
Group distance magic and antimagic graphs ∗

S. Cichacza, D. Froncekb, K. Sugengc, Sanming Zhoud

aAGH University of Science and Technology, Faculty of Applied Mathematics,

Al. Mickiewicza 30, 30-059 Kraków, Poland
bDepartment of Mathematics and Statistics, University of Minnesota Duluth,

1117 University Dr., Duluth, MN 55812-3000, U.S.A.
cDepartment of Mathematics, Faculty of Mathematics and Natural Sciences,

University of Indonesia, Kampus UI Depok, Depok 16424, Indonesia
dDepartment of Mathematics and Statistics, The University of Melbourne,

Parkville, VIC 3010, Australia

Abstract

Given a graph G with n vertices and an Abelian group A of order n, an A-distance antimagic
labelling of G is a bijection from V (G) to A such that the vertices of G have pairwise distinct
weights, where the weight of a vertex is the sum (under the operation of A) of the labels assigned to
its neighbours. An A-distance magic labelling of G is a bijection from V (G) to A such that the weights
of all vertices of G are equal to the same element of A. In this paper we study these new labellings
under a general setting with a focus on product graphs. We prove among other things several general
results on group antimagic or magic labellings for Cartesian, direct and strong products of graphs.
As applications we obtain several families of graphs admitting group distance antimagic or magic
labellings with respect to elementary Abelian groups, cyclic groups or direct products of such groups.
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1 Introduction

We study two graph labellings that belong to a large family of magic and antimagic-type labellings.

Vaguely speaking, a magic-type labelling of a graph G = (V (G), E(G)) is an injective mapping from

V (G)∪E(G) to a set of integers such that the sum of the labels of the elements adjacent and/or incident

to an element of V (G)∪E(G) is equal to the same constant. An introductory text on magic-type labellings

was published by W. Wallis [19], and a book dealing with edge-antimagic labellings of graphs was written

by M. Baca and M. Miller [2]. A thorough dynamic survey of graph labellings including other kinds of

labellings is being maintained by J. Gallian [9].

In particular, a distance magic labelling of a graph G with |V (G)| = n is a bijection from V (G)

to {1, 2, . . . , n} such that the sum of the labels of all neighbours of every vertex x ∈ V (G), called the

weight of x, is equal to the same constant, called the magic constant. This labelling has been also called

a 1-vertex magic vertex labelling or a Σ-labelling by various authors. A graph that admits a distance

magic labelling is often called a distance magic graph. The concept of distance magic labelling has been

motivated by the construction of magic squares. Although the first results were probably obtained by V.

Vilfred in a Ph.D. thesis [18] in 1994, it gained more attention only recently. For a survey, we refer the

reader to [1].

A related concept is the notion of distance antimagic labelling. This is again a bijection from V (G)

to {1, 2, . . . , n} but this time different vertices are required to have distinct weights. A more restrictive

version of this labelling is the (a, d)-distance antimagic labelling. It is a distance antimagic labelling with

the additional property that the weights of vertices form an arithmetic progression with difference d and

first term a.
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In [8] the second author introduced the concept of group distance magic labelling in the case when

the group involved is cyclic. In the present paper we deal with the general case when the group involved

is Abelian. Given a graph G with n vertices and an Abelian group A of order n, an A-distance magic

labelling of G is defined to be a bijection f from V (G) to A such that the weight of every vertex x ∈ V (G)

is equal to the same element of A, called the magic constant of G with respect to f . Here the weight of

x under f is defined as

wf (x) =
∑

y∈NG(x)

f(y)

with the understanding that the addition is performed in the group A, and NG(x) is the (open) neigh-

bourhood of x in G. We usually write w(x) in place of wf (x) and N(x) instead of NG(x) if there is no

risk of confusion. Obviously, every graph with n vertices and a distance magic labelling [19] also admits

a Zn-distance magic labelling. However, the converse is not necessarily true.

Besides group distance magic labelling, we will also study group distance antimagic labelling in this

paper. With G and A above, an A-distance antimagic labelling of G is a bijection f from V (G) to A such

that the weights of all vertices of G are pairwise distinct. Since G and A have the same cardinality, this

is to say that every element of A occurs as the weight of precisely one vertex of G.

