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Abstract

Let G = (V,E) be a graph of order n. A distance magic labeling of
G is a bijection ℓ : V → {1, 2, . . . , n} for which there exists a positive
integer k such that

∑
x∈N(v) ℓ(x) = k for all v ∈ V , where N(v) is the

open neighborhood of v. In this paper we deal with circulant graphs
C(1, p). The circulant graph Cn(1, p) is the graph on the vertex set
V = {x0, x1, . . . , xn−1} with edges (xi, xi+p) for i = 0, . . . , n−1 where
i + p is taken modulo n. We completely characterize distance magic
graphs Cn(1, p) for p odd. We also give some sufficient conditions for
p even. Moreover, we also consider a group distance magic labeling of
Cn(1, p).

1 Introduction

All graphs considered in this paper are simple finite graphs. Consider a sim-
ple graph G whose order we denote by n = |G|. Write V (G) for the vertex
set and E(G) for the edge set of a graph G. The open neighborhood N(x)
of a vertex x is the set of vertices adjacent to x, and the degree d(x) of x
is |N(x)|, the size of the neighborhood of x. By Cn we denote a cycle on n
vertices.

∗The author was supported by National Science Centre grant nr 2011/01/D/ST/04104.
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In this paper we investigate distance magic labelings, which belong to
a large family of magic type labelings. Generally speaking, a magic type
labeling of a graph G(V,E) is a mapping from V,E, or V ∪ E to a set of
labels which most often is a set of integers or group elements. Then the
weight of a graph element is typically the sum of labels of the neighboring
elements of one or both types. If the weight of each element is required to
be equal, then we speak about magic-type labeling; when the weights are all
different (or even form an arithmetic progression), then we speak about an
anti-magic-type labeling. Probably the best known problem in this area is
the anti-magic conjecture by Hartsfield and Ringel [10], which claims that
the edges of every graph except K2 can be labeled by integers 1, 2, . . . , |E|
so that the weight of each vertex is different.

A comprehensive dynamic survey of graph labelings is maintained by
Gallian [9]. A more detailed survey related to our topic by Arumugam at
al. [1] was published recently.

A distance magic labeling (also called sigma labeling) of a graph G =
(V,E) of order n is a bijection ℓ : V → {1, 2, . . . , n} with the property that
there is a positive integer k (called the magic constant) such that

w(x) =
∑

y∈NG(x)

l(y) = k for every x ∈ V (G),

where w(x) is the weight of vertex x. If a graph G admits a distance magic
labeling, then we say that G is a distance magic graph.

It is worth mentioning that finding an r-regular distance magic labeling
turns out equivalent to finding equalized incomplete tournament EIT(n, r)
[8]. In an equalized incomplete tournament EIT(n, r) of n teams with r
rounds, every team plays exactly r other teams and the total strength of the
opponents that team i plays is k. Thus, it is easy to notice that finding an
EIT(n, r) is the same as finding a distance magic labeling of any r-regular
graph on n vertices.

The following observations were independently proved:

Observation 1 ([11], [12], [14], [15]) Let G be an r-regular distance magic

graph on n vertices. Then k = r(n+1)
2

.

Observation 2 ([11], [12], [14], [15]) There is no distance magic r-regular
graph with r odd.
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The following cycle-related results were proved by Miller, Rodger, and
Simanjuntak, and by Rao, Singh, and Parameswaran, respectively.

Theorem 3 ([12]) The cycle Cn of length n is distance magic if and only
if n = 4.

Theorem 4 ([13]) The cartesian product Cn�Cm, n,m ≥ 3 is distance
magic if and only if n = m ≡ 2 (mod 4).

Circulant graphs are another interesting family of vertex-transitive graphs.
These graphs arise in various settings; for instance, they are the Cayley
graphs over the cyclic group of order n. The circulant graph Cn(s1, s2, . . . , sk)
is the graph on the vertex set V = {x0, x1, . . . , xn−1} with edges (xi, xi+sj)
for i = 0, . . . , n− 1, j = 1, . . . , k where i + sj is taken modulo n. Moreover,
since there is no distance magic r-regular graph for r odd by Observation 2,
we can assume that n > 2sk + 1.

It was shown in [2] that a graph Cn(1, 2) is not distance magic unless
n = 6. For p odd the following theorem was proved:

Theorem 5 ([2]) If p is odd, then Cn(1, 2, . . . , p) is a distance magic graph
if and only if 2p(p+1) ≡ 0 (mod n), n ≥ 2p+2 and n

gcd(n,p+1)
≡ 0 (mod 2).

In this paper we consider the corresponding problem for circulant graphs
Cn(1, p). The motivation for considering circulants is a problem stated in [14].

Problem 6 ([14]) Characterize 4-regular distance magic graphs.

We will also consider the notion of group distance magic labeling of graphs
that was introduced in [7]. A Γ-distance magic labeling of a graph G(V,E)
with |V | = n is an injection from V to an Abelian group Γ of order n such
that the weight of every vertex x ∈ V is equal to the same element µ ∈ Γ,
called the magic constant. Some families of graphs that are Γ-distance magic
were studied in [4, 3, 5, 7]. The following result was proved in [7]:

Theorem 7 ([7]) The cartesian product Cn�Cm, n,m ≥ 3 is a Znm-distance
magic graph if and only if nm is even.

The paper is organized as follows. In the next three sections we consider
distance magic circulant graphs Cn(1, p). In the last section we consider a
Γ-distance magic labeling.
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2 Distance magic graphs Cn(1, p)

We start with some observations:

Observation 8 Let Cn(1, p) be a distance magic graph with magic constant
k. Then for any i ∈ {0, 1, . . . , n− 1} and any γ ∈ N

ℓ(xi) + ℓ(xi+p−1) = ℓ(xi+γ(2p+2)) + ℓ(xi+p−1+γ(2p+2)).

Proof. Since Cn(1, p) is distance magic we obtain

w(x0)− w(x1) = w(x1)− w(x2) = . . . = w(xn−1)− w(x0) = 0.

Hence

w(xi)− w(xi+p+1) = ℓ(xi−1) + ℓ(xi−p)− (ℓ(xi+p+2) + ℓ(xi+2p+1)) = 0

and

w(xi+2p+2)−w(xi+3p+3) = ℓ(xi+p+2)+ℓ(xi+2p+1)−(ℓ(xi+3p+4)+ℓ(xi+4p+3) = 0.

for i ∈ {0, 1, . . . , n}. So we obtain

ℓ(xi) + ℓ(xi+p−1) = ℓ(xi+γ(2p+2)) + ℓ(xi+p−1+γ(2p+2)).

