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Abstract

A handicap distance antimagic labeling of a graph G = (V,E) with n vertices is a
bijection f́ : V → {1, 2, ...n} with the property that f́(xi) = i and the sequence of
the weights w(x1), w(x2), ..., w(xn) forms an increasing arithmetic progression. A
graph G is a handicap distance antimagic graph if it allows a distance antimagic
labeling. We construct r-regular handicap distance antimagic graphs of order n ≡ 0
(mod 8) for all feasible values of r. An overview of this and other related results
can be found in [5].
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1 Introduction

The study of handicap distance antimagic graphs was motivated by incomplete
round-robin type tournaments that posess various properties.

A complete round robin tournament of n teams is a tournament in which
every team plays each of the remaining n − 1 teams. Since each team plays
every other team, complete round robin tournaments are sometimes considered
fair tournaments. When the teams are ranked 1, 2, . . . , n according to their
standings, then the sum of rankings of all opponents of the i-th ranked team,
denoted w(i), is w(i) = n(n+ 1)/2− i, and the sequence w(1), w(2), . . . , w(n)
is a decreasing arithmetic progression with difference one. A tournament of n
teams in which every team plays precisely r opponents, where r < n− 1 and
the sequence w(1), w(2), . . . , w(n) is a decreasing arithmetic progression with
difference one is called a fair incomplete round robin tournament. Since a team
doesn’t play itself, a natural property of a such a tournament is that strong
teams get to play weaker teams, and weak teams play stronger teams. This
property is removed in equalized incomplete round robin tournaments where
the sum of rankings of all openents played is the same for each team. Some
results on fair incomplete round robin tournaments can be found in [2] and
[4].

Still, we can design a tournament that may allow weak teams an even
better chance at winning than an equalized incomplete tournament. By al-
lowing weak teams to play other weak teams, and having strong teams play
other strong teams, the sequence w(1), w(2), . . . , w(n) should be an increasing
arithmetic progression. A tournament in which this condition is satisfied, and
every team plays r < n− 1 games is called a handicap incomplete round robin
tournament. A summary of results of handicap tournaments obtained by the
authors et al. is found in [5]. In this paper we provide the details of the
construction for n ≡ 0 (mod 8) for all feasible regularities.

2 Basic Notions

By G = (V,E) we mean a simple graph of order n. We will identify vertex
names with their labels, thus by stating i we refer to the vertex labeled i.

As previously mentioned, the study of handicap distance antimagic graphs
was motivated by other tournament types, each of which had their own prop-
erties and associated graph labelings. The graph of a fair incomplete round
robin tournament admits a distance antimagic labeling, while the graph of an
equalized incomplete round robin tournament admits a distance magic label-
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ing.

The term distance magic labeling has evolved throughout the years. The
concept was originally coined as a sigma labeling by Vilfred [10] in 1994, and
then by Miller et. al. [11] using the name 1-vertex magic vertex labeling. The
definition of distance antimagic labeling nicely follows after the definition of
distance magic labeling.

Definition 2.1 A distance magic labeling of a graphG of order n is a bijection
f : V → {1, 2, ..., n} with the property that there is a positive integer µ such
that ∑

y∈N(x)

f(y) = µ ∀x ∈ V.

The constant µ is called the magic constant of the labeling f , and N(x)
denotes the set of all vertices adjacent to v. The sum

∑
y∈N(x) f(y) is called

the weight of vertex x and is denoted w(x). A graph that admits a distance
magic labeling is called a distance magic graph. [10]

Definition 2.2 A distance d-antimagic labeling of a graph G with n vertices
is a bijection f̄ : V → {1, 2, ..., n} with the property that there exists an
ordering of the vertices of G such that the weights w(x1), w(x2), ..., w(xn)
forms an arithmetic progression with difference d. When d = 1, then f̄ is
called just distance antimagic labeling. A graph G is a distance d-antimagic
graph if it allows a distance d-antimagic labeling, and a distance antimagic
graph when d = 1. [3]

A survey on distance magic graphs can be found in [1], while an often
updated overview of results of all types of labelings can be found in [8].

The term handicap labeling was originally introduced by Petr Kovář and
Tereza Kovářová and previously referred to as ordered distance antimagic la-
beling by Froncek in [3].

Definition 2.3 A handicap distance d-antimagic labeling of a graph G with
n vertices is a bijection f̂ : V → {1, 2, ...n} with the property that f̂(xi) = i
and the sequence of the weights w(x1), w(x2), ..., w(xn) forms an increasing
arithmetic progression with difference d. A graph G is a handicap distance
d-antimagic graph if it allows a distance d-antimagic labeling, and a handicap
distance antimagic graph when d = 1.

