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Abstract

Let G = (V, E) be a graph of order n. A distance magic labeling of G is a
bijection £: V' — {1,2,...,n} for which there exists a positive integer k such
that }° () ¢(x) =k for all v € V, where N(v) is the open neighborhood
of v.

Tuttes flow conjectures are a major source of inspiration in graph theory.
In this paper we ask when we can assign n distinct labels from the set
{1,2,...,n} to the vertices of a graph G of order n such that the the sum of
the labels on heads minus the sum of the labels on tails is constant modulo
n for each vertex of G. Therefore we generalize the notion of distance magic
labeling for oriented graphs.

Keywords: distance magic graphs, digraphs, flow graphs.
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2 S. CicHACZ, B. FREYBERG AND D. FRONCEK

1. INTRODUCTION

All graphs considered in this paper are simple finite graphs. Consider a simple
graph G. We denote by V(G) the vertex set and E(G) the edge set of G. We
denote the order of G by |V(G)| = n. The open neighborhood N(x) of a vertex
x is the set of vertices adjacent to x, and the degree d(x) of x is [N (z)|, the size
of the neighborhood of z. By C),, we denote a cycle on n vertices.

In this paper we investigate distance magic labelings, which belong to a
large family of magic-type labelings. Generally speaking, a magic-type labeling
of a graph G = (V,E) is a mapping from V,E, or V U E to a set of labels
which most often is a set of integers or group elements. Then the weight of
a graph element is typically the sum of labels of the neighboring elements of
one or both types. If the weight of each element is required to be equal, then
we speak about magic-type labeling; when the weights are all different (or even
form an arithmetic progression), then we speak about an antimagic-type labeling.
Probably the best known problem in this area is the antimagic conjecture by
Hartsfield and Ringel [11], which claims that the edges of every graph except
K5 can be labeled by integers 1,2,...,|E| so that the weight of each vertex is
different. A comprehensive dynamic survey of graph labelings is maintained by
Gallian [10]. A more detailed survey related to our topic by Arumugam et al. [1]
was published recently.

A distance magic labeling (also called sigma labeling) of a graph G = (V, E)
of order n is a bijection ¢: V' — {1,2,...,n} with the property that there is a
positive integer k (called the magic constant) such that

w(z) = Z l(y) = k for every z € V(G),
yENG(z)

where w(z) is the weight of vertex z. If a graph G admits a distance magic
labeling, then we say that G is a distance magic graph.
The following observations were proved independently:

Observation 1 [13], [15], [16], [17]. Let G be an r-regular distance magic graph
r(n+1)
o

on n vertices. Then k =

Observation 2 [13], [15], [16], [17]. There is no distance magic r-reqular graph
with r odd.

The notion of group distance magic labeling of graphs was introduced in [9].
A T-distance magic labeling of a graph G = (V, E) with |V| = n is an injection
from V to an Abelian group I' of order n such that the weight of every vertex
evaluated under group operation x € V' is equal to the same element 4 € I'. Some
families of graphs that are I'-distance magic were studied in [4, 5, 6, 9].
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ORIENTABLE Z,,-DISTANCE MAGIC GRAPHS 3

An orientation of an undirected graph G = (V, E) is an assignment of a
direction to each edge, turning the initial graph into a directed graph 8 = (V, A).
An arc @ is considered to be directed from x to y, moreover y is called the head
and x is called the tail of the arc. For a vertex x, the set of head endpoints
adjacent to z is denoted by N~ (z), and the set of tail endpoints adjacent to x
denoted by NT(x). Let deg™ (z) = [N~ (x)|, deg™(z) = |[NT(z)| and deg(z) =
deg™ (z) + deg™ (x).

