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1. Introduction32

All graphs considered in this paper are simple finite graphs. Consider a simple33

graph G. We denote by V (G) the vertex set and E(G) the edge set of G. We34

denote the order of G by |V (G)| = n. The open neighborhood N(x) of a vertex35

x is the set of vertices adjacent to x, and the degree d(x) of x is |N(x)|, the size36

of the neighborhood of x. By Cn we denote a cycle on n vertices.37

In this paper we investigate distance magic labelings, which belong to a38

large family of magic-type labelings. Generally speaking, a magic-type labeling39

of a graph G = (V,E) is a mapping from V,E, or V ∪ E to a set of labels40

which most often is a set of integers or group elements. Then the weight of41

a graph element is typically the sum of labels of the neighboring elements of42

one or both types. If the weight of each element is required to be equal, then43

we speak about magic-type labeling; when the weights are all different (or even44

form an arithmetic progression), then we speak about an antimagic-type labeling.45

Probably the best known problem in this area is the antimagic conjecture by46

Hartsfield and Ringel [11], which claims that the edges of every graph except47

K2 can be labeled by integers 1, 2, . . . , |E| so that the weight of each vertex is48

different. A comprehensive dynamic survey of graph labelings is maintained by49

Gallian [10]. A more detailed survey related to our topic by Arumugam et al. [1]50

was published recently.51

A distance magic labeling (also called sigma labeling) of a graph G = (V,E)
of order n is a bijection ℓ : V → {1, 2, . . . , n} with the property that there is a
positive integer k (called the magic constant) such that

w(x) =
∑

y∈NG(x)

ℓ(y) = k for every x ∈ V (G),

where w(x) is the weight of vertex x. If a graph G admits a distance magic52

labeling, then we say that G is a distance magic graph.53

The following observations were proved independently:54

Observation 1 [13], [15], [16], [17]. Let G be an r-regular distance magic graph55

on n vertices. Then k = r(n+1)
2 .56

Observation 2 [13], [15], [16], [17]. There is no distance magic r-regular graph57

with r odd.58

The notion of group distance magic labeling of graphs was introduced in [9].59

A Γ-distance magic labeling of a graph G = (V,E) with |V | = n is an injection60

from V to an Abelian group Γ of order n such that the weight of every vertex61

evaluated under group operation x ∈ V is equal to the same element µ ∈ Γ. Some62

families of graphs that are Γ-distance magic were studied in [4, 5, 6, 9].63
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An orientation of an undirected graph G = (V,E) is an assignment of a64

direction to each edge, turning the initial graph into a directed graph
−→
G = (V,A).65

An arc −→xy is considered to be directed from x to y, moreover y is called the head66

and x is called the tail of the arc. For a vertex x, the set of head endpoints67

adjacent to x is denoted by N−(x), and the set of tail endpoints adjacent to x68

denoted by N+(x). Let deg−(x) = |N−(x)|, deg+(x) = |N+(x)| and deg(x) =69

deg−(x) + deg+(x).70

Bloom and Hsu defined graceful labelings on directed graphs [2]. Later71

Bloom et al. also defined magic labelings on directed graphs [3]. Probably72

the biggest challenge (among directed graphs) are Tuttes flow conjectures. An73

H-flow on D is an assignment of values of H to the edges of D, such that for74

each vertex v, the sum of the values on the edges going in is the same as the75

sum of the values on the edges going out of v. The 3-flow conjecture says that76

every 4-edge-connected graph has a nowhere-zero 3-flow (what is equivalent that77

it has an orientation such that each vertex has the same outdegree and indegree78

modulo 3). In this paper we ask when we can assign n distinct labels from the79

set {1, 2, . . . , n} to the vertices of a graph G of order n such that the the sum of80

the labels on heads minus the sum of the labels on tails is constant modulo n81

for each vertex of G. Therefore we introduce a generalization of distance magic82

labeling on directed graphs.83

84

Assume Γ is an Abelian group of order n with the operation denoted by +.
For convenience we will write ka to denote a+ a+ . . .+ a (where the element a
appears k times), −a to denote the inverse of a and we will use a− b instead of

a + (−b). A directed Γ-distance magic labeling of an oriented graph
−→
G = (V,A)

of order n is a bijection
−→
ℓ : V → Γ with the property that there is µ ∈ Γ (called

the magic constant) such that

w(x) =
∑

y∈N+
G (x)

−→
ℓ (y)−

∑
y∈N−

G (x)

−→
ℓ (y) = µ for every x ∈ V (G).

