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1. Introduction35

1.1. Definitions36

For standard graph theoretic definitions and notation, we refer to Diestel [9].37

All graphs G = (V,E) are finite undirected simple graphs with vertex set V (G)38

and edge set E(G). Given any vertex v, the set of all vertices adjacent to v is the39

open neighborhood of v, denoted N(v) (or NG(v), if necessary), and the degree of v40

is |N(v)|. If every vertex in a graph G has the same degree r, the graph is called41

r-regular. The closed neighborhood of v is N(v) ∪ {v}, denoted N [v] (or, NG[v]).42

A distance magic labeling of a graph G of order n is a bijection ℓ : V (G) →43

{1, . . . , n} such that the weight of every vertex v, defined as w(v) =
∑

u∈N(v) ℓ(v),44

is a constant, which we call the magic constant, denoted simply as µ. Any graph45

which admits a distance magic labeling is called a distance magic graph. Distance46

magic graphs are analogue to closed distance magic graphs; see [3, 6].47

We use the definition of Cartesian product given in [12]. Given two graphs G48

and H, the Cartesian product of G and H, denoted G□H, is the graph with vertex49

set V (G) × V (H), where two vertices (g, h) and (g′, h′) are adjacent if and only if50

g = g′ and h is adjacent to h′ in H, or h = h′ and g is adjacent to g′ in G.51

The cycle on n vertices is denoted Cn. The complete graph on n vertices is52

denoted Kn. The complete bipartite graph with parts of cardinality m and n,53

respectively, is denoted Km,n. The complete r-partite graph with n vertices in each54

part is denoted K(n; r). The n-dimensional hypercube is denoted Qn. The vertices55

of Qn are binary n-tuples and two vertices are adjacent if their corresponding tuples56

differ in exactly one position. For integers 0 ≤ k ≤ n, we say that a vertex of Qn57

belongs to row k, denoted rk, if the corresponding n-tuple contains exactly k entries58

that are 1’s. For a vertex v ∈ rk, if 0 ≤ k ≤ n− 1, we say the upper neighbors of v,59

denoted Nu(v), are those vertices in rk+1 that are adjacent to v, and if 1 ≤ k ≤ n, we60

say the lower neighbors, denoted Nl(v), are those in rk−1 that are adjacent to v. For61

a vertex v ∈ V (Qn), let {v} denote the label on v and let Nu{v} =
∑

x∈Nu(v)
{x}62

and Nl{v} =
∑

x∈Nl(v)
{x} denote the sum of the labels on the upper and lower63

neighbors of v, respectively. Note that Qn also may be defined recursively in terms64

of the Cartesian product: Q1 = K2 and Qn = Qn−1□K2 for integers n ≥ 2.65

1.2. History and Motivation66

Graph labelings have served as the focal point of considerable study for over forty67

years; see Gallian’s survey [11] for a review of results in the field. For a detailed68

survey of previous work and open problems concerning distance magic labelings,69

see Arumugam, Froncek, and Kamatchi [5]. Some graph which are distance magic70

among (some) products can be seen in [2, 4, 6, 7, 8, 16, 18, 19]. The general question71

about characterizing graphs G and H such that G□H is distance magic was posed72

in [5]. Some results along that line follow:73

Theorem 1 [18]. The Cartesian product Cn□Cm is distance magic if and only if74

n = m ≡ 2 (mod 4).75

Theorem 2 [19]. (1) The Cartesian product Pn□Cm, where n is an odd integer76

greater than 1 or n ≡ 2 (mod 4), has no distance magic labeling. (2) The Carte-77

sian product K1,n□Cm has no distance magic labeling. (3) The Cartesian product78



Distance Magic Cartesian Products of Graphs 3

Kn,n□Cm, where n ̸= 2 and m is odd, has no distance magic labeling. (4) The79

Cartesian product Kn,n+1□Cm, where n is even and m ≡ 1 (mod 4), has no dis-80

tance magic labeling.81

It was shown in [15, 16, 17, 20] that if G is an r-regular distance magic graph82

with n vertices, then the magic constant must be µ = r(n+ 1)/2, implying that no83

graph with odd regularity can be a distance magic. That is, Qn for odd n is not84

distance magic. The concept of distance magic labelings has been motivated by the85

construction of magic rectangles (see [10, 13, 14]) since we can construct a distance86

magic labeling of K(n; r) by labeling the vertices in each part by the columns of87