Bloom and Hsu defined graceful labelings on directed graphs [2]. Later
Bloom et al. also defined magic labelings on directed graphs [3]. Probably
the biggest challenge (among directed graphs) are Tuttes flow conjectures. An
H-flow on D is an assignment of values of H to the edges of D, such that for
each vertex v, the sum of the values on the edges going in is the same as the
sum of the values on the edges going out of v. The 3-flow conjecture says that
every 4-edge-connected graph has a nowhere-zero 3-flow (what is equivalent that
it has an orientation such that each vertex has the same outdegree and indegree
modulo 3). In this paper we ask when we can assign n distinct labels from the
set {1,2,...,n} to the vertices of a graph G of order n such that the the sum of
the labels on heads minus the sum of the labels on tails is constant modulo n
for each vertex of G. Therefore we introduce a generalization of distance magic
labeling on directed graphs.

Assume I' is an Abelian group of order n with the operation denoted by +.
For convenience we will write ka to denote a + a + ... 4+ a (where the element a
appears k times), —a to denote the inverse of a and we will use a — b instead of
a+ (—b). A directed I'-distance magic labeling of an oriented graph = (V, A)
of order n is a bijection 7: V — T" with the property that there is p € I' (called
the magic constant) such that

w(x) = Z 7(y) - Z 7(y) = p for every x € V(QG).

yENZ (2) YENG (z)

If for a graph G there exists an orientation 8 such that there is a directed
I'-distance magic labeling ¢ for 8, we say that G is orientable I'-distance magic
and the directed I'-distance magic labeling we call an orientable I'-distance
magic labeling.

The following cycle-related result was proved by Miller, Rodger, and Siman-
juntak.

Theorem 3 [15]. The cycle C,, of length n is distance magic if and only if n = 4.

One can check that C, is I'-distance magic if and only if n = 4, however it is
not longer true for the case of orientable distance magic labeling (see Fig. 1).
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ORIENTABLE Z,,-DISTANCE MAGIC GRAPHS 5

Proof. Suppose to the contrary that G is orientable I'-distance magic with
orientation 8, orientable I'-distance magic labeling 7, and magic constant
. Since n = 2 (mod 4), say n = 2niny...ns where all n; are odd,
then ZoU7Z,,,07Z,,0...0Z,, is isomorphic to any Z,,U...0Zy,,0...0Z,, as
ged(2,n;) = 1 and it is well known that ZeUZ,, = Zs,,. Hence, we may assume
that T' is a direct product of cyclic groups containing Zs. For all g € T', let gg
denote the Zy component of g. Similarly, for all x € V(G), let wo(z) and £y ()
denote the Zs component of w () and ¢ (x) respectively. Observe that

w@) = S hw- 3 hw= Y Gy foreveyz e V(G).

yeNS (2) yeNG (z) yENg(x)

Let wo(a) = Y. wo(x). Then clearly wo(a) = nuo = 0. However, since each
zeV(G)

%
vertex has odd degree and § is odd, we have wo(a) = > > bo(y)=1,a
€V (G)yeNg(z)
contradiction. m

Notice that the above proof also shows that there exists no Abelian group I'
of order n =2 (mod 4) such that G is I'-distance magic.

Corollary 5. Let G be an r-regular graph on n =2 (mod 4) vertices, where 1 is
odd. There does not exist an orientable Z,-distance magic labeling for the graph

G.

The following example shows that Theorem 4 is not true when n = 0
(mod 4). Consider the graph G = K3 33 3 with the partite sets A = {x}, 2}, 21},
A% = {23, 23,23}, A3 = {2}, 23,23} and A? = {x},2],23}. Let o(uv) be the
orientation for the edge uv € E(G) such that:

i=0,1,2,

afzxg for
1 .
; z;xy for i=1,2, k=0,1,2,
o(z}z}) = ¢ == .

» for 1=0,1,2, k=0,1,2, p=3,4,

f for i,k=0,1,2,2<j<p<4

Let now:

Obviously w(z) = 6 for any x € V(G).
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6 S. CicHACZ, B. FREYBERG AND D. FRONCEK

Theorem 6. If G = Cy,(s1, 82, -, Sk) s a circulant graph such that s < n/2,
then pG is orientable Zy,y-distance magic for any p > 1.