Observation 9 Let Cn(1, p) be a distance magic graph with magic constant
k, then for any i ∈ {0, 1, . . . , n− 1} and any γ ∈ N

ℓ(xi) + ℓ(xi+p+1) = ℓ(xi+γ(2p−2)) + ℓ(xi+p+1+γ(2p−2)).

Proof. Since Cn(1, p) is distance magic we obtain

w(x0)− w(x1) = w(x1)− w(x2) = . . . = w(xn−1)− w(x0) = 0.

Hence

w(xi)− w(xi+p−1) = ℓ(xi+1) + ℓ(xi−p)− (ℓ(xi+p−2) + ℓ(xi+2p−1)) = 0.



Distance magic circulant graphs 5

Also

w(xi+2p−2)−w(xi+3p−3) = ℓ(xi+p−2)+ℓ(xi+2p−1)−(ℓ(xi+3p−4)+ℓ(xi+4p−3)) = 0

and so on for i ∈ {0, 1, . . . , n}. So we obtain

ℓ(xi) + ℓ(xi+p+1) = ℓ(xi+γ(2p−2)) + ℓ(xi+p+1+γ(2p−2)).

Observations 8 and 9 imply the following corollary.

Corollary 10 If Cn(1, p) is a distance magic graph, then for any i ∈ {0, 1, . . . , n−
1} and for any α, γ ∈ N

ℓ(xi) + ℓ(xi+(2α+1)(p−1)) = ℓ(xi+γ(2p+2)) + ℓ(xi+(2α+1)(p−1)+γ(2p+2)),
ℓ(xi) + ℓ(xi+(2α+1)(p+1)) = ℓ(xi+γ(2p−2)) + ℓ(xi+(2α+1)(p+1)+γ(2p−2)).

Proof. Since Cn(1, p) is distance magic we obtain by Observation 8

ℓ(xi) + ℓ(xi+p−1) = ℓ(xi+γ(2p+2)) + ℓ(xi+p−1+γ(2p+2)),
ℓ(xi+p−1) + ℓ(xi+2(p−1)) = ℓ(xi+p−1+γ(2p+2)) + ℓ(xi+2(p−1)+γ(2p+2)),
ℓ(xi+2(p−1)) + ℓ(xi+3(p−1)) = ℓ(xi+2(p−1)+γ(2p+2)) + ℓ(xi+3(p−1)+γ(2p+2)),
...
ℓ(xi+2α(p−1)) + ℓ(xi+(2α+1)(p−1)) = ℓ(xi+2α(p−1)+γ(2p+2)) + ℓ(xi+(2α+1)(p−1)+γ(2p+2)).

Alternatively subtracting and summarizing the above equations we obtain

ℓ(xi+2(p−1)) + ℓ(xi+3(p−1)) = ℓ(xi+2(p−1)+γ(2p+2)) + ℓ(xi+3(p−1)+γ(2p+2)).

Using Observation 9 by similar arguments we obtain

ℓ(xi) + ℓ(xi+(2α+1)(p+1)) = ℓ(xi+γ(2p−2)) + ℓ(xi+(2α+1)(p+1)+γ(2p−2)).

Theorem 11 If Cn(1, p) is distance magic then n
gcd(n,p+1)

≡ 0 (mod 2) and
n

gcd(n,p−1)
≡ 0 (mod 2).
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Proof. Let k be a magic constant for Cn(1, p). It is well known that if a, b ∈
Zn and gcd(a, n) = gcd(b, n), then a and b generate the same subgroup of

Zn, that is, ⟨a⟩ = ⟨b⟩. Suppose that n
gcd(n,p+1)

≡ 1 (mod 2), then we have

gcd(n, p+1) = gcd(n, 2p+2) and ⟨2(p+1)⟩ = ⟨p+1⟩. Hence, p+1 = 2c(p+1)
for some c ≥ 1. Then we use Lemma 8, set γ = c, i = 0, p − 1 and obtain
respectively:

ℓ(x0) + ℓ(xp−1) = ℓ(x2c(p+1)) + ℓ(xp−1+2c(p+1)) = ℓ(xp+1) + ℓ(x2p),

ℓ(xp−1) + ℓ(x2p−2) = ℓ(xp−1+2c(p+1)) + ℓ(x2p−2+2c(p+1)) = ℓ(x2p) + ℓ(x3p−1).

Since N(xi) = {xi−p, xi−1, xi+1, xi+p} and Cn(1, p) is distance magic, we
obtain:

ℓ(x0) + ℓ(xp−1) = ℓ(xp+1) + ℓ(x2p) =
k

2
,

ℓ(xp−1) + ℓ(x2p−2) = ℓ(x2p) + ℓ(x3p−1) =
k

2
.

Therefore ℓ(x0) = ℓ(x2p−2) and we have a contradiction, because n >
2p+ 1.

Suppose now n
gcd(n,p−1)

≡ 1 (mod 2), then gcd(n, p− 1) = gcd(n, 2p− 2).

Thus, p − 1 = c2(p − 1) for some c ≥ 1. Then we use Lemma 9, set γ = c,
i = 0, p+ 1 and obtain respectively:

ℓ(x0) + ℓ(xp+1) = ℓ(x2c(p−1)) + ℓ(xp+1+2c(p−1)) = ℓ(xp−1) + ℓ(x2p),

ℓ(xp+1) + ℓ(x2p+2) = ℓ(xp+1+2c(p−1)) + ℓ(x2p+2+2c(p−1)) = ℓ(x2p) + ℓ(x3p+1).

Since N(xi) = {xi−p, xi−1, xi+1, xi+p} and Cn(1, p) is distance magic, we
obtain:

ℓ(x0) + ℓ(xp+1) = ℓ(xp−1) + ℓ(x2p) =
k

2
,

ℓ(xp−1) + ℓ(x2p+2) = ℓ(x2p) + ℓ(x3p+1) =
k

2
.

Therefore ℓ(x0) = ℓ(x2p+2). For n ̸= 2p + 2 we obtain a contradiction,
since the labeling ℓ. For n = 2p + 2 we have n

gcd(n,p+1)
≡ 0 (mod 2), a con-

tradiction.