The main results in this paper are as follows. In Section 2 we give a necessary condition for a graph

with an even number of vertices to be distance antimagic with respect to an Abelian group with a unique

involution (Theorem 2.2). We then give sufficient conditions for a Cayley graph on an Abelian group to be

distance antimagic or magic with respect to the same group (Theorem 2.5), and discuss the consequences

of these results to Cayley graphs on elementary Abelian groups.

In Section 3 we study group distance antimagic and magic labellings of Cartesian products of graphs.

Among other things we prove two general results, Theorems 3.4 and 3.12, which provide machineries for

constructing new group distance antimagic or magic graphs. These can be applied to many special cases,

and we illustrate this by a few corollaries with a focus on hypercubes, Hamming graphs and Cartesian

products of cycles.

In Section 4 we prove a general result (Theorem 4.1) that can be used to construct group distance

antimagic graphs by means of direct products of graphs. We then give a few families of such graphs in

four corollaries.

In Section 5 we concentrate on distance antimagic graphs with respect to cyclic groups Zn. We obtain

several general results (Theorems 5.2, 5.5, 5.7 and 5.11) for Cartesian, direct and strong products, and we

then use them to give concrete families of Zn-distance antimagic groups in a few corollaries. In Section

6 we give two sufficient conditions for a circulant graph with n vertices to be antimagic with respect to

Zn. We conclude the paper with remarks and open problems.

We notice that graph labelling by Abelian groups has been studied in the literature under different

settings. For example, in [7] vertex-magic and edge-magic total labellings of graphs by Abelian groups

were studied. In [4], edge-magic total-labellings of countably infinite graphs by Z were investigated. In

[13, 14, 16], vertex-magic edge-labellings of graphs by Abelian groups were studied.

We refer the reader to [17] for group-theoretic terminology. We use A1×· · ·×Ad to denote the direct

product of groups A1, . . . , Ad. In particular, Zd
q = Zq × · · · × Zq (d factors), and when q = p is a prime

Zd
p is an elementary Abelian p-group. As usual we write the operation of an Abelian group A additively,

denote its identity element by 0, and represent the inverse element of x ∈ A by −x. All groups in the

paper are finite and Abelian, and all graphs considered are finite, simple and undirected. As usual the

cardinality of a set X is denoted by |X|.

2 A necessary condition, and sufficient conditions for Cayley
graphs

An element of a group with order 2 is called an involution. A well-known result [17] due to Feit and

Thompson asserts that a finite group has involutions if and only if its order is even. Let σ(A) =
∑

x∈A x

be the sum of the elements of A. Then σ(A) is equal to the sum of the involutions of A. The following

lemma, which can be easily verified, will be used in the proof of Theorem 2.2.
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Lemma 2.1. ([7, Lemma 8]) Let A be a finite Abelian group.

(a) If A has exactly one involution, say, a, then σ(A) = a.

(b) If A has no involutions, or more than one involution, then σ(A) = 0.

Theorem 2.2. Let G be an r-regular graph on n vertices, where n is even. Then for any Abelian group

A of order n with exactly one involution, G cannot be A-distance antimagic unless r is odd.

Proof. Let A be an Abelian group of order n with exactly one involution, say, a. Suppose r is even

and G is A-distance antimagic with f the desired labelling. Denote w(G) =
∑

x∈V (G) w(x). Since f

is an A-antimagic labelling, we have w(G) = σ(A). On the other hand, since G is r-regular, w(G) =∑
x∈V (G)

(∑
y∈N(x) f(y)

)
= rσ(A). Hence rσ(A) = σ(A). Since r is even and by Lemma 2.1 σ(A) = a

is the involution, we have rσ(A) = 0, which implies σ(A) = 0, a contradiction.

Since the cyclic group Zn has exactly one involution when n is even, Theorem 2.2 implies the following

result.

Corollary 2.3. Let G be an r-regular graph on n vertices such that both n and r are even. Then G is

not Zn-distance antimagic.

The fundamental theorem of finite Abelian groups [17] asserts that any finite Abelian group A can be

decomposed into the direct product of cyclic subgroups of prime power orders, and this decomposition is

unique up to the order of the cyclic subgroups. It can be verified that, if in this decomposition there are

exactly t cyclic subgroups with order a power of 2, then A has exactly 2t − 1 involutions. In particular,

if |A| = n ≡ 2 (mod 4), then A has exactly one involution. Thus, by Theorem 2.2, we obtain:

Corollary 2.4. Let G be an r-regular graph on n vertices such that n ≡ 2 (mod 4) and r is even. There

does not exists an Abelian group A of order n such that G is A-distance antimagic.