Proof. Note that G is a 2k-regular graph, because s, < n/2. Let V! =
xé,xi,...,m;_l be the set of vertices of the ith copy G! of the graph G,
i = 0,1,...,p — 1. It is easy to see that we can partition G into disjoint
cycles zj, x4, ,Tjt2s,,--.,2; of length of the order of the subgroup (sp) for
h € {1,2,...,k} and j = 0,1,...,s, — 1. Orient each copy of G such that
the orientation is clockwise (in which order the subscripts go) around each cycle
Tj, Tjtsy, Tjtas,,---, &5 for h € {1,2,...,k} and j = 0,1,...,s, — 1. Set now
%(:1:Z )=mp+iform=0,1,....n—1,7i=0,1,...,p — 1. Obviously 7 is a

m

bijection. Moreover w(z) = > e n+@) £ (¥) =2 yen—(x) ¢ (¥) = —2p Z§:1 s; for
any z € V(pG). [ ]

From the above proof of Theorem 6 it is easy to conclude that in general the
magic constant for orientable Z,-distance magic graphs is not unique (just take
counterclockwise orientation in each cycle).

Theorem 7. If G = Cy(s1,52,...,5;) and H = Cy, (s, 8,...,s,) are circulant
graph such that s < n/2, s, < m/2 and ged(m,n) = 1, then the Cartesian

product GUH is orientable Zyy,-distance magic.

Proof. Let V(G) = {90,91,---,9n-1}, whereas V(H) = {zo,x1,...,Zm—_1}.
As in the proof of Theorem 6 we orient each copy of H (i.e 9H-layer for
any g € V(G)) such that the orientation is clockwise around each cycle
(gia JI]), (giu'rj—l-sfz)v (gi7$j+25;)7 ey (gla J,']) for a = 17 27 s 7p7j - 0) 17 DRI SZL -
1 and i = 0,1,...,n — 1, whereas each copy of G (i.e G"-layer for
any h € V(H)) such that the orientation is clockwise around each cycle
(gi, IL‘J’), (gi+3b,l’j), (gi+23b,xj), ey (gi,:nj) fOI‘ b = 1, 2, ey k‘,i = O, 1, ey Sp— 1
and 7 =0,1,...,m— 1.

Recall that Z,, X Zy, = Znm because ged(n, m) = 1. Define 7: V(GOH) — Zy, %
Zom as € (giyzj) = (i,§) for i=0,1,...,n—1,j=0,1,...,m — 1. Obviously

is a bijection. Notice that w(g;,z;) = ZyeNﬂu(gi’xj) (y) — ZyEN_(giﬂ?j) (y) =
(=232 5;,—257P_ | ). Hence we obtain that GOH is orientable Z,-distance

: J=17j
magic. [ |

We will show now some sufficient conditions for the lexicographic product to
be orientable Z,-distance magic.

Theorem 8. Let H = Cy,(s1, S2,--.,5k) be a circulant graph such that sp < n
and G be a graph of order t. The lexicographic product G o H is orientable Zayy, -
distance magic, if one of the following holds:
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ORIENTABLE Z,,-DISTANCE MAGIC GRAPHS 7

e graph G has all degrees of vertices of the same parity,

® N 1S even.

Proof. Let V(G) = {g0,91,--.,9t—1}, whereas V(H) = {zg,x1,...,22,-1}. Let
now (gi,x;) = xz As in the proof of Theorem 6 we orient each copy of H
(i.e YH-layer for any g € V(G)) such that the orientation is clockwise around
each cycle xé,méﬂa,xé-ﬂsa,...,x; fora = 1,2,...,k, j = O,l,...,ga — 1 and
i =0,1,...,t = 1. If gig, € E(G) (i < p), then the orientation o(z}z}) for an

edge z%xy € E(G o H) is given in the following way:

‘H
» 2tx? for j,b<m or j,b>n
O((Eéxﬁ) — ‘] é;? .77 .]7 — 9
xyt, otherwise.