From the above theorem the below observation easily follows:
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Observation 12 If Cn(1, p) is a distance magic circulant graph, then n ≡ 0
(mod 2). Moreover, when p is odd, then n ≡ 0 (mod 8).

Proof. If n is odd, then n
gcd(n,p+1)

is odd and Cn(1, p) cannot be distance magic
by Theorem 11. When p is odd, one of p− 1, p+1 is congruent to 2 modulo
4 and we can write {p − 1, p + 1} = {2q1, 2tq2}, where t ≥ 2 and q1, q2 are
both odd. Let n = 2sq3, where q3 is odd. Because

n
gcd(n,p+1)

≡ 0 (mod 2) and
n

gcd(n,p−1)
≡ 0 (mod 2), we must have s > t ≥ 2. Hence 2s ≥ 8 and n ≡ 0

(mod 8).

Observation 13 A graph C2p+2(1, p) is distance magic.

Proof. Let ℓ(xi) = i + 1, ℓ(xi+p+1) = 2p + 2 − i for i = 0, 1, . . . , p. Notice
that w(xi) = ℓ(xi−p) + ℓ(xi+1) + ℓ(xi−1) + ℓ(xi+p) = 4p + 6 for every xi ∈
V (C2p+2(1, p)).

2.1 Cn(1, 2p
′ + 1) distance magic graphs

Theorem 14 If p is odd and Cn(1, p) is distance magic, then p2 − 1 ≡
(0modn).

Proof. Let k be a magic constant for Cn(1, p).

Assume first that p ≡ 3 (mod 4). By Observation 9 we obtain

ℓ(x0) + ℓ(xp+1) = ℓ(xγ(2p−2)) + ℓ(xp+1+γ(2p−2)) = k0,
ℓ(x1) + ℓ(xp+2) = ℓ(x1+γ(2p−2)) + ℓ(xp+2+γ(2p−2)) = k1,
...
ℓ(x2p−3) + ℓ(x3p−2) = ℓ(x2p−3+γ(2p−2)) + ℓ(x3p−2+γ(2p−2)) = k2p−3,

for any γ. It implies that

ℓ(x(p+1)) = k0 − ℓ(x0),
ℓ(x2(p+1)) = kp+1 − k0 + ℓ(x0),
ℓ(x3(p+1)) = k2(p+1)mod(2p−2) + k0 − kp+1 − ℓ(x0) = k4 + k0 − kp+1 − ℓ(x0).

Repeating the argument, we get

ℓ(xj(p+1)) =

j−1∑
i=0

(−1)j−1−iki(p+1)mod(2p−2) + (−1)jℓ(x0).
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So in particular for j = p− 1,

ℓ(xp2−1) =

p−2∑
i=0

(−1)p−2−iki(p+1)mod(2p−2) + ℓ(x0) =

(p−1)/2−1∑
i=0

(−1)p−2−iki(p+1)mod(2p−2) +

p−2∑
i=(p−1)/2

(−1)p−2−iki(p+1)mod(2p−2) + ℓ(x0)

Hence if p ≡ 3 (mod 4), then gcd(p + 1, 2(p − 1)) = 4 and p−1
2

is odd. It is

known fact that the order of a subgroup generated by p+ 1 in Z2p−2 is p−1
2
,

namely |⟨p+1⟩| = p−1
2
. Moreover, notice that p−1

2
(p+1) ≡ 0 (mod (2p−2)).

It implies that

(p−1)/2−1∑
i=0

(−1)p−2−iki(p+1)mod(2p−2) = −k0+kp+1−k2(p+1)+k3(p+1)−. . .−k((p−1)/2−1)(p+1),

p∑
i=(p−1)/2

(−1)p−2−iki(p+1)mod(2p−2) = k0−kp+1+k2(p+1)−k3(p+1)+. . .+k((p−1)/2−1)(p+1).

Hence ℓ(xp2−1) = ℓ(x0).

Assume now that p ≡ 1 (mod 4). By Observation 8 we obtain

ℓ(x0) + ℓ(xp−1) = ℓ(xγ(2p+2)) + ℓ(xp−1+γ(2p+2)) = k0,
ℓ(x1) + ℓ(xp) = ℓ(x1+γ(2p+2)) + ℓ(xp+γ(2p+2)) = k1,
...
ℓ(x2p+1) + ℓ(x3p) = ℓ(x2p+1+γ(2p+2)) + ℓ(x3p+γ(2p+2)) = k2p+1,

for any γ. It implies that

ℓ(x(p−1)) = k0 − ℓ(x0),
ℓ(x2(p−1)) = kp−1 − k0 + ℓ(x0),
ℓ(x3(p−1)) = k2(p−1)mod(2p+2) + k0 − kp+1 − ℓ(x0).

Repeating the argument, we get

ℓ(xj(p−1)) =

j−1∑
i=0

(−1)j−1−iki(p−1)mod(2p+2) + (−1)jℓ(x0).
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So in particular for j = p+ 1:

ℓ(xp2−1) =

p∑
i=0

(−1)p−iki(p−1)mod(2p+2) + ℓ(x0) =

(p+1)/2−1∑
i=0

(−1)p−iki(p−1)mod(2p+2) +

p∑
i=(p+1)/2

(−1)p−iki(p−1)mod(2p+2) + ℓ(x0)

Hence if p ≡ 1 (mod 4) then gcd(p − 1, 2(p + 1)) = 4 and p+1
2

is odd. As
above, we obtain

(p+1)/2−1∑
i=0

(−1)p−iki(p−1)mod(2p+2) = −k0+kp−1−k2(p−1)+k3(p−1)−. . .−k((p+1)/2−1)(p−1),

p∑
i=(p+1)/2

(−1)p−iki(p−1)mod(2p+2) = k0−kp−1+k2(p−1)−k3(p−1)+. . .+k((p+1)/2−1)(p−1).

Hence ℓ(xp2−1) = ℓ(x0).

Observation 15 If p is odd, p2 − 1 ≡ 0 (mod n), n
gcd(n,p+1)

≡ 0 (mod 2)

and n
gcd(n,p−1)

≡ 0 (mod 2), then Cn(1, p) is a distance magic graph.

Proof. Because we always suppose that n > 2p and the case n = 2p+ 2 was
treated in Observation 13, we will assume that n > 2p+ 2.