The exponent [17] of a finite Abelian group A, denoted exp(A), is the least positive integer m such

that mx = 0 for every x ∈ A. In particular, exp(Zn1
× · · · × Znk

) is equal to the least common multiple

of n1, . . . , nk.

Given an Abelian group A and a subset S ⊆ A \ {0} such that −S = S, where −S = {−s : s ∈ S},
the Cayley graph Cay(A,S) of A with respect the connection set S is defined to have vertex set A such

that x, y ∈ A are adjacent if and only if x− y ∈ S. It is evident that Cay(A,S) is an |S|-regular graph.

Theorem 2.5. Let A be a finite Abelian group of order n = |A|, and G = Cay(A,S) a Cayley graph on

A of degree r = |S|.

(a) If n and r are coprime, then G is A-distance antimagic, and any automorphism of A is an A-

distance antimagic labelling of G.

(b) If exp(A) is a divisor of r, then G is A-distance magic, and any automorphism f of A is an

A-distance magic labelling of G with magic constant
∑

s∈S f(s).

Proof. By the definition of G, the neighbourhood in G of each vertex x ∈ A is {x+ s : s ∈ S}. Let f be

an automorphism of A. Since A is Abelian, the weight of x ∈ A under f is given by

w(x) =
∑
s∈S

f(x+ s)

=
∑
s∈S

(f(x) + f(s))

= rf(x) +
∑
s∈S

f(s).

(a) Suppose n and r are coprime. If w(x) = w(y) for distinct x, y ∈ A, then rf(x) = rf(y) and hence

r(f(x) − f(y)) = 0. Since f(x) 6= f(y), this implies that the order o(f(x) − f(y)) of f(x) − f(y) in A,
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which is greater than 1 as f(x) − f(y) 6= 0, is a divisor of r. On the other hand, o(f(x) − f(y)) is a

divisor of n. Thus o(f(x) − f(y)) is a common divisor of n and r that is greater than 1, contradicting

our assumption gcd(n, r) = 1. Therefore, w(x) 6= w(y) for distinct x, y ∈ A and so f is an A-distance

antimagic labelling of G.

(b) Suppose exp(A) divides r. Then for distinct x, y ∈ A, o(f(x)− f(y)) is a divisor of r and as such

r(f(x) − f(y)) = 0. Thus the computation above yields w(x) = w(y). Therefore, f is an A-distance

magic labelling of G with magic constant
∑

s∈S f(s).

In part (b) of Theorem 2.5, the magic constant
∑

s∈S f(s) relies on the automorphism f of A. This

shows that a graph may have several magic labellings with respect to the same group but with distinct

magic constants.

Since exp(Zd
p) = p, Theorem 2.5 implies the following corollary.

Corollary 2.6. Let p ≥ 2 be a prime, and let r ≥ 2 and d ≥ 1 be integers.

(a) If p is not a divisor of r, then any Cayley graph on Zd
p with degree r is Zd

p-distance antimagic, and

any automorphism of Zd
p is a Zd

p-distance antimagic labelling.

(b) If p is a divisor of r, then any Cayley graph Cay(Zd
p, S) on Zd

p with degree r is Zd
p-distance magic,

and any automorphism f of Zd
p is a Zd

p-distance magic labelling with magic constant
∑

s∈S f(s).

In particular, for the elementary Abelian 2-groups Zd
2, Corollary 2.6 yields the following result.

Corollary 2.7. Let d ≥ 2 be an integer.

(a) Any Cayley graph on Zd
2 with an odd degree is Zd

2-distance antimagic, with any automorphism of

Zd
2 as a Zd

2-distance antimagic labelling.

(b) Any Cayley graph Cay(Zd
2, S) on Zd

2 with an even degree |S| is Zd
2-distance magic, with any auto-

morphism f of Zd
2 as a Zd

2-distance magic labelling with magic constant
∑

s∈S f(s).

The d-dimensional hypercube Qd is defined as the Cayley graph Cay(Zd
2, S) with

S = {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)}.