If for a graph G there exists an orientation
−→
G such that there is a directed85

Γ-distance magic labeling
−→
ℓ for

−→
G , we say that G is orientable Γ-distance magic86

and the directed Γ-distance magic labeling
−→
ℓ we call an orientable Γ-distance87

magic labeling.88

The following cycle-related result was proved by Miller, Rodger, and Siman-89

juntak.90

Theorem 3 [15]. The cycle Cn of length n is distance magic if and only if n = 4.91

One can check that Cn is Γ-distance magic if and only if n = 4, however it is92

not longer true for the case of orientable distance magic labeling (see Fig. 1).93
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Figure1.AnorientableZ3-distancemagiclabelingofC3.

Circulantgraphsareaninterestingfamilyofvertex-transitivegraphs.These 94

graphsariseinvarioussettings;forinstance,theyaretheCayleygraphsoverthe 95

cyclicgroupofordern.ThecirculantgraphCn(s1,s2,...,sk)for0≤s1<s2< 96

...<sk≤n/2isthegraphonthevertexsetV={x0,x1,...,xn−1}withedges 97

(xi,xi+sj)fori=0,...,n−1,j=1,...,kwherei+sjistakenmodulon. 98

Werecallthreegraphproducts(see[12]).Allthree,theCartesianproduct 99

G�H,lexicographicproductG◦H,directproductG×Haregraphswiththe 100

vertexsetV(G)×V(H).Twovertices(g,h)and(g′,h′)areadjacentin: 101

•G�Hifandonlyifg=g′andhisadjacentwithh′inH,orh=h′andg 102

isadjacentwithg′inG; 103

•G×Hifgisadjacenttog′inGandhisadjacenttoh′inH; 104

•G◦Hifandonlyifeithergisadjacenttog′inGorg=g′andhisadjacent 105

toh′inH. 106

ForafixedvertexgofG,thesubgraphofanyoftheaboveproductsinduced 107

bytheset{(g,h):h∈V(H)}iscalledanH-layerandisdenotedgH.Similarly, 108

ifh∈Hisfixed,thenGh,thesubgraphinducedby{(g,h):g∈V(G)},isa 109

G-layer. 110

111

InthispaperweshowsomefamiliesoforientableZn-distancemagicgraphs. 112

2.Circulantgraphsandtheirproducts 113

WestartbyprovingageneraltheoremfororientableΓ-distancemagiclabeling 114

similartoObservation2. 115

Theorem4.LetGhaveordern≡2(mod4)andallverticesofodddegree. 116

TheredoesnotexistanorientableΓ-distancemagiclabelingofGforanyabelian 117

groupΓofordern. 118
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Proof. Suppose to the contrary that G is orientable Γ-distance magic with

orientation
−→
G , orientable Γ-distance magic labeling

−→
ℓ , and magic constant

µ. Since n ≡ 2 (mod 4), say n = 2n1n2 . . . ns where all ni are odd,
then Z2�Zn1�Zn2� . . .�Zns is isomorphic to any Zn1� . . .�Z2ni� . . .�Zns as
gcd(2, ni) = 1 and it is well known that Z2�Zni

∼= Z2ni . Hence, we may assume
that Γ is a direct product of cyclic groups containing Z2. For all g ∈ Γ, let g0
denote the Z2 component of g. Similarly, for all x ∈ V (G), let w0(x) and

−→
ℓ0 (x)

denote the Z2 component of w (x) and
−→
ℓ (x) respectively. Observe that

w0(x) =
∑

y∈N+
G (x)

−→
ℓ0 (y)−

∑
y∈N−

G (x)

−→
ℓ0 (y) =

∑
y∈NG(x)

−→
ℓ0 (y) for everyx ∈ V (G).