the magic rectangle. Note, however, that lack of an n × r magic rectangle does88

not imply that K(n; r) is not distance magic; for example, there is no 2 × 2 magic89

rectangle but Q2 = K(2; 2) = K2,2 is distance magic. In 2004, Acharya, Rao, Singh,90

and Parameswaran stated the following conjecture:91

Conjecture 3 [1]. For any even integer n ≥ 4, the n-dimensional hypercube Qn is92

not a distance magic graph.93

The following problem was given in [7]:94

Problem 4. If G is a regular graph, determine if G□C4 is distance magic.95

Notice that if G is an r-regular graph, then the necessary condition for H =96

G□C4 to be distance magic is that r is even (since H is (r + 2)-regular).97

In Section 2, we show that Qn, where n ≡ 0 (mod 4), is not distance magic.98

In Section 3, we provide some positive results by giving necessary and sufficient99

conditions for which K(n; r)□C4, where n ̸= 2, is distance magic.100

2. Non-distance magic hypercubes101

Theorem 5. The hypercube Qn, where n ≡ 0 (mod 4), is not distance magic.102

Proof. Assume that Qn, where n ≡ 0 (mod 4), is distance magic with magic con-
stant µ. Let k = n/2. By symmetry of the hypercube, we have that(

n

k − 1

)
µ =

∑
v∈rk−1

(Nl{v}+Nu{v}) =
∑

v∈rk+1

(Nl{v}+Nu{v}) . (2.1)

By considering the binary representation of the vertices of the hypercube, for 1 ≤
j ≤ k − 1 and every vertex v ∈ rj , we have |Nu(v)| = n− j and |Nl(v)| = j. Thus,(

n

k − 1

)
µ = (k + 1)

∑
v∈rk

{v}+ (k − 1)
∑

v∈rk−2

{v}

= (k + 1)
∑
v∈rk

{v}+ (k − 1)
∑

v∈rk+2

{v},

which implies that ∑
v∈rk−2

{v} =
∑

v∈rk+2

{v}. (2.2)
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Using (2.1) and (2.2) as the basis step, we perform induction on the hypercube
rows. Assume that for some j, where 1 < j ≤ k/2, and all i ≤ j,∑

v∈rk−2(i−1)

{v} =
∑

v∈rk+2(i−1)

{v}. (2.3)

Now, by symmetry of the hypercube,(
n

k − 2i+ 1

)
µ =

∑
v∈rk−2i+1

(Nl{v}+Nu{v}) =
∑

v∈rk+2i+1

(Nl{v}+Nu{v}) ,

which implies

(k + 2i− 1)
∑

v∈rk−2i

{v}+ (k − 2i+ 1)
∑

v∈rk−2(i−1)

{v}

= (k + 2i− 1)
∑

v∈rk+2i

{v}+ (k − 2i+ 1)
∑

v∈rk+2(i−1)

{v}.

Using (2.3) gives ∑
v∈rk−2i

{v} =
∑

v∈rk+2i

{v};

in particular, ∑
v∈r0

{v} =
∑
v∈r2k

{v}. (2.4)

Since both r0 and r2k contain only one vertex, (2.4) implies that the labels on these103

vertices are the same, which contradicts that Qn has a distance magic labeling.104

3. Distance magic K(n; r)□C4105

In this section the proof is based on an application of magic rectangles, which are106

a natural generalization of magic squares. A magic rectangle MR(a, b) is an a × b107

array with entries from the set {1, 2, . . . , ab}, each appearing once, with all its row108

sums equal to a constant δ and with all its column sums equal to a constant η.109

Harmuth proved the following:110

Theorem 6 [13, 14]. A magic rectangle MR(a, b) exists if and only if a, b > 1,111

ab > 4, and a ≡ b (mod 2).112

To prove our main result in this section, we will need the following generalization113

of magic rectangles that was introduced in [10].114

Definition 3.1. A magic rectangle set MRS(a, b; c) is a collection of c arrays (a×b)115

whose entries are elements of {1, 2, . . . , abc}, each appearing once, with all row sums116

in every rectangle equal to a constant δ and all column sums in every rectangle equal117

to a constant η.118

Moreover, Froncek proved:119
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Theorem 7 [10]. If a ≡ b ≡ 0 (mod 2), a ≥ 2 and b ≥ 4, then a magic rectangle120

set MRS(a, b; c) exists for every c.121

Observation 8 [10]. If a magic rectangle set MRS(a, b; c) exists, then both MR(a, bc)122

and MR(ac, b) exist.123

In the following lemmas, we use C4 = xuywx and we denote the vertices of124

K(n; r), the complete r-partite graph with n vertices in each part, by {vji : i =125