Set now 7(1‘%) =mt+iform=0,1,...,2n—1,i=0,1,...,t — 1. Olﬁ)/iously
is a bijection. Notice that w(z}) = EyeN+(x;l) (y) — ZyeN—(;x;) l(y) =
—2t Z;?:l sj + deg(gi)n(tn). If now deg(g;) = ¢ (mod 2) then we are done. If

n is even, then n(tn) = 0 (mod 2¢n). Hence we obtain that G o H is orientable
Zoyn-distance magic. [ ]

Above we have shown that the lexicographic product G o H is orientable
Zim-distance magic when H is a circulant of an even order m and G is of order t.
One can ask if G o H is still orientable Zy,-distance magic if the circulant graph
H is of an odd order m. A partial answer is given in Theorems 10, 11 and 12.
Before we proceed, we will need the following theorem.

Theorem 9 [14]. Let n =11 +ro+ ...+ 1y be a partition of the positive integer
n, where r; > 2 for i = 1,2,...,q. Let A = {1,2,...,n}. Then the set A can
be partitioned into pairwise disjoint subsets Ay, Aa,..., Ay such that for every
1<i<gq, [Ail=r; with ) ,cs,a=0 (modn+1)ifniseven and ) ,c4, a =0
(mod n) if n is odd.

Theorem 10. If G is a graph of odd order t, then the lexicographic product
G o Kopy1 15 orientable Zyo,41)-distance magic for n > 1.

Proof. Let V(G) = {90,91,---,9t—1}, whereas V(Kop1+1) = {z0,21,.. .,71'2“}.
Give first to the graph G any orientation and now orient the graph G o Ko,41
such that each edge (gi,x;)(gp, zn) € E(G o K2,41) has the corresponding orien-
tation of the edge gig, € E(G).

Since t,2n + 1 are odd, there exists a partition Aj, As,...,A; of the set
{1,2,...,(2n+1)t} such that for every 1 <i <t, |[A;| =2n+1 with 3 4, a =0
(mod (2n+1)t) by Theorem 9. Label the vertices of the ith copy of Ka,,1 using
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elements from the set A; for i =1,2,...t.
Notice that ;?Zfl 7(92‘,.76]') = ()_)for i = 1,2,...,t. Therefore w(g;,z;) =
ZyeN*(gi,rj) t(y) - ZyEN*(gi,rj) t(y) = 0. .

Theorem 11. If G = Cy(s1,52,...,5) and H = Cy, (s, 85, ..., 5,) are circulant
graph such that s, < n/2, s, < m/2 and ged(m,n) = 1, then lexicographic

product G o H is orientable Zyy,-distance magic.

Proof. Let V(G) = {90,91,---,9n-1}, whereas V(H) = {zo,x1,...,Tm—_1}.
Give first to the graph G the orientation as in the proof of Theorem 6, i.e.
Gis Gitsys Git2syy---»,9i for b = 1,2,... k, i = 0,1,...,s5 — 1. For i # p ori-
ent now each edge (gi,2;)(gp,xn) € E(G o H) such that it has the corre-
sponding orientation of the edge gig, € E(G). Recall that for each vertex
g € V(G) we have deg™(g) = deg™(g). Each copy of H (i.e 9H-layer for any
g € V(G)) we orient such that the orientation is clockwise around each cycle
(9i,75), (90> Tjss,)s (9ir Tjgast )y - - o5 (gisx5) for a = 1,2,...,pj = 0,1,...,s, — 1
and i =0,1,...,n—1. Recall that Z, X Z,, = Zy,, because gcd(n,m) = 1. Then
define 7 : V(GoH) = Zp X Zp as 7(gi,m]~) = (i,j) for i = 0,1,...,n — 1,
j = 0,1,...,m — 1. Obviously 7 is a bijection. Notice that w(g;,z;) =
Syent o W) = yen-gay L) = (—2m Y 5,257 ). Hence we
obtain that G o H is orientable Z,,,-distance magic. [ ]

Theorem 12. The lexicographic product C, o C,, is orientable Zyy,-distance
magic for all n, m > 3.