Note that in a handicap labeling a vertex with a lower label has a lower
weight than a vertex with higher label. Thus, if we think of the vertices
as teams and label them according to their strength, an r-regular handicap
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distance antimagic graph is in fact representative of a handicap incomplete
round robin tournament.

3 Preliminary and Related Results

We often seek to know for which pairs (n, r) does a fair, equalized, or handicap
incomplete tournament exist. The following results for fair and equalized
incomplete tournaments with an even number of teams and can be found in
[4].

Theorem 3.1 Let EIT(n, r) be an equalized incomplete complete tournament.
Then r is even.

Theorem 3.2 For n even an EIT (n, r) exists if and only if 2 ≤ r ≤ n− 2,
r ≡ 0 (mod 2) and either n ≡ 0 (mod 4) or n ≡ r + 2 ≡ 2 (mod 4).

Theorem 3.3 For n even a fair incomplete tournament FIT (n, k) exists if
and only if 1 ≤ k ≤ n − 1, k ≡ 1 (mod 2) and either n ≡ 0 (mod 4) or
n ≡ k + 1 ≡ 2 (mod 4).

For odd n, the following is known and obtained in [2].

Theorem 3.4 Let n be an odd number and r = 2sq with s ≥ 1 and q odd.
Then an EIT(n , r) exists whenever r ≤ 2

7
(n− 2).

Theorem 3.5 Let n be an odd number and k be an even number such that
k < n and n− k − 1 6= 2z for any z > 0. Then a fair incomplete tournament
FIT(n, k) exists whenever k > 5

7
(n− 2).

Recently, some results on handicap distance d-antimagic graphs where d =
2 have been obtained, including a full characterization for n ≡ 0 (mod 16).

Theorem 3.6 If G is a k-regular 2 handicap graph, then k is even. [7]

Theorem 3.7 There exists a k-regular 2-handicap graph of order n for every
positive n ≡ 8 (mod 16), n ≥ 56 and every even k satisfying 6 ≤ k ≤ n− 50.
[7]

Theorem 3.8 There exists a k-regular 2-handicap graph of order n ≡ 0
(mod 16) if and only if n ≥ 16 and 4 ≤ k ≤ n− 6. [6]

Even some results have been obtained for more general d-handicap tour-
naments by Freyberg in [13]. These include a variety of results for even d, a
partial characterization of order n that permits d odd, and multiples restric-
tions on the feasible regularities based on n and d. More details are known
about handicap tournaments when d = 1, for the remainder of this paper this
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is the case.

For any graph with given regularity r and order n a simple counting argu-
ment shows the weight of each vertex i is already known as in the following
lemma (see [12]).

Lemma 3.1 In an r-regular handicap graph with n vertices the weight of every
vertex is w(i) = (r − 1)(n+ 1)/2 + i.

Each vertex weight is an integer value obtained as a sum of integers. The
previous lemma is used in a number of non-existance results. The following
can be found amongst other non-existance results, see e.g [12] or [14].

Lemma 3.2 There exists no r-regular handicap graph with n vertices if both
r and n are even.

Lemma 3.3 No nontrivial r-regular handicap graph with n vertices exists if
r = 1 and r = n− 1.

Lemma 3.4 There is no (n− 3)-regular handicap graph of order n.

We now proceed to the primary focus of this paper.

4 Construction for n ≡ 0 (mod 8)

If i is joined to k by an edge, we will use the notation [i|k].Further, [a, b|c, d] will
denote the complete bipartite graph where a and b are both adjacent to c and
d and vice-versa. The construction aims to prove the following proposition.

Proposition 4.1 For n ≡ 0 (mod 8) and r ≡ 1, 3 (mod 4), there exists an
r-regular handicap graph G on n vertices for all feasible values of r, that is,
3 ≤ r ≤ n− 5.

First note that Lemmas 3.2, 3.3, and 3.4 provide non-existance for all
other r values than those claimed above. Since r is odd and at least 3, we
can partition the edges at each vertex as follows: 2s black edges, 2 blue edges,
and 1 red edge, for some nonnegative integer s. In other words we will have
2s 1-factors with edges colored black, a pair of 1-factors that are colored blue,
and a single 1-factor colored red. The construction is complete in a three step
process.

Step 1: The red edges will be used specifically to create the arithmetic
progression required in the labeling by connecting [1|4k+1], [2|4k+2], [3|4k+
3] . . . , and [4k|8k]. This naturally partitions the vertex set into ”lower” and
”upper” sets.
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Let wr(i) denote the weight of vertex i obtained from the red edges. We
have that

wr(i) = 4k + i for i ∈ [1, 4k]

and

wr(i) = −4k + i for i ∈ [4k + 1, 8k] .