1, . . . , n and j = 1, . . . , r}, where we drop the subscript i if n = 1.126

Lemma 3.2. The Cartesian product Kn□C4 is not distance magic.127

Proof. Notice that Kn = K(1;n). Let H = K(1;n)□C4. Suppose H is distance128

magic and ℓ is a distance magic labeling of H with magic constant µ. Let ℓ(vj , u)+129

ℓ(vj , w) = aju,w and ℓ(vj , x) + ℓ(vj , y) = ajx,y for any j = 1, . . . , n.130

Since

0 = w(vj , x)− w(vh, x) = ℓ(vh, x)− ℓ(vj , x) + ahu,w − aju,w

= w(vj , y)− w(vh, y) = ℓ(vh, y)− ℓ(vj , y) + ahu,w − aju,w,

we obtain ℓ(vh, x)− ℓ(vh, y) = ℓ(vj , x)− ℓ(vj , y) for any j, h = 1, . . . , n. Therefore,
ℓ(vj , x) = k + ℓ(vj , y) for some constant k and for any j = 1, . . . , n. On the other
hand,

µ = w(vj , y) =

r∑
p=1,p ̸=j

ℓ(vp, y) + aju,w

= w(vj , x) =

r∑
p=1,p ̸=j

ℓ(vp, x) + aju,w

=
r∑

p=1,p ̸=j

(k + ℓ(vp, y)) + aju,w,

which implies k = 0 and ℓ(vj , x) = ℓ(vj , y), a contradiction.131

Lemma 3.3. The Cartesian product K(2; r)□C4 is not distance magic.132

Proof. Notice that K2 = K(2; 1) is not distance magic by Lemma 3.2. Moreover,
K2,2

∼= C4 and C4□C4 is not distance magic by Theorem 1, so we assume that
r > 2. Let H = K(2; r)□C4. Suppose that H is a distance magic graph with
distance magic labeling ℓ and magic constant µ. We have

µ = w(vj1, x) =

r∑
p=1,p̸=j

(ℓ(vp1 , y) + ℓ(vp2 , y)) + ℓ(vj1, u) + ℓ(vj1, w)

= w(vj2, x) =

r∑
p=1,p̸=j

(ℓ(vp1 , y) + ℓ(vp2 , y)) + ℓ(vj2, u) + ℓ(vj2, w),

which implies that ℓ(vj1, u) + ℓ(vj1, w) = ℓ(vj2, u) + ℓ(vj2, w) for any j = 1, . . . , r.133

Analogously, we obtain that ℓ(vj1, x)+ℓ(vj1, y) = ℓ(vj2, x)+ℓ(vj2, y) for any j = 1, . . . , r.134
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Since w(vj1, x) = w(vj1, y), we obtain that135

r∑
p=1,p ̸=j

(ℓ(vp1 , x) + ℓ(vp2 , x)) =

r∑
p=1,p ̸=j

(ℓ(vp1 , y) + ℓ(vp2 , y))

for any j = 1, 2, . . . , r. Hence136

(r − 1)

r∑
j=1

(ℓ(vj1, x) + ℓ(vj2, x)) = (r − 1)

r∑
j=1

(ℓ(vj1, y) + ℓ(vj2, y)),

implying that ℓ(vj1, x) + ℓ(vj2, x) = ℓ(vj1, y) + ℓ(vj2, y), a contradiction.137

Lemma 3.4. Let r > 1, n > 2. The Cartesian product K(n; r)□C4 is distance138

magic if and only if n is even.139

Proof. Let H = K(n; r)□C4. Notice that |V (H)| = 4nr and H is [n(r − 1) + 2]-140

regular. Suppose that H is distance magic and ℓ is a distance magic labeling of H141

with magic constant µ.142

Let ℓ(vji , u) + ℓ(vji , w) = aju,w for any i = 1, . . . , n, j = 1, . . . , r. Then