Let w0(
−→
G) =

∑
x∈V (G)

w0(x). Then clearly w0(
−→
G) = nµ0 = 0. However, since each119

vertex has odd degree and n
2 is odd, we have w0(

−→
G) =

∑
x∈V (G)

∑
y∈NG(x)

−→
ℓ0 (y) = 1, a120

contradiction.121

Notice that the above proof also shows that there exists no Abelian group Γ122

of order n ≡ 2 (mod 4) such that G is Γ-distance magic.123

Corollary 5. Let G be an r-regular graph on n ≡ 2 (mod 4) vertices, where r is124

odd. There does not exist an orientable Zn-distance magic labeling for the graph125

G.126

The following example shows that Theorem 4 is not true when n ≡ 0
(mod 4). Consider the graph G = K3,3,3,3 with the partite sets A1 = {x10, x11, x12},
A2 = {x20, x21, x22}, A3 = {x30, x31, x32} and A4 = {x40, x41, x42}. Let o(uv) be the
orientation for the edge uv ∈ E(G) such that:

o(xjix
p
k) =



−−→
x2ix

1
0 for i = 0, 1, 2,

−−→
x1ix

2
k for i = 1, 2, k = 0, 1, 2,

−−→
x1ix

p
k for i = 0, 1, 2, k = 0, 1, 2, p = 3, 4,

−−→
xjix

p
k for i, k = 0, 1, 2, 2 ≤ j < p ≤ 4.

Let now:

−→
ℓ (x10) = 3,

−→
ℓ (x20) = 6,

−→
ℓ (x30) = 1,

−→
ℓ (x40) = 11,

−→
ℓ (x11) = 9,

−→
ℓ (x21) = 2,

−→
ℓ (x31) = 4,

−→
ℓ (x41) = 8,

−→
ℓ (x12) = 0,

−→
ℓ (x22) = 10,

−→
ℓ (x32) = 7,

−→
ℓ (x42) = 5.

.

Obviously w(x) = 6 for any x ∈ V (G).127
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Theorem 6. If G = Cn(s1, s2, . . . , sk) is a circulant graph such that sk < n/2,128

then pG is orientable Znp-distance magic for any p ≥ 1.129

Proof. Note that G is a 2k-regular graph, because sk < n/2. Let V i =130

xi0, x
i
1, . . . , x

i
n−1 be the set of vertices of the ith copy Gi of the graph G,131

i = 0, 1, . . . , p − 1. It is easy to see that we can partition G into disjoint132

cycles xj , xj+sh , xj+2sh , . . . , xj of length of the order of the subgroup ⟨sh⟩ for133

h ∈ {1, 2, . . . , k} and j = 0, 1, . . . , sh − 1. Orient each copy of G such that134

the orientation is clockwise (in which order the subscripts go) around each cycle135

xj , xj+sh , xj+2sh , . . . , xj for h ∈ {1, 2, . . . , k} and j = 0, 1, . . . , sh − 1. Set now136

−→
ℓ (xim) = mp + i for m = 0, 1, . . . , n − 1, i = 0, 1, . . . , p − 1. Obviously

−→
ℓ is a137

bijection. Moreover w(x) =
∑

y∈N+(x)

−→
ℓ (y)−

∑
y∈N−(x)

−→
ℓ (y) = −2p

∑k
j=1 sj for138

any x ∈ V (pG).139

From the above proof of Theorem 6 it is easy to conclude that in general the140

magic constant for orientable Zn-distance magic graphs is not unique (just take141

counterclockwise orientation in each cycle).142

Theorem 7. If G = Cn(s1, s2, . . . , sk) and H = Cm(s′1, s
′
2, . . . , s

′
p) are circulant143

graph such that sk < n/2, s′p < m/2 and gcd(m,n) = 1, then the Cartesian144

product G�H is orientable Znm-distance magic.145

Proof. Let V (G) = {g0, g1, . . . , gn−1}, whereas V (H) = {x0, x1, . . . , xm−1}.146

As in the proof of Theorem 6 we orient each copy of H (i.e gH-layer for147

any g ∈ V (G)) such that the orientation is clockwise around each cycle148

(gi, xj), (gi, xj+s′a), (gi, xj+2s′a), . . . , (gi, xj) for a = 1, 2, . . . , p,j = 0, 1, . . . , s′a −149

1 and i = 0, 1, . . . , n − 1, whereas each copy of G (i.e Gh-layer for150

any h ∈ V (H)) such that the orientation is clockwise around each cycle151

(gi, xj), (gi+sb , xj), (gi+2sb , xj), . . . , (gi, xj) for b = 1, 2, . . . , k,i = 0, 1, . . . , sb − 1152

and j = 0, 1, . . . ,m− 1.153

Recall that Zn×Zm
∼= Znm because gcd(n,m) = 1. Define

−→
ℓ : V (G�H) → Zn×154

Zm as
−→
ℓ (gi, xj) = (i, j) for i = 0, 1, . . . , n− 1, j = 0, 1, . . . ,m− 1. Obviously