In other words, Qd is the graph with binary strings of length d as its vertices such that two vertices are

adjacent if and only if the corresponding strings differ in precisely one position. Since Qd is a Cayley

graph on Zd
2 with degree d, Corollary 2.7 implies:

Corollary 2.8. Let d ≥ 2 be an integer.

(a) If d is odd, then Qd is Zd
2-distance antimagic.

(b) If d is even, then Qd is Zd
2-distance magic with magic constant (1, . . . , 1) ([6]).

As we will see in the next section, both parts of this corollary are special cases of some more general

results, namely Corollary 3.8 and Theorem 3.3, respectively. In Theorem 3.9 and Remark 3.10 we will

give more sufficient conditions for Qd to be Zd
2-distance antimagic. The magic constant (1, . . . , 1) in (b)

above is obtained from the trivial automorphism of Zd
2. Different choices of the automorphism f in (b)

of Corollary 2.7 may result in different magic constants for Qd.

3 Labelling Cartesian products

Given d graphs G1, . . . , Gd, the Cartesian product [12] of them, denoted G12 · · ·2Gd, is the graph with

vertex set V (G1)×· · ·×V (Gd) such that (x1, . . . , xd) and (y1, . . . , yd) are adjacent if and only if xi 6= yi for

exactly one i, and for this i, xi and yi are adjacent inGi. The Cartesian productHq1,...,qd = Kq12 · · ·2Kqd

of complete graphs is called a Hamming graph, where q1, . . . , qd ≥ 2 are integers. In the case where

q1 = · · · = qd = q, we usually write H(d, q) in place of Hq,...,q. Equivalently, Hq1,...,qd is the Cayley
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graph on the group Zq1 × · · · × Zqd with respect to the connection set S = {(s1, . . . , sd) : si ∈ Zqi , 1 ≤
i ≤ d, there exists exactly one i such that si 6= 0}. In particular, H(d, q) can be viewed as the Cayley

graph on Zd
q in which (x1, . . . , xd) and (y1, . . . , yd) are adjacent if and only if they differ at exactly one

coordinate. Note that H(d, q) has qd vertices and is d(q−1)-regular, and H(d, 2) is exactly the hypercube

Qd.

Theorem 3.1. Let d ≥ 1 and q ≥ 2 be integers.

(a) If d and q are coprime, then H(d, q) is Zqd-distance antimagic. In particular, Kq is Zq-distance

antimagic for any q ≥ 2.

(b) If both d and q are even, then H(d, q) is not Zqd-distance antimagic.

Proof. (a) Define

f(x) =

d∑
i=1

xiq
i−1, x = (x1, . . . , xd), xi ∈ {0, 1, . . . , q − 1}.

Then 0 ≤ f(x) ≤ qd − 1 and f is a bijection from Zd
q to Zqd . The d(q − 1) neighbours of x are

yj,t = (x1, . . . , xj−1, t, xj+1, . . . , xd), 1 ≤ j ≤ d, t ∈ Zq \ {xj}. Note that the label of yj,t is f(yj,t) =

f(x)− xjqj−1 + tqj−1. Thus the weight of x under f is given by

w(x) = d(q − 1)f(x) +

d∑
j=1

∑
t 6=xj

(t− xj)qj−1


= d(q − 1)f(x) +

d∑
j=1

(
q−1∑
t=0

(t− xj)qj−1
)

= d(q − 1)f(x) +

d∑
j=1

(
q(q − 1)

2
· qj−1 − xjqj

)

= d(q − 1)f(x) +
q(q − 1)

2
· q

d − 1

q − 1
− qf(x)

= (d(q − 1)− q) f(x) +
q(qd − 1)

2
.

Since gcd(d, q) = 1 by our assumption, we have gcd(d(q − 1)− q, qd) = 1. Since f is a bijection from Zd
q

to Zqd , it follows that for different x, x′ ∈ Zd
q we have w(x) 6= w(x′). In other words, f is a Zqd -distance

antimagic labelling of H(d, q).

In particular, since Kq
∼= H(1, d) and gcd(1, q) = 1, it follows from what we proved above that Kq is

Zq-distance antimagic for any q ≥ 2.

(b) Since both d and q are even, the degree d(q − 1) and the order qd of H(d, q) are even. Thus, by

Corollary 2.3, H(d, q) is not Zqd -distance antimagic.

