyperbolic
Geometry

• Points: points within the (unit) bounding circle

• Lines: circular arcs perpendicular to the bounding
circle (including diameters as a special case)

• Attractive to Escher and other artists because it
is represented in a finite region of the Euclidean
plane, so viewers could see the entire pattern, and
is conformal, so that copies of a motif in a repeat-
ing pattern retained their same approximate shape.
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Relation Between Poincaŕe and
Beltrami-Klein Models

• A chord in the Beltrami-Klein model represents
the same hyperbolic line as the orthogonal circular
arc with the same endpoints in the Poincaŕe circle
model.

• The models measure distance differently, but equal
hyperbolic distances are represented by ever smaller
Euclidean distances toward the bounding circle in
both models.
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Repeating Patterns

• A repeating pattern in any of the three classical ge-
ometries is a pattern made up of congruent copies
of a basic subpattern ormotif.

• The copies of the motif are related bysymmetries
— isometries (congruences) of the pattern which
map one motif copy onto another.

• A fish is a motif for Escher’s Circle Limit III pat-
tern below if color is disregarded.
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Symmetries in Hyperbolic Geometry

• A reflection is one possible symmetry of a pattern.

• In the Poincaré disk model, reflection across a hy-
perbolic line is represented by inversion in the or-
thogonal circular arc representing that hyperbolic
line.

• As in Euclidean geometry, any hyperbolic isom-
etry, and thus any hyperbolic symmetry, can be
built from one, two, or three reflections.

• For example in either Euclidean or hyperbolic ge-
ometry, one can obtain a rotation by applying two
successive reflections across intersecting lines, the
angle of rotation being twice the angle of intersec-
tion.
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Examples of Symmetries — Escher’sCircle
Limit I
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Repeating Patterns and Hyperbolic
Geometry

• Repeating patterns and their symmetry are nec-
essary to understand the hyperbolic nature of the
different models of hyperbolic geometry.

• For example, a circle containing a few chords may
just be a Euclidean construction and not represent
anything hyperbolic in the Beltrami-Klein model.

• On the other hand, if there is a repeating pattern
within the circle whose motifs get smaller as one
approaches the circle, then we may be able to in-
terpret it as a hyperbolic pattern.
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Symmetry, Discovery, Aesthetics, and New
Knowledge

• Probably the most important example of hyper-
bolic symmetry leading to something new was Es-
cher’s discovery of the Poincar disk model as a
solution to his long-sought “circle limit” problem:
how to construct a repeating pattern whose motifs
get infinitely small toward the edge of a bounding
circle.

• In a “circle limit” pattern, the complete infinite
pattern could be captured within a finite area, un-
like the “point limit” and “line limit” patterns Es-
cher had previously designed.

• The Canadian mathematician H.S.M. Coxeter sent
Escher a reprint of a paper containing such a pat-
tern of curvilinear triangles.

• Escher recounted that “gave me quite a shock” since
the apparent visual symmetries of the pattern in-
stantly showed him the solution to his problem.
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Coxeter’s Pattern that Inspired Escher
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Escher Inspiring Coxeter and Dunham

• In turn, Escher’s “Circle Limit” patterns inspired
Coxeter to analyze them.

• Coxeter determined the symmetry groups of Es-
cher’s Circle Limit II, Circle Limit III, and Circle
Limit IV as [3+, 8], (4, 3, 3), and [4+, 6] respectively.

• Later, Dunham, inspired by both Escher and Cox-
eter determined the symmetry group ofCircle Limit
I to be cmm3,2, a special case ofcmmp

2
,q
2

(which is
generated by reflections across the sides of a rhom-
bus with angles2π/p and 2π/q, and a 180 degree
rotation about its center). Whenp = q = 4, we get
the Euclidean “wallpaper” group cmm = cmm2,2.

• Coxeter also determined that backbone arcs ofCir-
cle Limit III made an angle ofω with the bounding
circle, wherecos(ω) =

√

3
√

2−4

8
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Escher’sCircle Limit III — Note Backbone
Lines
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Escher and Coxeter Inspiring Dunham

• Several years ago I was inspired by Escher and an
editor of the Mathematical Intelligencer to conceive
of a generalization of Escher’sCircle Limit III pat-
tern.

• Allowing p fish to meet at right fin tips, q fish to
meet at left fin tips, and r fish to meet nose-to-
nose, I denote the resulting pattern(p, q, r), soCir-
cle Limit III would be called (4, 3, 3) in this nota-
tion.

• Luns Tee and Dunham also determined that back-
bone arcs of of a(p, q, r) pattern made an angle of
ω with the bounding circle, where

cos(ω) =
sin( π
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A (5,3,3) Pattern
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Reinterpretation of Geometric Knowledge

• Lobachevsky and probably Gauss viewed hyper-
bolic geometry in isolation.