−→
ℓ155

is a bijection. Notice that w(gi, xj) =
∑

y∈N+(gi,xj)

−→
ℓ (y)−

∑
y∈N−(gi,xj)

−→
ℓ (y) =156

(−2
∑k

i=1 si,−2
∑p

j=1 s
′
j). Hence we obtain that G�H is orientable Znm-distance157

magic.158

We will show now some sufficient conditions for the lexicographic product to159

be orientable Zn-distance magic.160

Theorem 8. Let H = C2n(s1, s2, . . . , sk) be a circulant graph such that sk < n161

and G be a graph of order t. The lexicographic product G ◦H is orientable Z2tn-162

distance magic, if one of the following holds:163
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• graph G has all degrees of vertices of the same parity,164

• n is even.165

Proof. Let V (G) = {g0, g1, . . . , gt−1}, whereas V (H) = {x0, x1, . . . , x2n−1}. Let
now (gi, xj) = xij . As in the proof of Theorem 6 we orient each copy of H
(i.e gH-layer for any g ∈ V (G)) such that the orientation is clockwise around
each cycle xij , x

i
j+sa

, xij+2sa
, . . . , xij for a = 1, 2, . . . , k, j = 0, 1, . . . , sa − 1 and

i = 0, 1, . . . , t − 1. If gigp ∈ E(G) (i < p), then the orientation o(xijx
p
b) for an

edge xijx
p
b ∈ E(G ◦H) is given in the following way:

o(xijx
p
b) =

{ −−→
xijx

p
b , for j, b < n or j, b ≥ n,

−−→
xpbx

i
j , otherwise.

Set now
−→
ℓ (xim) = mt+ i for m = 0, 1, . . . , 2n− 1, i = 0, 1, . . . , t − 1. Obviously166

−→
ℓ is a bijection. Notice that w(xij) =

∑
y∈N+(xi

j)

−→
ℓ (y) −

∑
y∈N−(xi

j)

−→
ℓ (y) =167

−2t
∑k

j=1 sj + deg(gi)n(tn). If now deg(gi) ≡ c (mod 2) then we are done. If168

n is even, then n(tn) ≡ 0 (mod 2tn). Hence we obtain that G ◦H is orientable169

Z2tn-distance magic.170

Above we have shown that the lexicographic product G ◦ H is orientable171

Ztm-distance magic when H is a circulant of an even order m and G is of order t.172

One can ask if G ◦H is still orientable Ztm-distance magic if the circulant graph173

H is of an odd order m. A partial answer is given in Theorems 10, 11 and 12.174

Before we proceed, we will need the following theorem.175

Theorem 9 [14]. Let n = r1 + r2 + . . .+ rq be a partition of the positive integer176

n, where ri ≥ 2 for i = 1, 2, . . . , q. Let A = {1, 2, . . . , n}. Then the set A can177

be partitioned into pairwise disjoint subsets A1, A2, . . . , Aq such that for every178

1 ≤ i ≤ q, |Ai| = ri with
∑

a∈Ai
a ≡ 0 (mod n+ 1) if n is even and

∑
a∈Ai

a ≡ 0179

(mod n) if n is odd.180

Theorem 10. If G is a graph of odd order t, then the lexicographic product181

G ◦K2n+1 is orientable Zt(2n+1)-distance magic for n ≥ 1.182

Proof. Let V (G) = {g0, g1, . . . , gt−1}, whereas V (K2n+1) = {x0, x1, . . . , x2n}.183

Give first to the graph G any orientation and now orient the graph G ◦ K2n+1184

such that each edge (gi, xj)(gp, xh) ∈ E(G ◦K2n+1) has the corresponding orien-185

tation of the edge gigp ∈ E(G).186

Since t, 2n + 1 are odd, there exists a partition A1, A2, . . . , At of the set187

{1, 2, . . . , (2n+1)t} such that for every 1 ≤ i ≤ t, |Ai| = 2n+1 with
∑

a∈Ai
a ≡ 0188

(mod (2n+1)t) by Theorem 9. Label the vertices of the ith copy of K2n+1 using189
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elements from the set Ai for i = 1, 2, . . . , t.190

Notice that
∑2n+1

j=1

−→
ℓ (gi, xj) = 0 for i = 1, 2, . . . , t. Therefore w(gi, xj) =191 ∑

y∈N+(gi,xj)

−→
ℓ (y)−

∑
y∈N−(gi,xj)

