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Abstract

A d-handicap distance antimagic labeling of a graph G = (V,E) with
n vertices is a bijection f : V → {1, 2, . . . , n} with the property that
f(xi) = i and the sequence of the weights w(x1), w(x2), . . . , w(xn) (where
w(xi) =

∑
xixj∈E

f(xj)) forms an increasing arithmetic progression with

common difference d. A graph G is a d-handicap distance antimagic graph
if it allows a d-handicap distance antimagic labeling.

We prove that a k-regular 2-handicap distance antimagic graph of
order n ≡ 0 (mod 16) exists if and only if n ≥ 16 and 4 ≤ k ≤ n− 6.
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1 Motivation

The notion of handicap distance antimagic graphs has been motivated by tour-
nament scheduling. Suppose we have a group of teams ranked according to
their standings in the previous season, and we want to schedule a tournament
in which every team plays the same number of games, say k, and we want that
the weaker teams have good chance of winning. Then we need to schedule the
tournament so that the strongest teams play the strongest sets of opponents,
while the weakest teams have the weakest opponents.

When the strengths of schedules (that is, the sum of rankings of their oppo-
nents) of teams ranked i and i + 1 differ by d for any i = 1, 2, . . . , n − 1, with
team ranked 1 playing the most difficult schedule (sum of rankings is lowest)
and team ranked n playing the easiest schedule (sum of rankings is highest), we
speak about d-handicap graph or tournament.

Handicap tournaments with handicap d = 1 have been investigated in sev-
eral papers. An overview of results on regular graphs of even order with more
references has been published recently [9]. For even regular graphs of odd order,
the results so far are sparse—see [6]. For d = 2, the author already studied
graphs with n ≡ 0 (mod 16) vertices, but provided only a part of the possible
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regularities. For n ≡ 8 (mod 16), 2-handicap k-regular graphs were found by
the author [8] for n ≥ 56 and 6 ≤ k ≤ n − 12. Freyberg [1] recently stared
investigating d-handicap graphs for d ≥ 3.

We show that a k-regular 2-handicap graph of order n ≡ 0 (mod 16) exists
if and only if n ≥ 16 and 4 ≤ k ≤ n− 6.

2 Definitions, tools, and known results

The term “handicap distance antimagic labeling” was coined by Kovarova [14].
The author originally called the labeling ordered distance antimagic in [3].

Constructions of many classes of handicap graphs are based on properties
of magic rectangles and magic rectangle sets, which are generalizations of the
well-known notion of magic squares.

Definition 2.1. A magic rectangle set MRS(a, b; c) is a collection of c ar-
rays R = {R1, R2, . . . , Rc}, each of size a × b whose entries are elements of
{1, 2, . . . , abc}, each appearing once, with all row sums in every rectangle equal
to a constant ρ and all column sums in every rectangle equal to a constant σ.

For our constructions, we need to modify the properties of magic rectangle
sets as follows.

Definition 2.2. A modified magic rectangle set MMRS(a, b; 2c) is a collection
of 2c arrays R = {R1, R2, . . . , R2c}, each of size a × b whose entries rsij are

elements of {1, 2, . . . , 2abc}, each appearing once, where the set {R1, R2, . . . , Rc}
is an MRS(a, b; c) and for s = c + 1, c + 2, . . . , 2c the entries are defined as
rc+s
ij = rsij + abc.

Constructions of magic rectangle sets and their applications can be found
in [3] and [4], and more applications in [7] and [8].

Definition 2.3. A handicap distance d-antimagic labeling or shortly d-handicap
labeling of a graph G = (V,E) with n vertices is a bijection f : V → {1, 2, . . . , n}
with induced weight function

w(xi) =
∑

xj :xixj∈E
f(xj)

such that f(xi) = i and the sequence of the weights w(x1), w(x2), . . . , w(xn)
forms an increasing arithmetic progression with difference d. When d = 1, the
labeling is called just a handicap labeling.

A graph G is a handicap distance d-antimagic graph (or just d-handicap
graph) if it allows a handicap distance d-antimagic labeling, and a handicap
distance antimagic graph or a handicap graph when d = 1.
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So, a graph G has a 2-handicap labeling defined by f(xi) = i if there exists
a constant µ such that w(xi) = µ+ 2i for every i = 1, 2, . . . , n.

It was proved in [8] that odd-regular 2-handicap graphs do not exist.

Theorem 2.4. If G is a k-regular 2-handicap graph, then k is even.

We denote by H(n, k, d) a k-regular handicap distance d-antimagic graph of
order n. The following existence results were proved by the author in [7] and [8],
respectively.