By the assumption p − 1 and p + 1 are even and hence one of them is
congruent to 0 modulo 4. Moreover, by Observation 12 we know that n ≡ 0
(mod 8). We will further assume that p+1 ≡ 0 (mod 4) and leave the other
case to the reader, since it is essentially similar.

It is well known that when a, b ∈ Zn and gcd(n, a) = gcd(n, b), then ⟨a⟩ =
⟨b⟩. Obviously, gcd(n, gcd(n, p+1)) = gcd(n, p+1). Hence, ⟨gcd(n, p+1)⟩ =
⟨p+ 1⟩ and |⟨gcd(n, p+ 1)⟩| = |⟨p+ 1⟩|. Because n

gcd(n,p+1)
≡ 0 (mod 2) and

we assumed that p + 1 ≡ 0 (mod 4), we observe that gcd(n, p + 1) = 4s for
some s and that the subgroup H = ⟨p + 1⟩ = ⟨4s⟩ of Zn is of order 2k for
some k.

Let us denote by Xj for j = 0, 1, 2, . . . , 4s − 1 the set of all vertices
whose subscripts belong to the coset H + j. First we label vertices of
X0, X2, . . . , X4s−2. Notice that there are 2s of them.
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Case 1: k ≡ 0 (mod 2).
Label the vertices of X0 as follows:

If k = 2, then ℓ(x0) = 1, ℓ(xp+1) = n− 1, ℓ(x2(p+1)) = 2, ℓ(x3(p+1)) = n.
If k = 4, then ℓ(x0) = 1, ℓ(xp+1) = n− 1, ℓ(x2(p+1)) = 3, ℓ(x3(p+1)) = n− 3,
ℓ(x4(p+1)) = 4, ℓ(x5(p+1)) = n− 2, ℓ(x6(p+1)) = 2, ℓ(x7(p+1)) = n.
For k ≥ 6 let:
ℓ(x0) = 1, ℓ(x2(p+1)) = 3, ℓ(x4(p+1)) = 5, . . . , ℓ(x2i(p+1)) = 2i+ 1, . . . ,
ℓ(x(k−4)(p+1)) = k − 3, ℓ(x(k−2)(p+1)) = k − 1,
ℓ(xk(p+1)) = k, ℓ(x(k+2)(p+1)) = k − 2, ℓ(x(k+4)(p+1)) = k − 4, . . . ,
ℓ(x(2k−4)(p+1)) = 4, ℓ(x(2k−2)(p+1)) = 2,
and
ℓ(xp+1) = n− 1, ℓ(x3(p+1)) = n− 3, ℓ(x5(p+1)) = n− 5, . . . ,
ℓ(x(2i+1)(p+1)) = n− 2i− 1, . . . ,
ℓ(x(k−3)(p+1)) = n− k + 3, ℓ(x(k−1)(p+1)) = n− k + 1,
ℓ(x(k+1)(p+1)) = n− k + 2, ℓ(x(k+3)(p+1)) = n− k + 4 . . . ,
ℓ(x(2k−3)(p+1)) = n− 2, ℓ(x(2k−1)(p+1)) = n.

Notice that a vertex xm belongs to Xj if the vertex xm−2+i(p+1) for any i
belongs to Xj−2. The vertices in X2, X4 . . . , X4s−2 will be labeled recursively
as follows:
ℓ(xm) = ℓ(xm−2+(k+1)(p+1)) + k when ℓ(xm−2+(k+1)(p+1)) <

n
2
and

ℓ(xm) = ℓ(xm−2+(k+1)(p+1))− k when ℓ(xm−2+(k+1)(p+1)) >
n
2
.

In particular, we have
ℓ(xv(p+1)+2z) = ℓ(xv(p+1)+z(k+1)(p+1)) + zk when ℓ(xv(p+1)+z(k+1)(p+1)) <

n
2
and

ℓ(xv(p+1)+2z) = ℓ(xv(p+1)+z(k+1)(p+1))− zk when ℓ(xv(p+1)+z(k+1)(p+1)) >
n
2
.

We notice that the sum of two consecutive labels in each Xj falls into one
of three cases. For instance, in X0 we have

ℓ(x0) + ℓ(x(p+1)) = ℓ(x2(p+1)) + ℓ(x3(p+1)) = . . .

= ℓ(x(k−2)(p+1)) + ℓ(x(k−1)(p+1)) = n

and also

ℓ(x(k+1)(p+1)) + ℓ(x(k+2)(p+1)) = · · · = ℓ(x(2k−3)(p+1)) + ℓ(x(2k−2)(p+1)) = n.

Then we have

ℓ(x(p+1)) + ℓ(x2(p+1)) = ℓ(x3(p+1)) + ℓ(x4(p+1)) = . . .

= ℓ(x(k−3)(p+1)) + ℓ(x(k−2)(p+1)) = n+ 2
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and also

ℓ(xk(p+1)) + ℓ(x(k+1)(p+1)) = · · · = ℓ(x(2k−2)(p+1)) + ℓ(x(2k−1)(p+1)) = n+ 2.

Finally, we have

ℓ(x(2k−1)(p+1)) + ℓ(x0) = ℓ(x(k−1)(p+1)) + ℓ(xk(p+1)) = n+ 1.

In X2 we have

ℓ(x2) + ℓ(x2+(p+1)) = ℓ(x2+2(p+1)) + ℓ(x2+3(p+1)) = . . .

= ℓ(x2+(k−4)(p+1)) + ℓ(x2+(k−3)(p+1)) = n,

ℓ(x2+(k+1)(p+1)) + ℓ(x2+(k+2)(p+1)) = . . .

= ℓ(x2+(2k−3)(p+1)) + ℓ(x2+(2k−2)(p+1)) = n,

ℓ(x2+(2k−1)(p+1)) + ℓ(x2) = ℓ(x2+(p+1)) + ℓ(x2+2(p+1)) = . . .

= ℓ(x2+(k−1)(p+1)) + ℓ(x2+k(p+1)) = n+ 2,

ℓ(x2+k(p+1)) + ℓ(x2+(k+1)(p+1)) = . . .

= ℓ(x2+(2k−2)(p+1)) + ℓ(x2+(2k−1)(p+1)) = n+ 2.

And we again have

ℓ(x2+(2k−2)(p+1))+ℓ(x2+(2k−1)(p+1)) = ℓ(x2+(k−2)(p+1))+ℓ(x2+(k−1)(p+1)) = n+1.