• Bolyai also considered elliptic geometry as another
possible non-Euclidean geometry, thus becoming
the first to consider the three classical geometries,
Euclidean, hyperbolic, and elliptic, as a related set
distinguished by their parallel properties.

• The classical geometries also have constant curva-
ture: zero curvature for the Euclidean plane, pos-
itive curvature for elliptic geometry, and negative
curvature for hyperbolic geometry.

• Gauss considered more general 2-dimensional sur-
faces in which the curvature could also vary from
point to point, so the classical geometries were then
just special cases.

• In the mid-1800’s, Riemann extended the concept
of surfaces to n-dimensional manifolds, so surfaces
in turn became just a special case of manifolds (of
dimension two).
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Relative Consistency of Euclidean and
Hyperbolic Geometry

• Beltrami’s interpretation of his model of hyper-
bolic geometry as a set of Euclidean constructs proved
that hyperbolic geometry was just as consistent as
Euclidean geometry.

• Conversely, it was shown later that horospheres
in 3-dimensional hyperbolic space could be inter-
preted as having the same structure as the Euclidean
plane, thus proving that the geometries were equally
consistent.
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Color Symmetry

• In the early 1960’s the theory of patterns with n-
color symmetry was being developed for n larger
than two (the theory of 2-color symmetry had been
developed in the 1930’s).

• Previously, Escher had created many patterns with
regular use of color. These patterns could now be
reinterpreted in light of the new theory of color
symmetry.

• Escher’s patternsCircle Limit II and Circle Limit
III exhibit 3- and 4-color symmetry respectively.
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Escher’sCircle Limit II Pattern (3-color
symmetry)

Escher’s least known Circle Limit pattern.
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Escher’sCircle Limit IV Pattern

• Only motif Escher rendered in all three classical
geometries

• This pattern inspired Australian polymath Tony
Bomford to create hyperbolic hooked rugs.
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Integration of Knowledge to Create
Repeating Hyperbolic Patterns

• Repeating hyperbolic patterns were first created
a little more than 100 years ago. These were ab-
stract patterns like the pattern of curvilinear tri-
angles used by Coxeter that inspired Escher.

• Creating these patterns mostly required the knowl-
edge of Euclidean constructions.

• To create aesthetically pleasing hyperbolic patterns
it is necessary to have good artistic knowledge also.

• Escher became the first person to create such pat-
terns because he had both the mathematical and
the artistic knowledge.
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Creating Hyperbolic Patterns Using a
Computer

• Creating repeating hyperbolic patterns by hand is
tedious and time consuming, since unlike Euclidean
repeating patterns in which the motifs are all the
same size, the motifs vary in size and must be cre-
ated individually.

• About 30 years ago it occurred to me that comput-
ers could be used to draw hyperbolic patterns but
they had to be programmed to do so.

• Thus a third discipline, computer science, needed
to be integrated into the process.

• My students and I were successful in this endeavor,
not only re-creating Escher’s circle limit patterns,
but other patterns as well.
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Another Hyperbolic Pattern
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Creating More Hyperbolic Art Using
Computers

• The computer programs that my students and I
designed have also been used to draw templates
that could be used by artists using other media.

• Irene Rousseau was the first artist to take advan-
tage of hyperbolic pattern templates, creating sev-
eral glass mosaic patterns.

• Later Mary Williams made a quilt with a hyper-
bolic pattern, inspired by one of my computer draw-
ings.

• Currently I am working with a hooked rug maker
to create a new hyperbolic pattern related to those
made by the Australian rug maker Tony Bomford.
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Tony Bomford’s Rug Number 17
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Integration of the Cerebral Hemispheres in
Creating Patterns

• The process of creating repeating hyperbolic pat-
terns via computer requires both left-brain and right-
brain thinking.

• The left-brain functions of logic and mathematics
are necessary to create the computer programs to
draw the patterns.

• The computer program also makes fundamental
use of the 3-dimensional Weierstrass model of hy-
perbolic geometry.

• Thus the right-brain functions of geometric insight,
artistic appreciation, and 3D conceptualization are
also needed.

• Consequently, the creation of these patterns requires
an integrated and balanced use of both the left-
brain and right-brain hemispheres.
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Future Work

• Extend the classification of families of Escher pat-
terns such as his “Angels and Devils” patterns (in
each of the three classical geometries), and the pro-
posed(p, q, r) generalizations ofCircle Limit III.

• Find an algorithm for computing the minimum num-
ber of colors needed for a pattern, given the defini-
tion of its symmetry group (ignoring color).

• Continue to inspire other artists to create hyper-
bolic patterns in their media.
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