Theorem 2.5. There exists a k-regular 2-handicap graph H(16m, k, 2) of order
16m for every positive m and every even k satisfying 4m+ 2 ≤ k ≤ 12m− 2.

Theorem 2.6. There exists a k-regular 2-handicap graph H(n, k, 2) of order
n = 16m+8 for every positive m ≥ 3 and every even k satisfying 6 ≤ k ≤ n−50.

3 Necessary conditions

First we prove some necessary conditions.

Theorem 3.1. If G is a k-regular 2-handicap graph, then k is even and 4 ≤
k ≤ n− 6.

Proof. Even parity of k follows from Theorem 2.4. Now we proceed by contra-
diction and assume that there is a 2-regular handicap graph on n vertices. We
identify vertices with their labels, that is, we say “vertex l” rather than “vertex
xl with f(xl) = l.” It follows from the definition that w(l) = w(1) + 2l − 2.
Hence,

n∑
l=1

w(xl) =

n∑
l=1

(w(1) + 2(l− 1) = nw(1) + 2

n∑
l=1

(l− 1) = nw(1) +n(n− 1). (1)

On the other hand, each label is in the above sum counted twice, so we also
have

n∑
l=1

w(xl) = 2

n∑
l=1

l = n(n+ 1). (2)

Comparing right-hand sides of (1) and (2), we obtain

nw(1) + n(n− 1) = n(n+ 1),

which implies
nw(1) = 2n

and it follows that
w(1) = 2.
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However, this is impossible, since the sum of two available lowest labels is 2+3 =
5, a contradiction.

Similarly, we now assume that k = n− 4. Then we have

n∑
l=1

w(xl) =

n∑
l=1

(w(n)−2(l−1) = nw(n)−2

n∑
l=1

(l−1) = nw(n)−n(n−1). (3)

On the other hand, each label is in the above sum counted (n− 4) times, so we
also have

n∑
l=1

w(xl) = (n− 4)

n∑
l=1

l = (n− 4)n(n+ 1)/2. (4)

Comparing right-hand sides of (3) and (4), we obtain

n(w(n)− n+ 1) = (n− 4)n(n+ 1)/2,

which yields

2w(n)− 2n+ 2 = (n− 4)(n+ 1) = n2 − 3n− 4

and it follows that
w(n) = (n2 − n− 6)/2.

However, this is impossible, since the sum of n− 4 available highest labels is

(n− 1) + (n− 2) + · · ·+ 5 + 4 = (n− 4)(n+ 3)/2 = (n2 − n− 12)/2.

But obviously,
n2 − n− 6 > n2 − n− 12

and we can never obtain the desired value w(n) = n2 − n− 6, a contradiction.
For k = n− 2, we have

n∑
l=1

w(xl) = (n− 2)n(n+ 1)/2. (5)

We compare right-hand sides of (3) and (5) and obtain

n(w(n)− n+ 1) = (n− 2)n(n+ 1)/2,

which yields

2w(n)− 2n+ 2 = (n− 2)(n+ 1) = n2 − n− 2

and it follows that
w(n) = (n2 + n− 4)/2.
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This is again impossible, since the sum of n− 2 available highest labels is

n−1∑
l=2

l = (n− 2)(n+ 1)/2 = (n2 − n− 2)/2.

But obviously,
n2 + n− 4 > n2 − n− 2.

a contradiction once more. This completes the proof.

4 Construction

We base our construction on modified magic rectangle sets. For any c ≥ 1, we
construct a modified magic rectangle set R = MMRS(2, 4; 2c) consisting of 2c
arrays of size 2×4 as follows. The entries of Rs are rsij for 1 ≤ s ≤ 2c, 1 ≤ i ≤ 2,
and 1 ≤ j ≤ 4.

In Rs for j = 1, 4 and s = 1, 2, . . . , c we have

rsij =

{
4s− 4 + j for i = 1

8c− 4s+ 5− j for i = 2

and for j = 2, 3

rsij =

{
8c− 4s+ 5− j for i = 1

4s− 4 + j for i = 2.

We observe that in all cases we have

f(xsij) + f(xsi+1 j) = 8c+ 1. (6)

In Rs for j = 1, 4 and s = c+ 1, c+ 2, . . . , 2c we have

rsij =

{
8c+ 4s− 4 + j for i = 1

16c− 4s+ 5− j for i = 2

and for j = 2, 3

rsij =

{
16c− 4s+ 5− j for i = 1

8c+ 4s− 4 + j for i = 2.