Now we look at the weights of vertices in X1. We have

w(x1) = ℓ(x0)+ℓ(x(p+1))+ℓ(x2+(2k−2)(p+1))+ℓ(x2) = n+(n+2) = 2n+2.

Similarly, we have

w(x1+2(p+1)) = · · · = w(x1+(k−2)(p+1)) = n + (n + 2) = 2n + 2.

and also

w(x1+(k+1)(p+1)) = · · · = w(x1+(2k−3)(p+1)) = n + (n + 2) = 2n + 2.
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Then we have

w(x1+(p+1)) = ℓ(x(p+1)) + ℓ(x2(p+1)) + ℓ(x2) + ℓ(x2+(p+1))

= (n+ 2) + n = 2n+ 2.

Similarly, we have

w(x1+3(p+1)) = · · · = w(x1+(k−3)(p+1)) = (n + 2) + n = 2n + 2.

and also

w(x1+k(p+1)) = · · · = w(x1+(2k−2)(p+1)) = (n + 2) + n = 2n + 2.

Finally, the two special vertices are x1+(2k−1)(p+1) and x1+(k−1)(p+1) with

w(x1+(2k−1)(p+1))

= ℓ(x(2k−1)(p+1)) + ℓ(x(p+1)) + ℓ(x2+(2k−2)(p+1)) + ℓ(x2+(2k−1)(p+1))

= (n+ 1) + (n+ 1) = 2n+ 2.

and

w(x1+(k−1)(p+1)) = ℓ(x(k−1)(p+1))+ℓ(xk(p+1))+ℓ(x2+(k−2)(p+1))+ℓ(x2+(k−1)(p+1))

= (n+ 1) + (n+ 1) = 2n+ 2.

Using similar reasoning, one can verify that the weights of all vertices
with odd subscripts will be equal to 2n+2. In particular, using the recursive
nature of the labeling, we have

w(x(2i+1)+r(p+1))

=ℓ(x2i+r(p+1)) + ℓ(x2i+(r+1)(p+1))

+ ℓ(x(2i+2)+(r−1)(p+1)) + ℓ(x(2i+2)+r(p+1))

=ℓ(x2i−2+(r+k+1)(p+1)) + k + ℓ(x2i−2+(r+k+2)(p+1))− k

+ ℓ(x2i+(r+k)(p+1)) + k + ℓ(x2i+(r+k+1)(p+1))− k

=ℓ(x2i−2+(r+k+1)(p+1)) + ℓ(x2i−2+(r+k+2)(p+1))

+ ℓ(x2i+(r+k)(p+1)) + ℓ(x2i+(r+k+1)(p+1))

=w(x2i−1+(r+k+1)(p+1)) = 2n+ 2.
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The roles of k and −k may be interchanged, depending on the value of r.
Finally, the vertices in X1, X3, . . . , X4s−1 will be labeled as

ℓ(xm) = ℓ(xm−1) + 2sk when ℓ(xm−1) <
n
2
and

ℓ(xm) = ℓ(xm−1)− 2sk when ℓ(xm−1) >
n
2
.

Obviously, ℓ is a bijection. Using similar arguments as above one can
check that w(xi) = 2(n+ 1) for xi ∈ X0, X2, . . . , X4s−2.

The case of p − 1 ≡ 0 (mod 4) is essentially the same and is left to the
reader.

Case 2: k ≡ 1 (mod 2).

Label the vertices of X0 as follows:
If k = 1, then ℓ(x0) = 1, ℓ(xp+1) = n.
If k = 3, then ℓ(x0) = 1, ℓ(xp+1) = n− 1, ℓ(x2(p+1)) = 3, ℓ(x3(p+1)) = n− 2,
ℓ(x4(p+1)) = 2, ℓ(x20) = n.
For k ≥ 5 let:
ℓ(x0) = 1, ℓ(x2(p+1)) = 3, ℓ(x4(p+1)) = 5, . . . , ℓ(x2i(p+1)) = 2i+ 1, . . . ,
ℓ(x(k−3)(p+1)) = k − 2, ℓ(x(k−1)(p+1)) = k,
ℓ(x(k+1)(p+1)) = k − 1, ℓ(x(k+3)(p+1)) = k − 3, ℓ(x(k+5)(p+1)) = k − 5, . . . ,
ℓ(x(2k−4)(p+1)) = 4, ℓ(x(2k−2)(p+1)) = 2,
and
ℓ(xp+1) = n− 1, ℓ(x3(p+1)) = n− 3, ℓ(x5(p+1)) = n− 5, . . . ,
ℓ(x(2i+1)(p+1)) = n− 2i− 1, . . . ,
ℓ(x(k−4)(p+1)) = n− k + 4, ℓ(x(k−2)(p+1)) = n− k + 2,
ℓ(xk(p+1)) = n− k + 1, ℓ(x(k+2)(p+1)) = n− k + 3 . . . ,
ℓ(x(2k−3)(p+1)) = n− 2, ℓ(x(2k−1)(p+1)) = n.

The vertices in X2 will be labeled as
ℓ(xm) = ℓ(x−m+2−2(p+1)) + k when ℓ(x−m+2−2(p+1)) <

n
2
and

ℓ(xm) = ℓ(x−m+2−2(p+1))− k when ℓ(x−m+2−2(p+1)) >
n
2
.

Notice that a vertex xm belongs to Xk if the vertex xm+2p−2 belongs to
Xk−4. The vertices in X4, X6, . . . , Xp−3 will be labeled recursively as follows.
ℓ(xm) = ℓ(xm+2p−2) + k when ℓ(xm+2p−2) <

n
2
and

ℓ(xm) = ℓ(xm+2p−2)− k when ℓ(xm+2p−2) >
n
2
.
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As above, notice that the sum of two consecutive labels in each Xj falls
into one of three cases. For instance, in X0 we have

ℓ(x0) + ℓ(x(p+1)) = ℓ(x2(p+1)) + ℓ(x3(p+1)) = . . .

= ℓ(x(k−3)(p+1)) + ℓ(x(k−2)(p+1)) = n

and also

ℓ(x(k)(p+1)) + ℓ(x(k+1)(p+1)) = · · · = ℓ(x(2k−3)(p+1)) + ℓ(x(2k−2)(p+1)) = n.

Then we have

ℓ(x(p+1)) + ℓ(x2(p+1)) = ℓ(x3(p+1)) + ℓ(x4(p+1)) = . . .