Step 2: Now we construct the two blue edges to each vertex. For the
lower vertices, the blue edges will be copies of K2,2 as: [1, 4k|2, 4k−1], [3, 4k−
2|4, 4k−3], . . . , [2k−1, 2k+2|2k, 2k+1], and the upper vertices will be done
in a similar manner: [4k + 1, 8k|4k + 2, 8k − 1], [4k + 3, 8k − 2|4k + 4, 8k −
3], . . . , [6k − 1, 6k + 2|6k, 6k + 1]. See Figures 1 and 2.
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Fig. 1. Lower Blue Edges
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Fig. 2. Upper Blue Edges

Let wb(i) denote the weight of vertex i obtained from the blue edges. Then

wb(i) = 4k + 1 for i ∈ [1, 4k]

and

wb(i) = 12k + 1 for i ∈ [4k + 1, 8k]

so we have that

wb(i) + wr(i) = 4k + 1 + 4k + i = 8k + 1 + i for i ∈ [1, 4k]
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and

wb(i) + wr(i) = 12k + 1− 4k + i = 8k + 1 + i for i ∈ [4k + 1, 8k] .

Thus the weight of each vertex with the red and blue edges is 8k + 1 + i
for each i, which is exactly what we want. The graph of red and blue edges is
currently 3-regular and handicap. All that is left is to show we can increase the
regularityfor any r ≡ 1, 3 (mod 4) up to n− 5 as claimed in proposition 4.1.

Step 3: Our goal is to add 2s black edges such that the subgraph induced
by the black edges is distance magic. In doing so, we will not be effecting
the arithmetic progression of our weights, and therefore, still have a handicap
graph with higher regularities. We need to be careful, though, to make sure
that we are not trying to reuse any of the red or blue edges that are used in
Steps 1 and 2. To do this, we pair the vertices 1 with 8k, 2 with 8k − 1, . . . ,
and 4k with 4k + 1, so that the sum of these pairs is 8k + 1. Each of these
pairs can be thought of as a graph H with with no edges. Each pair becomes
a vertex in our bubble graph B. In B, there will be an edge between two
bubbles X = (x1, x2) and Y = (y1, y2) if and only if there would be a red or
blue edge (or both) between either x1 or x2 and y1 or y2. For clarity, we will
color an edge red in B if it comes from Step 1. Once all edges from Step 1 are
accounted for, we then add the edges from Step 2 and of course color those
blue. While the colors in the bubble graph are not important, it helps to see
where the edges came from. What happens here is the red and blue edges
create separate components of B, each of which is K4.

To see this, take any bubble J = (a, 8k + 1− a). Since there is a red edge
[a|4k+a], we have [J |K] where K = (4k+1−a, 4k+a). We know the other half
of the bubble K must have weight 4k+1−a since the sum inside each bubble is
8k+1. We also have the blue K2,2 involving a, namely [a, 4k+1−a|a+1, 4k−a].
Specifically, since there exists a blue edge [a|a+ 1], we have [J |L] where L =
(a + 1, 8k − a). Similarly, [J |M ] where M = (4k − 1, 4k + 1 + a). Checking
all other existing red and blue edges, we have a red edge [4k − a|8k − a], and
the blue K2,2 = [4k + a, 8k + 1− a|4k + 1 + a, 8k − a]. Observe that any red
or blue edges that would emerge from the four bubbles J,K, L, and M only
result in edges between these four bubbles. See Figure 3.

Since we have n
2

bubbles, B = Kn
2
− n

8
K4. This is in fact isomorphic to

the complete multipartite graph Kn
8
[4], that is, a graph with n

8
partite sets of

size 4. Observe the bubble graph B is 3-regular, and the complement B will
be (n

2
− 4)-regular.
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Fig. 3. Bubble Structure

B is the graph where we will pull our black edges from. It is a well known
result that the complete multipartite graph on an even number of vertices can
be 1-factored [9]. Each black edge in B will equate to a K2,2 in the blown up
graph B[H], where B[H] is the lexicographic product of B and H. Therefore,
each 1-factor induced on B will consist of a 2-regular distance magic graph
we can add to the red and blue edges, as desired. If we use all available black
edges, we can add 2(n

2
− 4) = n − 8 black edges to increase regularity, for a

max regularity of n− 8 + 1 + 2 = n− 5.

Our constuction is now complete, and we can state proposition 4.1 as a
theorem.

Theorem 4.1 For n ≡ 0 (mod 8) and r ≡ 1, 3 (mod 4), there exists an r-
regular handicap graph G on n vertices for all feasible values of r, that is,
3 ≤ r ≤ n− 5.

Detailed visual examples of the construction can be found in [14].
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