Here, we have in all cases

f(xsij) + f(xsi+1 j) = 24c+ 1. (7)

A small example is shown in Figure 1.
First we prove the existence of 4-regular 2-handicap graphs of order n ≡ 0

(mod 16).
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1	 15	 14	 4	 	 9	 7	 6	 12	

16	 2	 3	 13	 	 8	 10	 11	 5	

	         

17	 31	 30	 20	 	 25	 23	 22	 28	

32	 18	 19	 29	 	 24	 26	 27	 21	

	

Figure 1: MMRS(2, 4; 4)

Theorem 4.1. There exists a 4-regular 2-handicap graph H(16c, 4, 2) of order
16c for every c ≥ 1.

Proof. We construct a 4-regular graph H(16c, 4, 2) using the modified magic
rectangle set R = MMRS(2, 4; 2c) defined above. We denote the vertices xsij for
s = 1, 2, . . . , 2c, i = 1, 2 and j = 1, 2, 3, 4 and define a 2-handicap labeling as
f(xsij) = rsij , where rsij is an entry of R.

We construct H(16c, 4, 2) in two steps. First, we create 2c copies of 3-regular
graphs K4,4 −M , where M is a perfect matching 4K2. Let Ks = (V s, Es) be
the s-th copy with bipartition V s = {xs1j | j = 1, 2, 3, 4} ∪ {xs2t | t = 1, 2, 3, 4}
and edges xs1jx

s
2t for j, t ∈ {1, 2, 3, 4} and j 6= t.

Observe that the labels in each partite set in all copies of K4,4 −M come
from one row of one rectangle in R. The sum of all labels in R1, R2, . . . , Rc is
8c(8c+ 1)/2 and we have c copies of K4,4 −M and hence 2c partite sets, each
corresponding to one row in a rectangle in R, which means that the sum of the
labels in each partite set for s = 1, 2, . . . , c is equal to ρ = 2(8c+ 1).

The temporary weight w′(xsij) for s = 1, 2, . . . , c is now

w′(xsij) = ρ− f(xsi+1 j)

and for s = c+ 1, c+ 2, . . . , 2c it is

w′(xsij) = 24c+ w′(xs−cij ) = 32c+ ρ− f(xsi+1 j)

In the second step, we add edges joining corresponding vertices in copies Rs

and Rc+s, namely xsijx
c+s
ij .

It follows from (6) that f(xsi+1 j) = 8c+1−f(xsij) and hence for s = 1, 2, . . . , c
we obtain

w(xsij) = w′(xsij) + f(xs+c
ij ) = ρ− f(xsi+1 j) + f(xsij) + 8c

= ρ− (8c+ 1− f(xsij)) + f(xsij) + 8c = ρ+ 2f(xsij)− 1.
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Because we identified vertices with their labels, that is, we assumed that
f(l) = l, we actually obtain

w(l) = ρ− 1 + 2l

for l = 1, 2, . . . , c.
Similarly, for s = c+ 1, c+ 2, . . . , 2c from (7) we have f(xsi+1 j) = 24c+ 1−

f(xsij) and hence

w(xsij) = w′(xsij) + f(xs−cij ) = 32c+ ρ− f(xsi+1 j) + f(xsij)− 8c

= 24c+ ρ− (24c+ 1− f(xsij)) + f(xsij) + 8c = ρ+ 2f(xsij)− 1.

This again after identifying vertices with their labels yields

w(l) = ρ− 1 + 2l

for l = 1, 2, . . . , c.
Clearly the sequence w(1), w(2), . . . , w(16c) is an increasing arithmetic pro-

gression with common difference 2, and the proof is complete.

Next we construct even-regular 2-handicap graphs of higher degree. This
can be achieved by placing edges of graphs K2,2 between appropriate pairs of
vertices whose labels add up to 8c+ 1. We present a detailed proof just for the
case when c is even. For c odd the proof is very similar, and thus we offer just
a sketch with the main ideas.

Theorem 4.2. There exists a k-regular 2-handicap graph of order n for every
positive n ≡ 0 (mod 32), n ≥ 32 and every even k satisfying 4 ≤ k ≤ n− 6.

Proof. We keep our previous notation. Hence, we need to assume here that c
is even and set c = 2c′. We recall that f(xsij) + f(xs+c

i+1 j) = 16c + 1. Adding
unused edges of a 2-regular graph consisting of copies of K2,2 with partite sets
{xsij , x

s+c
i+1 j} and {xtij , x

t+c
i+1 j} for t /∈ {s, s + c} clearly increases the weight of

every vertex by 16c+1. We have so far in our construction in Theorem 4.1 used
edges within the copies Ki, and edges xsijx

s+c
ij .

First we construct a complete graph K2c′ with vertices z1, z2, . . . , z2c′ , where
each zi corresponds to the graph induced by vertices of Ki and Ki+c defined
above.

First we look at the graph induced by the vertices of Ks and Ks+c. Edges
xsijx

s+c
ij have already been used, and edges xsijx

s+c
i+1 j will not be used at all.