= ℓ(x(k−2)(p+1)) + ℓ(x(k−1)(p+1)) = n+ 2

and also

ℓ(x(k+1)(p+1)) + ℓ(x(k+2)(p+1)) = · · · = ℓ(x(2k−2)(p+1)) + ℓ(x(2k−1)(p+1)) = n+ 2.

Finally, we have

ℓ(x(2k−1)(p+1)) + ℓ(x0) = ℓ(x(k−1)(p+1)) + ℓ(xk(p+1)) = n+ 1.

In X2 we have

ℓ(x2) + ℓ(x2+(p+1)) = ℓ(x2+2(p+1)) + ℓ(x2+3(p+1)) = . . .

ℓ(x2+(k−3)(p+1)) + ℓ(x2+(k−4)(p+1)) = n,

ℓ(x2+k(p+1)) + ℓ(x2+(k+1)(p+1)) = . . .

= ℓ(x2+(2k−3)(p+1)) + ℓ(x2+(2k−2)(p+1)) = n,

ℓ(x2+(2k−1)(p+1)) + ℓ(x2) = ℓ(x2+(p+1)) + ℓ(x2+2(p+1)) = . . .

= ℓ(x2+(k−4)(p+1)) + ℓ(x2+(k−3)(p+1)) = n+ 2,

ℓ(x2+(k−1)(p+1)) + ℓ(x2+k(p+1)) = . . .

= ℓ(x2+(2k−4)(p+1)) + ℓ(x2+(2k−3)(p+1)) = n+ 2.
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And we again have

ℓ(x2+(2k−2)(p+1))+ℓ(x2+(2k−1)(p+1)) = ℓ(x2+(k−2)(p+1))+ℓ(x2+(k−1)(p+1)) = n+1.

Now we look at the weights of vertices in X1. We have

w(x1) = ℓ(x0)+ℓ(x(p+1))+ℓ(x2+(2k−2)(p+1))+ℓ(x2) = n+(n+2) = 2n+2.

Similarly, we have

w(x1+2(p+1)) = · · · = w(x1+(k−2)(p+1)) = n + (n + 2) = 2n + 2.

and also

w(x1+(k+1)(p+1)) = · · · = w(x1+(2k−3)(p+1)) = n + (n + 2) = 2n + 2.

Then we have

w(x1+(p+1)) = ℓ(x(p+1)) + ℓ(x2(p+1)) + ℓ(x2) + ℓ(x2+(p+1))

= (n+ 2) + n = 2n+ 2.

Similarly, we have

w(x1+3(p+1)) = · · · = w(x1+(k−3)(p+1)) = (n + 2) + n = 2n + 2.

and also

w(x1+k(p+1)) = · · · = w(x1+(2k−2)(p+1)) = (n + 2) + n = 2n + 2.

Finally, the two special vertices are x1+(2k−1)(p+1) and x1+(k−1)(p+1) with

w(x1+(2k−1)(p+1))

= ℓ(x(2k−1)(p+1)) + ℓ(x(p+1)) + ℓ(x2+(2k−2)(p+1)) + ℓ(x2+(2k−1)(p+1))

= (n+ 1) + (n+ 1) = 2n+ 2.

and

w(x1+(k−1)(p+1)) = ℓ(x(k−1)(p+1))+ℓ(xk(p+1))+ℓ(x2+(k−2)(p+1))+ℓ(x2+(k−1)(p+1))

= (n+ 1) + (n+ 1) = 2n+ 2.

As in Case 1, using similar reasoning one can verify that the weights of
all vertices with odd subscripts will be equal to 2n+ 2.

By Theorems 11 and Observation 14 and 15 we obtain the following:

Theorem 16 If p is odd, then Cn(1, p) is distance magic graph if and only
if p2 − 1 ≡ 0 (mod n), n

gcd(n,p+1)
≡ 0 (mod 2) and n

gcd(n,p−1)
≡ 0 (mod 2).
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Figure 1: Distance magic labeling for C24(1, 5).

2.2 Cn(1, 2p
′) distance magic graphs

Observation 17 If p is even, then C2(p2−1)(1, p) is distance magic.

Proof. Let n = 2(p2 − 1) and H = ⟨p + 1⟩ be the subgroup of Zn of order
2(p − 1). Since it was proved that Cn(1, 2) is distance magic if and only if
n = 6 (see [2]) we can assume that p ≥ 4.

As before, denote for j = 1, 2, . . . , 2(p − 1) by Xj the set of all vertices
whose subscripts belong to coset H + j and by ℓj the set of all labels of
vertices in Xj.

Label the vertices of X0 as follows:
ℓ(x0) = 1, ℓ(x2(p+1)) = 3, ℓ(x4(p+1)) = 5, . . . , ℓ(x2i(p+1)) = 2i+ 1, . . . ,
ℓ(x(p−4)(p+1)) = p− 3, ℓ(x(p−2)(p+1)) = p− 1,
ℓ(xp(p+1)) = 2, ℓ(x(p+2)(p+1)) = 4,
ℓ(x(p+4)(p+1)) = 6, . . . ,
ℓ(x(2p−6)(p+1)) = p− 4, ℓ(x(2p−4)(p+1)) = p− 2,

and
for p = 4 we put ℓ(x5) = 29, ℓ(x15) = 30 and ℓ(x25) = 28.
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For p ≥ 6
ℓ(xp+1) = 2p2 − 3, ℓ(x3(p+1)) = 2p2 − 5, ℓ(x5(p+1)) = 2p2 − 7, . . . ,
ℓ(x(2i−1)(p+1)/2) = 2p2 − 2i− 3, . . . ,
ℓ(x(p−5)(p+1)) = 2p2 − p− 1, ℓ(x(p−3)(p+1)) = 2p2 − p− 3,
ℓ(x(p−1)(p+1)) = 2p2 − 2, ℓ(x(p+1)(p+1)) = 2p2 − 4, . . . ,
ℓ(x(2p−5)(p+1)) = 2p2 − p+ 2, ℓ(x(2p−3)(p+1)) = 2p2 − p.