Proof. Let G = Cp, = (90,91,---,9n—1) and H = Cy, = (20,Z1,.. ., Tm—1).
Give first to the graph G the orientation counter-clockwise around the cycle
90, 91,92, - - -, go. For each i orient now each edge (g;,%;)(gi+1,2n) € E(G o H)
such that it has the corresponding orientation to the edge g;gi+1 € F(G). Each
copy of H (i.e 9H-layer for any g € V(G)) we orient such that the orientation is
counter-clockwise around each cycle (g;, o), (9, 21), (i, 22), - - -, (i, z0) for i =
0,1,...,n — 1. Define 7 V(G o H) = Zmy as 7(gi,xj) = jn+ i for i =
0,1,....n—1, 7=0,1,...,m— 1.

_ —
w(gi,z;) = Sy (7(9i+1,wh) —/ (gz’—1737h)>
—
+ 7(9i7$j+1> — L (gi,z5-1)
= 2n+42m.
Hence G o H is orientable Z,,,,-distance magic. [ ]

An analogous theorem is also true for a direct product of cycles as shown in
the following theorem.
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Theorem 13. The direct product Cy, x C,, is orientable Ly, -distance magic for
all n, m > 3.

Proof. Let G =2 Cp = ¢g0,91,---,9n—1 and H = Cp, = 20,21, -+, Tm—1-
For all ¢ and j, orient counter-clockwise with respect to j each cycle of the
form (gs,2;), (gi—1, Tj+1), (9i—2, Tj4+2), .-, (9i,x;) and each cycle of the form
(9i,25), (Git1, Tj+1)s (Git2, Tj42), - - -, (g, x;), where the arithmetic in the indices
is performed modulo n and m respectively. Then define 7: V(G x H) = Zpm
as Y(gi,ajj) =jn+ifori=0,1,...,n—1, 7=0,1,...,m— 1. Therefore for all
i and 7 we have,

— —
w(gi,xj) = L(gi—1,Tj41) + 7(9i+17$j+1) - 7(9%1,%‘71) — L (gi+1,Tj-1)
= 4n.

Since 7 is obviously a bijection, it follows that G x H is orientable Z,,,-distance
magic. [ |

Theorem 14. Let H be the circulant graph Ca,(1,3,5,...,2 {%1 —1). If G is an
Eulerian graph of ordert, then the direct product Gx H is orientable Zioyn;-distance
magic.

Proof. Let V(G) = {90,91,---,9t1—1}, whereas V(H) = {xo,21,...,Ton—1}-
Give first to the graph G the orientation according to Fleury’s Algorithm for
finding FEulerian trail in G and now orient the graph G x H such that each
edge (9i,2;)(9p,n) € E(G x H) has the corresponding orientation to the edge
gigp € E(G). Recall that for each vertex g € V(G) we have deg™(g) = deg™(g).
Observe that H = K, , with the partite sets A = {zg,x2,...,22,—2} and
B= {xl,l’g, cooy :Iign_l}.

Define

7( ) tii}j for j=0,2,...,2n—2,
iy Lj) = .
i % 2tn —1— 0 (gi,xj—1) for 7=1,3,...,2n—1,

forizO,l,...,t;l. .

Notice that ¢ (g;,x;) + £ (gi,xj—1) = 2tn —1 for i = 0,1,...,t =1, j =
1,3,...,2n — 1. Therefore w(g;, z;) = ZyeNJr(gi’xj) 7(y) - ZyeN,(ng) (y) =
deg (@) 9 (2t — 1) — 48 o (9t — 1) = 0. n

3. COMPLETE t-PARTITE GRAPHS

Theorem 15. The complete graph K, is orientable Z,-distance magic if and
only if n is odd.
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Proof. Suppose first that n is odd. Then K, = C,(1,2,...,(n — 1)/2) and
thus it is orientable Z,-distance magic by Theorem 6. By Theorem 4 we
can consider now only the case when n = 0 (mod 4). Suppose that K, is
orientable Z,-distance magic. Let 7(1‘) = 1, 7(u) = 0. Then it is easy

to see that w(z) = >, cn+() 7(y) — > yen—(x) ¢ (y) = 1 (mod 2), whereas
w(u) =3 en+(u) 7(y) =2 yen-(u) ¢ (y) =0 (mod 2), a contradiction. [ ]

Proposition 16. Let G = Ky, nyngy,...n,. be a complete k-partite graph such that
1<n <ng <...<npandn =mny+ns+...+ng is odd. The graph G is
orientable Z,,-distance magic graph if no > 2.