We have never used edges in graphs K4 induced by xsi1, x
s
i2, x

s
i3, x

s
i4 for any

s = 1, 2, . . . , 2c and i = 1, 2. Thus, we use these unused edges for s and s+c along
with the edges between Ks and Ks+c to create 4-cycles xsi1, x

s
i2, x

s+c
i+1 1, x

s+c
i+1 2

and xsi3, x
s
i4, x

s+c
i+1 3, x

s+c
i+1 4 to increase each degree by 2. Notice that the weight

of each vertex increases by 16c+1, since each vertex is joined to a pair of vertices
xtab, x

t+c
a+1 b.
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Next, we add cycles xsi1, x
s
i3, x

s+c
i+1 1, x

s+c
i+1 3 and xsi2, x

s
i4, x

s+c
i+1 2, x

s+c
i+1 4 to in-

crease the degrees by 2 again, and finally cycles xsi1, x
s
i4, x

s+c
i+1 1, x

s+c
i+1 4 and

xsi2, x
s
i3, x

s+c
i+1 2, x

s+c
i+1 3 with the same effect. This covers constructions of graphs

H(16c, k, 2) for k = 6, 8, 10.
It is well known that K2c′ has a one-factorization. Now each edge in every

one-factor joins vertices zs and zt, where zs represents all vertices inducing Ks

and Ks+c and similarly, zt represents all vertices inducing Kt and Kt+c. Hence,
the edge zszt of ourK2c′ represents all edges between these two sets of 16 vertices
each, namely, {xaij : a = s; s+c; i = 1, 2, 3, 4} and {xaij : a = t; t+c; i = 1, 2, 3, 4}.
None of these edges has been previously used.

We now unify each pair xs1j , x
s+c
2j into a vertex u1j , each pair xs2j , x

s+c
1j into

a vertex u2j , and similarly pairs xt1j , x
t+c
2j and xt2j , x

t+c
1j into v1j and v2j , re-

spectively. Recall that the labels of each of the respective pairs add up to
16c + 1. What we obtain is the complete bipartite graph K8,8, which can ob-
viously be factorized into one-factors. Now an edge in each one-factor, say
uabvgh corresponds in the original graph to the 4-cycle in which the neighbors
of each vertex have labels that add up to 16c + 1. This step then increases
the degree of every vertex by 2, while maintaining the 2-handicap property.
Obviously, each one-factor of K2c′ allows us to increase the vertex degrees by
2, 4, . . . , 16. Hence, all one-factors together allow us to increase the degrees by
up to (c − 1)16 = 16c − 16 = n − 16. Along with the previously added edges,
we obtain maximum degree n− 16 + 10 = n− 6, as desired.

We notice that a similar construction can be used for n ≡ 16 (mod 32).
Suppose c = 2c′+1. Then the condensed graph with Ks and Ks+c amalgamated
into a vertex zs is K2c′+1. It is well known that it can be factorized into
Hamiltonian cycles. We take one of the cycles, blow it up back to the graph
C2c′+1 ◦K16 and decompose each K16,16 into eight copies of 8C4, one at a time.
Each such step increases the degree of our 2-handicap graph by 4. Now, if we
want to have a graph H(n, k, 2) where k ≡ 0 (mod 4) and k ≤ n− 12, we skip
the first step in our previous construction in the proof of Theorem 4.2 . That
means we do not add any edges into the graph consisting of the copies Ks and
Ks+c, just increase the degree by an appropriate multiple of four. If we want
k ≡ 2 (mod 4), we add just one of the three 2-factors consisting of the cycles
described in the first step. Finally, for k = n− 8 and n− 6, we add one or two
more of the remaining one-factors, respectively. While we have not provided a
complete, rigorous proof, it should be obvious that the following result holds.

Theorem 4.3. There exists a k-regular 2-handicap graph of order n for every
positive n ≡ 16 (mod 32), n ≥ 16 and every even k satisfying 4 ≤ k ≤ n− 6.

The complete result now follows from Theorems 2.4, 3.1, 4.2 and 4.3.

Theorem 4.4. There exists a k-regular 2-handicap graph of order n ≡ 0
(mod 16) if and only if n ≥ 16 and 4 ≤ k ≤ n− 6.
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[10] D. Fronček, P. Kovář, and T. Kovářová, Fair incomplete tournaments, Bull.
of ICA, 48 (2006), 31–33.

[11] T.R. Hagedorn, On the existence of magic n-dimensional rectangles, Dis-
crete Math., 207 (1999), 53–63.

[12] T. Harmuth, Ueber magische Quadrate und ähnliche Zahlenfiguren, Arch.
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