Notice that since p is even then in Zp+1 we have ⟨2⟩ ∼= Zp+1 and moreover
a vertex xm belongs to Xk if the vertex xm+(p−1)(p+2) belongs to Xk+2. The
vertices in X1, X2, . . . , Xp will be labeled recursively as follows:
ℓ(xm) = ℓ(xm+(p−1)(p+2)) + p− 1 when ℓ(xm+(p−1)(p+2)) < p2 − 1 and
ℓ(xm) = ℓ(xm+(p−1)(p+2))− p+ 1 when ℓ(xm+(p−1)(p+2)) > p2 − 1.

As in Observation 15 one can check that the weights of all vertices will
be equal to 2n+ 2.

3 Group distance magic Cn(1, p)

The notion of group distance magic labeling of graphs was introduced in [7].
LetG be a graph with n vertices and Γ an Abelian group with n elements. We
call a bijection g : V (G) → Γ a Γ-distance magic labeling if for all x ∈ V (G)
we have w(x) = µ for some µ in Γ. Obviously, every graph with n vertices
and a distance magic labeling also admits a Zn-distance magic labeling. The
converse is not necessarily true (see, e.g., Theorems 4 and 7).

Recall that any group element ι ∈ Γ of order 2 (i.e., ι ̸= 0 such that
2ι = 0) is called an involution, and that a non-trivial finite group has elements
of order 2 if and only if the order of the group is even. Moreover every cyclic
group of even order has exactly one involution. The fundamental theorem of
finite Abelian groups states that the finite Abelian group Γ can be expressed
as the direct sum of cyclic subgroups of prime-power order. This product
is unique up to the order of the direct product. When t is the number of
these cyclic components whose order is a power of 2, then Γ has 2t − 1
involutions. Moreover the sum of all the group elements is equal to the
sum of the involutions and the neutral element. Let us denote this sum as
s(Γ) =

∑
g∈Γ g.

The following lemma was proved in [6] (see [6], Lemma 8).

Lemma 18 ([6]) Let Γ be an Abelian group.
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(i) If Γ has exactly one involution ι, then s(Γ) = i.

(ii) If Γ has no involutions, or more than one involution, then s(Γ) = 0.

We start by proving a general theorem for Γ-distance magic labeling sim-
ilar to Theorem 2.

Theorem 19 Let G be an r-regular distance magic graph on n vertices,
where r is odd. There does not exists an Abelian group Γ having exactly
one involution ι, |Γ| = n such that G is Γ-distance magic.

Proof. Since r is odd, it implies that n is even. Let Γ be an Abelian group of
order n having exactly one involution i. Suppose that G is Γ-distance magic.
Recall that ng = 0 for any g ∈ Γ. Let now w(G) =

∑
x∈V (G)w(x) = n ·µ = 0.

On the other hand w(G) =
∑

x∈V (G)

∑
y∈N(x)w(y) = rs(Γ). By Lemma 18

we obtain that w(G) = rι. Therefore since r is odd, we have rι = ι, hence
ι = 0, a contradiction.

Theorem 19 implies immediately the following observations:

Observation 20 Let G be an r-regular distance magic graph on n ≡ 2
(mod 4) vertices, where r is odd. There does not exists an Abelian group Γ
of order n such that G is Γ-distance magic.

The condition n ≡ 2 (mod 4) is necessary. For example, a graph K3,3,3,3

has a Z3 ×Z2×Z2-distance magic labeling with the magic constant µ =
(0, 1, 1) presented in the table, where columns correspond to the partition
sets.

(0,0,0) (0,1,0) (0,1,1) (0,0,1)
(1,1,0) (1,0,1) (1,1,1) (1,0,0)
(2,0,1) (2,0,0) (2,1,1) (2,1,0)

Observation 21 If G is an r-regular distance magic graph on n vertices,
where r is odd, then G is not Zn-distance magic.

Another observation can be easily proved.

Observation 22 If Cn(1, p) is a Γ-distance magic circulant graph for a
group Γ, then n is even.
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Proof. Let µ be a magic constant for Cn(1, p). Suppose that n is odd, then
n

gcd(n,p+1)
≡ 1 (mod 2). Thus gcd(n, p+1) = gcd(n, 2p+2) and ⟨2(p+1)⟩ =

⟨p+1⟩. Hence, p+1 = 2c(p+1) for some c ≥ 1. Then we use Lemma 8, set
γ = c, i = 0, p− 1 and obtain respectively:

ℓ(x0) + ℓ(xp−1) = ℓ(x2c(p+1)) + ℓ(xp−1+2c(p+1)) = ℓ(xp+1) + ℓ(x2p),

ℓ(xp−1) + ℓ(x2p−2) = ℓ(xp−1+2c(p+1)) + ℓ(x2p−2+2c(p+1)) = ℓ(x2p) + ℓ(x3p−1).

Since N(xi) = {xi−p, xi−1, xi+1, xi+p} and Cn(1, p) is Γ-distance magic,
we obtain for i = p and i = 2p− 1:

µ = ℓ(x0) + ℓ(xp−1) + ℓ(xp+1) + ℓ(x2p) = 2(ℓ(x0) + ℓ(xp−1)),

µ = ℓ(xp−1) + ℓ(x2p−2) + ℓ(x2p) + ℓ(x3p−1) = 2(ℓ(xp−1) + ℓ(x2p−2)).

Therefore 2(ℓ(x0) − ℓ(x2p−2)) = 0. Recall that n being odd implies that
there does not exists an element g ̸= 0, g ∈ Γ such that 2g = 0. Thus
ℓ(x0) = ℓ(x2p−2) and we have a contradiction, because n > 2p+ 1.

Theorem 23 If gcd(n, p + 1) = 2k + 1, p and n are both even, and n =
2r(2k+1) then Cn(1, p) has a Z2α ×A-magic labeling for any α ≡ 0 (mod r)
and any Abelian group A of order r(2k + 1)/α.

Proof. Let l = r(2k + 1)/α Since Γ ∼= Z2α ×A, thus if g ∈ Γ, then we can
write that g = (j, ai) for j ∈ Z2α and ai ∈ A for i = 0, 1, . . . , l − 1. We can
assume that a0 = 0 ∈ A. Let ℓ(x) = (ℓ1(x), ℓ2(x)).

Let X = ⟨p + 1⟩ be the subgroup of Zn of order 2r. Let us denote for
j = 1, 2, . . . , 2k by Xj the set of all vertices whose subscripts belong to coset
X + j.
Notice that α = rh for some h. Let H = ⟨2h⟩ be the subgroup of Z2α of
order r.