−→
ℓ (y) = 0.192

Theorem 11. If G = Cn(s1, s2, . . . , sk) and H = Cm(s′1, s
′
2, . . . , s

′
p) are circulant193

graph such that sk < n/2, s′p < m/2 and gcd(m,n) = 1, then lexicographic194

product G ◦H is orientable Znm-distance magic.195

Proof. Let V (G) = {g0, g1, . . . , gn−1}, whereas V (H) = {x0, x1, . . . , xm−1}.196

Give first to the graph G the orientation as in the proof of Theorem 6, i.e.197

gi, gi+sb , gi+2sb , . . . , gi for b = 1, 2, . . . , k, i = 0, 1, . . . , sb − 1. For i ̸= p ori-198

ent now each edge (gi, xj)(gp, xh) ∈ E(G ◦ H) such that it has the corre-199

sponding orientation of the edge gigp ∈ E(G). Recall that for each vertex200

g ∈ V (G) we have deg+(g) = deg−(g). Each copy of H (i.e gH-layer for any201

g ∈ V (G)) we orient such that the orientation is clockwise around each cycle202

(gi, xj), (gi, xj+s′a), (gi, xj+2s′a), . . . , (gi, xj) for a = 1, 2, . . . , p,j = 0, 1, . . . , s′a − 1203

and i = 0, 1, . . . , n−1. Recall that Zn×Zm
∼= Znm because gcd(n,m) = 1. Then204

define
−→
ℓ : V (G ◦ H) → Zn × Zm as

−→
ℓ (gi, xj) = (i, j) for i = 0, 1, . . . , n − 1,205

j = 0, 1, . . . ,m − 1. Obviously
−→
ℓ is a bijection. Notice that w(gi, xj) =206 ∑

y∈N+(gi,xj)

−→
ℓ (y)−

∑
y∈N−(gi,xj)

−→
ℓ (y) = (−2m

∑k
i=1 si,−2

∑p
j=1 s

′
j). Hence we207

obtain that G ◦H is orientable Znm-distance magic.208

Theorem 12. The lexicographic product Cn ◦ Cm is orientable Znm-distance209

magic for all n, m ≥ 3.210

Proof. Let G = Cn = (g0, g1, . . . , gn−1) and H = Cm = (x0, x1, . . . , xm−1).
Give first to the graph G the orientation counter-clockwise around the cycle
g0, g1, g2, . . . , g0. For each i orient now each edge (gi, xj)(gi+1, xh) ∈ E(G ◦ H)
such that it has the corresponding orientation to the edge gigi+1 ∈ E(G). Each
copy of H (i.e gH-layer for any g ∈ V (G)) we orient such that the orientation is
counter-clockwise around each cycle (gi, x0), (gi, x1), (gi, x2), . . . , (gi, x0) for i =

0, 1, . . . , n − 1. Define
−→
ℓ : V (G ◦ H) → Zmn as

−→
ℓ (gi, xj) = jn + i for i =

0, 1, . . . , n− 1, j = 0, 1, . . . ,m− 1.

w(gi, xj) =
∑m−1

h=0

(−→
ℓ (gi+1, xh)−

−→
ℓ (gi−1, xh)

)
+

−→
ℓ (gi, xj+1)−

−→
ℓ (gi, xj−1)

= 2n+ 2m.

Hence G ◦H is orientable Znm-distance magic.211

An analogous theorem is also true for a direct product of cycles as shown in212

the following theorem.213
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Theorem 13. The direct product Cn ×Cm is orientable Znm-distance magic for214

all n, m ≥ 3.215

Proof. Let G ∼= Cn
∼= g0, g1, . . . , gn−1 and H ∼= Cm

∼= x0, x1, . . . , xm−1.
For all i and j, orient counter-clockwise with respect to j each cycle of the
form (gi, xj), (gi−1, xj+1), (gi−2, xj+2), . . . , (gi, xj) and each cycle of the form
(gi, xj), (gi+1, xj+1), (gi+2, xj+2), . . . , (gi, xj), where the arithmetic in the indices

is performed modulo n and m respectively. Then define
−→
ℓ : V (G × H) → Znm

as
−→
ℓ (gi, xj) = jn+ i for i = 0, 1, . . . , n− 1, j = 0, 1, . . . ,m− 1. Therefore for all

i and j we have,

w(gi, xj) =
−→
ℓ (gi−1, xj+1) +

−→
ℓ (gi+1, xj+1)−

−→
ℓ (gi−1, xj−1)−

−→
ℓ (gi+1, xj−1)

= 4n.