µ = w(vji , x) =
r∑

p=1,p ̸=j

n∑
h=1

ℓ(vph, x) + aju,w,

for any i = 1, . . . , n, j = 1, . . . , r. Analogously let ℓ(vji , x) + ℓ(vji , y) = ajx,y for any143

i = 1, . . . , n, j = 1, . . . , r.144

Observe that145

2µ = w(vhi , x) + w(vhi , y) = n
r∑

p=1,p̸=h

apx,y + 2ahu,w (3.1)

and

2µ = w(vji , x) + w(vji , y) = n
r∑

p=1,p̸=j

apx,y + 2aju,w (3.2)

for j = 1, . . . , r,i = 1, . . . , n.146

147

Thus subtracting equation 3.1 from 3.2 we obtain:

n(ajx,y − ahx,y) = 2(aju,w − ahu,w),

for any j, h = 1, . . . , r. Analogously 2(ajx,y − ahx,y) = n(aju,w − ahu,w) for any j, h =148

1, . . . , r.149

Obviously for any j, h = 1, . . . , r we have (n− 2)(ajx,y − ahx,y) = −(n− 2)(aju,w −150

ahu,w). Since n ̸= 2 thus for any j = 1, . . . , r we have ajx,y + aju,w = a for some151

constant a.152

If ajx,y = aju,w = a/2 for any j = 1, 2, . . . , r, then since µ = w(vji , z) =153 ∑r
p=1,p̸=j

∑n
h=1 ℓ(v

p
h, z) + a/2 for any z ∈ {x, y, u, w} and i = 1, . . . , n, j = 1, . . . , r,154
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it is easy to check that
∑n

i=1 ℓ(v
j
i , z) = na/4 for any z ∈ {x, y, u, w} and j = 1, . . . , r.155

In this situation there exists distance magic labeling for the graph G is and only if156

there exists a magic rectangle set MRS(2, n; 2r) with all its row sums equal to the157

constant a/2 and with all its column sums equal to the constant na/4.158

If n is even, then a magic rectangle set MRS(2, n; 2r) exists by Theorem 7.
Denote by zji,h the entry in the i-th row and h-th column of the j-th rectangle from
the set MRS(2, n; 2r), let:

ℓ(vji , x) = zji,1, ℓ(vji , y) = zji,2,

ℓ(vji , u) = zj+r
i,1 , ℓ(vji , v) = zj+r

i,2

for i = 1, . . . , n and j = 1, . . . , r. Obviously the labeling ℓ is distance magic.159

Therefore we can assume now that n is odd. Suppose first that ajx,y = a/2−c for
any j = 1, 2, . . . , r and some constant c. Thus ajx,y = a/2 + c for any j = 1, 2, . . . , r
and moreover

∑n
i=1(ℓ(v

j
i , x) + ℓ(vji , y)) = n(a/2 + c),

∑n
i=1(ℓ(v

j
i , u) + ℓ(vji , v)) =

n(a/2− c) for any j = 1, 2, . . . , r. Observe that:

2µ = w(vji , x) + w(vji , y) = n(r − 1)(a/2 + c) + 2(a/2− c),

2µ = w(vji , u) + w(vji , v) = n(r − 1)(a/2− c) + 2(a/2 + c).

Subtracting the above equation we obtain that c = 0, hence ajx,y = aju,v = a/2 and160

a distance magic labeling is impossible since there does not exist a magic rectangle161

set MRS(2, n; 2r) for n being odd n must be even by Theorem 6 and Observation 8.162

Let now ajx,y = a/2 − cj and aju,v = a/2 + cj for any j = 1, 2, . . . , r and some163

constants cj . Therefore
∑n

i=1(ℓ(v
j
i , x) + ℓ(vji , y)) = n(a/2 + cj),

∑n
i=1(ℓ(v

j
i , u) +164

ℓ(vji , v)) = n(a/2− cj) for any j = 1, 2, . . . , r. Notice that165

2µ = w(vji , x) + w(vji , y) = n

r∑
p=1,p ̸=j

(a/2 + cp) + 2(a/2− cj) (3.3)

and

2µ = w(vhi , x) + w(vhi , y) = n

r∑
p=1,p ̸=h

(a/2 + cp) + 2(a/2− ch) (3.4)

for j = 1, . . . , r,i = 1, . . . , n.166

167

Thus subtracting equation 3.3 from 3.4 we obtain: (n+2)ch = (n+2)cj for any168

j, h = 1, . . . , r. Hence cj = c for any j = 1, 2, . . . , r and a distance magic labeling169

does not exist.170

As a result of Lemmas 3.2, 3.3 and 3.4, we have the following theorems:171

Theorem 9. The Cartesian product K(n; r)□C4 is distance magic if and only if172

r > 1 and n > 2 is even.173

Theorem 10. The Cartesian product K(n; r)□C4 is distance magic if and only if174

there exists a magic rectangle set MRS(2, n; 2r).175
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