Label the vertices of X0 as follows:

ℓ(x2i(p+1)) = (2ih, 0), ℓ(x(2i+1)(p+1)) = (−2ih− 1, 0)

i = 0, 1, . . . , k − 1.
If a subscript m belongs to coset X + j, then denote it by mj. Notice that a
vertex xmj

belongs to Xj if the vertex xmj−p belongs to Xj−1. The vertices
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in X1, X2, X3 . . . , X2k will be labeled recursively as follows.

ℓ1(xmj
) =

{
ℓ1(xmj−p) + 1 if ℓ1(xmj−p) ≡ j − 1 (mod 2h)
ℓ1(xmj−p)− 1 if ℓ1(xmj−p) ̸≡ j − 1 (mod 2h)

ℓ2(xmj
) =

{
a⌊j/r⌋ if ℓ1(xmj

) ≡ 0 (mod 2)
−a⌊j/r⌋ if ℓ1(xmj

) ≡ 1 (mod 2)

Obviously ℓ is bijection and ℓ(xi−p)+ ℓ(xi+1) = (−1, 0) or ℓ(xi−p)+ ℓ(xi+1) =
(2h− 1, 0).
We will consider now two cases:

Case 1. X = ⟨p+ 1⟩ = Zn.
Notice that then l = 1 and h = 1. Suppose that there exists i such
that l(xi−p) + l(xi+1) = (1, 0) and l(xi−1) + l(xi+p) = (1, 0), or similarly
l(xi−p) + l(xi+1) = (−1, 0) and l(xi−1) + l(xi+p) = (−1, 0). Recall that
ℓ(x2i(p+1)) + ℓ(x(2i+1)(p+1)) = (−1, 0) and ℓ(x(2i+1)(p+1)) + ℓ(x(2i+2)(p+1)) =
(1, 0). It implies that there exists β ∈ Z such that i−p+2β ≡ (i−1)modn.
It means that 2β ≡ (p−1)modn. Since n is even, p−1 odd, a contradiction.
It follows that w(xi) = (0, 0) for every i and the graph is Γ-distance magic
with µ = (0, 0).

Case 2. X = ⟨p+ 1⟩ ̸= Zn.
Then ℓ(xi−p) + ℓ(xi+1) = ℓ(xi+(j−1)p)) + ℓ(xi+jp+1) for any j = 1, 2, . . . , 2k.
Thus for j = 2 we have ℓ(xi−p) + ℓ(xi+1) = ℓ(xi+p) + ℓ(xi+2p+1). Since
ℓ(xi−1) + ℓ(xi+p) ̸= ℓ(xi+p) + ℓ(xi+2p+1) we obtain that w(xi) = ℓ(xi−p) +
ℓ(xi+1) + ℓ(xi−1) + ℓ(xi+p) = (2h− 2, 0).

Thus µ = (2h− 2, 0) and the graph is Γ-distance magic.

Corollary 24 If gcd(n, p + 1) = 2k + 1, p is even, n = 2α(2k + 1) and
gcd(2k + 1, 2α) = 1, then Cn(1, p) has a Zn-magic labeling.

Proof. By Theorem 23 there exists Z2α ×Z2k+1-magic labeling. Since gcd(2k+
1, 2α) = 1, the group Z2α ×Z2k+1 is isomorphic to the group Zn.

Corollary 25 If n = α(p2 − 1) and:

• α = 1 if p is odd



Distance magic circulant graphs 21

• α = 2β and gcd(p+ 1, 2β) = 1 if p is even

then Cn(1, p) is Zn-distance magic.

Proof. If α = 1 and p is odd, then since Cn(1, p) is distance magic by The-
orem 16, then Cn(1, p) is Zn-distance magic. If α = 2β, gcd(p + 1, 2β) = 1
and p is even, then gcd(n, p+ 1) = p+ 1 and Cn(1, p) has Zn-magic labeling
by Corollary 24.

Using the same arguments as in the proof of Theorem 14 we obtain corol-
lary:

Corollary 26 If p is odd and 2p2 − 2 ̸≡ (0modn) then Cn(1, p) is not Γ-
distance magic for any Abelian group Γ of order n.

Observation 27 If p = 5, then Cp2−1(1, p) is Γ-distance magic for any
Abelian group Γ of order p2 − 1.

Proof. The fundamental theorem of finite Abelian groups states that the fi-
nite Abelian group Γ can be expressed as the direct sum of cyclic subgroups
of prime-power order. Since the order of Γ is 24 we have the following pos-
sibilities: Γ ∼= Z8×Z3

∼= Z24, Γ ∼= Z2×Z3 ×Z4
∼= Z6 ×Z4

∼= Z2 ×Z12 and
Γ ∼= Z2 ×Z3×Z2 ×Z2

∼= Z6×Z2 ×Z2. If Γ ∼= Z8×Z3
∼= Z24, then since

C24(1, 5) is distance magic by Theorem 5 it implies that it is Z24-distance
magic. We will show now that C24(1, 5) is Z6 ×A-distance magic for any
Abelian group A of order 4. If g ∈ Γ, then we can write that g = (j, ai) for
j ∈ Z6 and ai ∈ A for i = 0, 1, 2, 3. Define the following labeling.

ℓ(x0) = (0, a0), ℓ(x8) = (4, a0), ℓ(x16) = (2, a0),
ℓ(x6) = (5, a1), ℓ(x14) = (1, a1), ℓ(x22) = (3, a1),
ℓ(x12) = (2, a2), ℓ(x20) = (0, a2), ℓ(x4) = (4, a2),
ℓ(x18) = (3, a3), ℓ(x2) = (5, a3), ℓ(x10) = (1, a3),
ℓ(x1) = (0, a1), ℓ(x9) = (4, a1), ℓ(x17) = (2, a1),
ℓ(x7) = (5, a2), ℓ(x15) = (1, a2), ℓ(x23) = (3, a2),
ℓ(x13) = (2, a3), ℓ(x21) = (0, a3), ℓ(x5) = (4, a3),
ℓ(x19) = (3, a0), ℓ(x3) = (5, a0), ℓ(x11) = (1, a0).

Taking now ai = i if A ∼= Z4 or a0 = (0, 0), a1 = (0, 1), a2 = (1, 1),
a3 = (1, 0) A ∼= Z2×Z2 one can check the graph C24(1, 5) is Z6×A-distance
magic with the magic constant (4, 2a1).
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