Since
−→
ℓ is obviously a bijection, it follows that G×H is orientable Znm-distance216

magic.217

Theorem 14. Let H be the circulant graph C2n(1, 3, 5, . . . , 2
⌈
n
2

⌉
−1). If G is an218

Eulerian graph of order t, then the direct product G×H is orientable Z2nt-distance219

magic.220

Proof. Let V (G) = {g0, g1, . . . , gt−1}, whereas V (H) = {x0, x1, . . . , x2n−1}.
Give first to the graph G the orientation according to Fleury’s Algorithm for
finding Eulerian trail in G and now orient the graph G × H such that each
edge (gi, xj)(gp, xh) ∈ E(G × H) has the corresponding orientation to the edge
gigp ∈ E(G). Recall that for each vertex g ∈ V (G) we have deg+(g) = deg−(g).
Observe that H ∼= Kn,n with the partite sets A = {x0, x2, . . . , x2n−2} and
B = {x1, x3, . . . , x2n−1}.
Define

−→
ℓ (gi, xj) =

{
ti+ j for j = 0, 2, . . . , 2n− 2,

2tn− 1−
−→
ℓ (gi, xj−1) for j = 1, 3, . . . , 2n− 1,

for i = 0, 1, . . . , t− 1.221

Notice that
−→
ℓ (gi, xj) +

−→
ℓ (gi, xj−1) = 2tn − 1 for i = 0, 1, . . . , t − 1, j =222

1, 3, . . . , 2n− 1. Therefore w(gi, xj) =
∑

y∈N+(gi,xj)

−→
ℓ (y)−

∑
y∈N−(gi,xj)

−→
ℓ (y) =223

deg+(gi)
2 2n(2nt− 1)− deg−(gi)

2 2n(2nt− 1) = 0.224

3. Complete t-partite graphs225

Theorem 15. The complete graph Kn is orientable Zn-distance magic if and226

only if n is odd.227
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Proof. Suppose first that n is odd. Then Kn
∼= Cn(1, 2, . . . , (n − 1)/2) and228

thus it is orientable Zn-distance magic by Theorem 6. By Theorem 4 we229

can consider now only the case when n ≡ 0 (mod 4). Suppose that Kn is230

orientable Zn-distance magic. Let
−→
ℓ (x) = 1,

−→
ℓ (u) = 0. Then it is easy231

to see that w(x) =
∑

y∈N+(x)

−→
ℓ (y) −

∑
y∈N−(x)

−→
ℓ (y) ≡ 1 (mod 2), whereas232

w(u) =
∑

y∈N+(u)

−→
ℓ (y)−

∑
y∈N−(u)

−→
ℓ (y) ≡ 0 (mod 2), a contradiction.233

Proposition 16. Let G = Kn1,n2,n3,...,nk
be a complete k-partite graph such that234

1 ≤ n1 ≤ n2 ≤ . . . ≤ nk and n = n1 + n2 + . . . + nk is odd. The graph G is235

orientable Zn-distance magic graph if n2 ≥ 2.236

Proof. Give first to the graph G an orientation such that all arcs from the set of237

lower index go to the set of higher index. Since n is odd, there exists a partition238

A0, A1, . . . , Ak−1 of {1, 2, . . . , n} such that for every 0 ≤ i ≤ k− 1, |Ai| = ni with239 ∑
a∈Ai

a ≡ 0 (mod n) by Theorem 9. Label the vertices from ith partition set of240

G using elements from the set Ai for i = 0, 1, . . . , k − 1.241

Notice that w(x) = 0 for any x ∈ V (G).242

Proposition 17. Kn,n is orientable Z2n-distance magic if and only if n is even.243

Proof. Suppose first that n is even. Then Kn,n
∼= C2n(1, 3, 5 . . . , n − 1) and is244

orientable Z2n-distance magic by Theorem 6. If n is odd, then because 2n ≡ 2245

(mod 4), then Kn,n is not orientable Z2n-distance magic by Theorem 4.246

Recall that if n = n1+n2 ≡ 2 (mod 4) and n1, n2 are both odd, then Kn1,n2247

is not orientable Zn-distance magic by Theorem 4. It was proved in [7] that if248