Proof. Give first to the graph G an orientation such that all arcs from the set of
lower index go to the set of higher index. Since n is odd, there exists a partition
Ag, A1, Ag—q of {1,2,...,n} such that for every 0 <i < k—1, |A;| = n; with
> aca, @ =0 (mod n) by Theorem 9. Label the vertices from ith partition set of
G using elements from the set A; for i =0,1,...,k — 1.

Notice that w(xz) = 0 for any z € V(G). ]

Proposition 17. K, ,, is orientable Zoy-distance magic if and only if n is even.

Proof. Suppose first that n is even. Then K, , = C2,(1,3,5...,n — 1) and is
orientable Zso,-distance magic by Theorem 6. If n is odd, then because 2n = 2
(mod 4), then K, , is not orientable Zy,-distance magic by Theorem 4. [ ]

Recall that if n = n; +n9 =2 (mod 4) and ny,ng are both odd, then Ky, ,,
is not orientable Z,-distance magic by Theorem 4. It was proved in [7] that if
Ky, n, is orientable Z,-distance magic, then n # 2 (mod 4). The next theorem
shows that the converse is also true.

Theorem 18. Let G = Ky, n, and n = ny +ng. If n # 2 (mod 4), then G is
orientable Z,-distance magic.

Proof. Let G = K, 5, with the partite sets A’ = {zf,2%,..., 2, _} fori=1,2.
Without loss of generality we can assume that n; > no.

Let Z,, = {ag,a1,a2,...,a,—1} such that ap =0, a; = n/4, ap = n/2, a3 = 3n/4
and a; 41 = —a; fori =4,6,8,...,n—2. Let o(uv) be the orientation for the edge
uwv € E(G) such that:

{ 2,1 i=0,1,...np—1,

xixy for —
13 i=1,2,...,n1 -1, k=0,1,.

o(wgmi) =
x;xy, for

..,NQ—l.

Case 1. ny,ny are both odd. N
(z§) = a1, £ (z}) = a3, 7(.’[)1) =ag and ¢ (x}) = a4 fori=3,4,...,n1 — 1.
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%
7(3:3) =ag and ¢ (2?) = ap,4; fori=1,2,...,n9 — 1.

Case 2. n1,no are both even.

(a:(l)) =ay, £ (v1) =a3 and 7(3:21) =aqgy; fori=2,3,...,n1 — 1.
(z3) = az, ((23) =ap and { (2?) = ap,4; fori =2,3,...,n9 — 1.
Note that in both cases w(z) = n/2 for any x € V(G). [ ]

Theorem 19. Let G = Ky, nyny and n = ny + ng +n3. Then G is orientable
Ly -distance magic for all ny,ng, ns.

Proof. Let G = Kp, n,n; with the partite sets A° = {af,z},... 2% |} for
i=1,2,3.

Assume first that n is odd. We have to consider only the case ny = no =1
by Observation 16. If ng = 1, then G = ('3 is orientable Z,-distance magic, so
assume n3 > 3 is odd. Set the orientation o (uv) for the edge uv € E(G) such

that:
1.3
; Tyx
0 (xj-azi) = %) ’
’ J:?xo 1=0,1,...,n3—1
We will orient the remaining edges of the form xéx? fort=0,1,...,n3 — 1 later.