Kn1,n2 is orientable Zn-distance magic, then n ̸≡ 2 (mod 4). The next theorem249

shows that the converse is also true.250

Theorem 18. Let G = Kn1,n2 and n = n1 + n2. If n ̸≡ 2 (mod 4), then G is251

orientable Zn-distance magic.252

Proof. Let G = Kn1,n2 with the partite sets Ai = {xi0, xi1, . . . , xini−1} for i = 1, 2.
Without loss of generality we can assume that n1 ≥ n2.
Let Zn = {a0, a1, a2, . . . , an−1} such that a0 = 0, a1 = n/4, a2 = n/2, a3 = 3n/4
and ai+1 = −ai for i = 4, 6, 8, . . . , n−2. Let o(uv) be the orientation for the edge
uv ∈ E(G) such that:

o(xjix
p
k) =

{ −−→
x2ix

1
0 for i = 0, 1, . . . , n2 − 1,

−−→
x1ix

2
k for i = 1, 2, . . . , n1 − 1, k = 0, 1, . . . , n2 − 1.

.

Case 1. n1, n2 are both odd.253 −→
ℓ (x10) = a1,

−→
ℓ (x11) = a3,

−→
ℓ (x12) = a0 and

−→
ℓ (x1i ) = a1+i for i = 3, 4, . . . , n1 − 1.254
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−→
ℓ (x20) = a2 and

−→
ℓ (x2i ) = an1+i for i = 1, 2, . . . , n2 − 1.255

256

Case 2. n1, n2 are both even.257 −→
ℓ (x10) = a1,

−→
ℓ (x11) = a3 and

−→
ℓ (x1i ) = a2+i for i = 2, 3, . . . , n1 − 1.258

−→
ℓ (x20) = a2,

−→
ℓ (x21) = a0 and

−→
ℓ (x2i ) = an1+i for i = 2, 3, . . . , n2 − 1.259

260

Note that in both cases w(x) = n/2 for any x ∈ V (G).261

Theorem 19. Let G = Kn1,n2,n3 and n = n1 + n2 + n3. Then G is orientable262

Zn-distance magic for all n1, n2, n3.263

Proof. Let G = Kn1,n2,n3 with the partite sets Ai = {xi0, xi1, . . . , xini−1} for264

i = 1, 2, 3.265

266

Assume first that n is odd. We have to consider only the case n1 = n2 = 1
by Observation 16. If n3 = 1, then G ∼= C3 is orientable Zn-distance magic, so
assume n3 ≥ 3 is odd. Set the orientation o (uv) for the edge uv ∈ E(G) such
that:

o
(
xjix

p
k

)
=

{ −−→
x10x

2
0,−−→

x3ix
2
0 i = 0, 1, . . . , n3 − 1

.

We will orient the remaining edges of the form x10x
3
i for i = 0, 1, . . . , n3 − 1 later.

Now let
−→
ℓ (x10) = 0,

−→
ℓ (x20) = n − 1, and

−→
ℓ (x3i ) = i + 1 for i = 0, 1, . . . , n3 −

1. Notice that
∑n3−1

i=0

−→
ℓ (x3i ) = 1. Observe now that w(x20) and w(x3i ) for i =

0, 1, . . . , n3−1 are independent of the yet-to-be oriented edges and hence w(x20) =
w(x3i ) = 1. So all that remains is to orient the edges of the form x10x

3
i for i =

0, 1, . . . , n3−1 so that w(x10) = 1. It is easy to see that this is equivalent to finding
a, b ∈ {1, 2, . . . , n− 2} ⊆ Zn such that a+ b = n+1

2 , a ̸= b. Clearly such a and b
exist for all odd n ≥ 5 since the group table for Zn is a latin square. Therefore,
set the orientation

o
(
xjix

p
k

)
=

{ −−→
x10x

3
i , i = a− 1, b− 1,

−−→
x3ix

1
0, otherwise,

which implies that w(v) = 1 for any v ∈ V (G).267

268

From now n is even. Without loss of generality we assume that n1 is even.269

Let Zn = {a0, a1, a2, . . . , an−1}. We will consider now two cases:270

271

Case 1. n ≡ 0 (mod 4).
Let a0 = 0, a1 = n/4, a2 = n/2, a3 = 3n/4 and ai+1 = −ai for i = 4, 6, 8, . . . , n−
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2. Set the orientation o(uv) for the edge uv ∈ E(G) such that:

o(xjix
p
k) =



−−→
x2ix

1
0 for i = 0, 1, . . . , n2 − 1,

−−→
x1ix

2
k for i = 1, 2, . . . , n1 − 1, k = 0, 1, . . . , n2 − 1,

−−→
x1ix

3
k for i = 0, 1, . . . , n1 − 1, k = 0, 1, . . . , n3 − 1,

−−→
x2ix

3
k for i = 0, 1, . . . , n2 − 1, k = 0, 1, . . . , n3 − 1.