Now let 7(3:(1)) =0, 7(1‘(2)) =n—1, and 7(mf’) =i+ 1fori=0,1,...,n3 —
1. Notice that 2?2361 7(:13?) = 1. Observe now that w(z2) and w(z3) for i =
0,1,...,n3—1 are independent of the yet-to-be oriented edges and hence w(z3) =
w(x?) = 1. So all that remains is to orient the edges of the form ziz? for i =
0,1,...,n3—1so that w(x%) = 1. It is easy to see that this is equivalent to finding
a,b e {1,2,...,n—2} C Z, such that a + b = "TH, a # b. Clearly such a and b
exist for all odd n > 5 since the group table for Z,, is a latin square. Therefore,
set the orientation

i p :L‘(I)SU, i=a—1,b—1,
o)

x;xy, otherwise,
which implies that w(v) =1 for any v € V(G).

From now n is even. Without loss of generality we assume that n; is even.
Let Z,, = {ag,a1,az,...,an—1}. We will consider now two cases:

Case 1. n =0 (mod 4).
Let ap =0, a3 = n/4, ag =n/2, a3 = 3n/4 and a;41 = —a; fori =4,6,8,...,n—
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2. Set the orientation o(uv) for the edge uv € E(G) such that:

:L‘;Ugi for i=0,1,...,n9 — 1,
i=1,2, 1, k=0,1,...,n5 — 1,

;

o(asg:ci) _ m’}% for R O —
zird for i=0,1,...,n1—1, k=0,1,...,n3 — 1,
xﬁxk for i1 =0,1,...,n9—1, k=0,1,...,n3 — 1.

7
Let now 7(:58) =a, 7(1‘%) = a3 and 7(:5@1) =a;qo fori=23,...,n1 — 1.

Case 1.1 no,ng are both odd.

%
14 (J;2) = a9 and /¢ (xf) = Qp,414i fori=1,2,... ng — 1.
%
(z3) = ap and £ (23) = anyny+i for i =1,2,...,n5 — 1.

Case 1.2. ng, ng are both even.
(z2) = ao, ¢ (23) = a2 and 7(3:22) =ap,4+i fori=2,3...,np — 1.

3) — -
(7) = @pyqnoti for i =0,1,...,n3 — 1.

Note that in both subcases w(v) = n/2 for any v € V(G).

Case 2. n =2 (mod 4).
Without loss of generality we can assume that ny > ngs.
Let ap = 0, a1 = n/2, a2 =1,a3 =n/2—-1, a4 =n—1, a5 =n/2+ 1 and
aj+1 = —a; for i = 6,8,10,...,n — 2. Set the orientation o(uv) for the edge
wv € E(QG) such that:

i —
o(x]xy) = { zlah for j<p.
Let now 7(:1:(1)) = ag, Y(m%) = a3 and 7(:1:}) =a;4q fori=23,...,n1 — 1.
Case 2.1. ng,ng are both even.
7(3;3) = a4, ¢ (2?) = a5 and 7(3;?) = ap,424i fori =2,3,...,np — L.
C(x3) =ap, £ (23)=ay and ¢ (2}) = any4nyti for i =2,3,...,n5 — 1.
Note that ) 4 7(m) =n/2 for i = 1,2,3 thus w(v) =0 for any v € V(G).

Case 2.2 no,ng are both odd._> R
Assume first that ny > 3. Set £ (23) = a, 7(:6%) = a4, 0 (23) = a5 and
(z}) = apy114i for i =3,4,...,ng — 1.
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7(3:3) = m and 7(3:?) = Qpytnoti for ¢ = 1,2,...,n3 — 1. As in Case 2.1
Y oweai L (x) =n/2fori=1,2,3 thus w(v) = 0 for any v € V(G).

Let now ny = ng = 1, then n; = 0 (mod 4). Set the orientation o (uv) for
the edge uv € E(G) such that:

x%xi, 1even
r;xh, todd
0 (mfazﬁ) = % ’
x%m, 1=0,1,...,n —1
3 %
:L‘Oxo-

Then let 7(@2]) =7,

Pen={ b, 120

1

Observe that ) g = § since n =2 (mod 4), and also ) 7(1}1) - > 7(3:1) =

i
9gE€ZLn 1odd ieven

5,80 w(v) = 2 for any v € V(G). [ ]
We finish this section with the following conjecture.

Conjecture 20. If G is a 2r-reqular graph of order n, then G is orientable
Ly, -distance magic.
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