Let now
−→
ℓ (x10) = a1,

−→
ℓ (x11) = a3 and

−→
ℓ (x1i ) = ai+2 for i = 2, 3, . . . , n1 − 1.272

273

Case 1.1 n2, n3 are both odd.274 −→
ℓ (x20) = a2 and

−→
ℓ (x2i ) = an1+1+i for i = 1, 2, . . . , n2 − 1.275

−→
ℓ (x30) = a0 and

−→
ℓ (x3i ) = an1+n2+i for i = 1, 2, . . . , n3 − 1.276

277

278

Case 1.2. n2, n3 are both even.279 −→
ℓ (x20) = a0,

−→
ℓ (x21) = a2 and

−→
ℓ (x2i ) = an1+i for i = 2, 3 . . . , n2 − 1.280

−→
ℓ (x3i ) = an1+n2+i for i = 0, 1, . . . , n3 − 1.281

282

Note that in both subcases w(v) = n/2 for any v ∈ V (G).283

284

Case 2. n ≡ 2 (mod 4).
Without loss of generality we can assume that n2 ≥ n3.
Let a0 = 0, a1 = n/2, a2 = 1, a3 = n/2 − 1, a4 = n − 1, a5 = n/2 + 1 and
ai+1 = −ai for i = 6, 8, 10, . . . , n − 2. Set the orientation o(uv) for the edge
uv ∈ E(G) such that:

o(xjix
p
k) =

{ −−→
xjix

p
k for j < p.

Let now
−→
ℓ (x10) = a2,

−→
ℓ (x11) = a3 and

−→
ℓ (x1i ) = ai+4 for i = 2, 3, . . . , n1 − 1.285

286

Case 2.1. n2, n3 are both even.287 −→
ℓ (x20) = a4,

−→
ℓ (x21) = a5 and

−→
ℓ (x2i ) = an1+2+i for i = 2, 3, . . . , n2 − 1.288

−→
ℓ (x30) = a0,

−→
ℓ (x31) = a1 and

−→
ℓ (x3i ) = an1+n2+i for i = 2, 3, . . . , n3 − 1.289

290

Note that
∑

x∈Ai

−→
ℓ (x) = n/2 for i = 1, 2, 3 thus w(v) = 0 for any v ∈ V (G).291

292

Case 2.2 n2, n3 are both odd.293

Assume first that n2 ≥ 3. Set
−→
ℓ (x20) = a0,

−→
ℓ (x21) = a4,

−→
ℓ (x22) = a5 and294

−→
ℓ (x1i ) = an1+1+i for i = 3, 4, . . . , n2 − 1.295
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−→
ℓ (x30) = a1 and

−→
ℓ (x3i ) = an1+n2+i for i = 1, 2, . . . , n3 − 1. As in Case 2.1296 ∑

x∈Ai

−→
ℓ (x) = n/2 for i = 1, 2, 3 thus w(v) = 0 for any v ∈ V (G).297

298

Let now n2 = n3 = 1, then n1 ≡ 0 (mod 4). Set the orientation o (uv) for
the edge uv ∈ E(G) such that:

o
(
xjix

p
k

)
=



−−→
x20x

1
i , i even

−−→
x1ix

2
0, i odd

−−→
x30x

1
i , i = 0, 1, . . . , n1 − 1

−−→
x30x

2
0.

Then let
−→
ℓ (x20) =

n
2 ,

−→
ℓ (x30) =

n
2 + 2,

−→
ℓ (x1n/2) =

n
2 + 1, and

−→
ℓ (x1i ) =

{
i, i = 0, 1, . . . , n2 − 1,
i+ 2, i = n

2 + 1, n2 + 2, . . . , n1 − 1.

Observe that
∑

g∈Zn

g = n
2 since n ≡ 2 (mod 4), and also

∑
i odd

−→
ℓ (x1i )−

∑
i even

−→
ℓ (x1i ) =299

n
2 , so w(v) = 2 for any v ∈ V (G).300

We finish this section with the following conjecture.301

Conjecture 20. If G is a 2r-regular graph of order n, then G is orientable302

Zn-distance magic.303
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