Since Qd = H(d, 2), Theorem 3.1 implies the following result.

Corollary 3.2. The d-dimensional hypercube Qd is Z2d-distance antimagic if and only if d is odd.

Theorem 3.3. Suppose d, q ≥ 2 are integers such that q is a divisor of d. Then H(d, q) is Zd
q-distance

magic, with magic constant
(
q
2 , . . . ,

q
2

)
when q is even and (0, . . . , 0) when q is odd.

Proof. Define

f(x) = (x1, . . . , xd), x = (x1, . . . , xd) ∈ Zd
q .
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Trivially, f is a bijection from the vertex set Zd
q of H(d, q) to the group Zd

q . The weight of x under f is

given by

w(x) =

d∑
i=1

∑
t∈Zq\{xi}

(x1, . . . , xi−1, t, xi+1, . . . , xd)

=

d∑
i=1

(
(q − 1)x1, . . . ,

q(q − 1)

2
− xi, . . . , (q − 1)xd

)

=

d∑
i=1

{
(q − 1)(x1, . . . , xd) +

(
0, . . . ,

q(q − 1)

2
− qxi, . . . , 0

)}

=

d∑
i=1

−(x1, . . . , xd) +

0, . . . ,
q(q − 1)

2︸ ︷︷ ︸
i−th

, . . . , 0




= −d(x1, . . . , xd) +
q(q − 1)

2
(1, . . . , 1).

Notice that all operations are taken modulo q and that in the i-th summand of the summation the entry
q(q−1)

2 in
(

0, . . . , 0, q(q−1)2 , 0, . . . , 0
)

appears in the i-th position.

Since q is a divisor of d by our assumption, we have d(x1, . . . , xd) = (0, . . . , 0) in Zd
q . Therefore,

w(x) = q(q−1)
2 (1, . . . , 1) for every vertex x ∈ Zd

q of H(d, q), and hence H(d, q) is Zd
q-distance magic. If q

is even, then the magic constant is q(q−1)
2 (1, . . . , 1) = q

2 (q − 1)(1, . . . , 1) = − q
2 (1, . . . , 1) = q

2 (1, . . . , 1). If

q is odd, then the magic constant is q−1
2 q(1, . . . , 1) = (0, . . . , 0).

Since H(d, q) has degree d(q − 1), in the special case when q = p is a prime factor of d, the fact that

H(d, p) is Zd
p-distance magic is also implied by part (b) of Corollary 2.6.

In the special case when q = 2, Theorem 3.3 gives (b) of Corollary 2.8.

Theorem 3.4. Let Gi be an ri-regular graph with ni ≥ 2 vertices, 1 ≤ i ≤ k. Let Ai be an Abelian group

of order ni such that exp(Ai) is a divisor of r − ri, 1 ≤ i ≤ k, where r =
∑k

i=1 ri.

(a) If Gi is Ai-distance antimagic for 1 ≤ i ≤ k, then G12 · · ·2Gk is A1×· · ·×Ak-distance antimagic.

(b) If Gi is Ai-distance magic for 1 ≤ i ≤ k, then G12 · · ·2Gk is A1 × · · · ×Ak-distance magic.

Proof. (a) Since Gi is Ai-distance antimagic, it admits an Ai-distance antimagic labelling, say, gi :

V (Gi)→ Ai, 1 ≤ i ≤ k. Define f : V (G1)× · · · × V (Gk)→ A1 × · · · ×Ak by

f(x1, . . . , xk) = (g1(x1), . . . , gk(xk)), xi ∈ V (Gi), 1 ≤ i ≤ k. (1)

Then f is a bijection from V (G1) × · · · × V (Gk) to A1 × · · · × Ak. Denote by wGi(xi) the weight of xi
under gi. Then the weight of x = (x1, . . . , xk) under f is given by

w(x) =

k∑
i=1

∑
x′
i: xix′

i∈E(Gi)

f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xk)

=

k∑
i=1

∑
x′
i: xix′

i∈E(Gi)

(g1(x1), . . . , gi−1(xi−1), gi(x
′
i), gi+1(xi+1), . . . , gk(xk))

=

k∑
i=1

(rig1(x1), . . . , rigi−1(xi−1), wGi
(xi), rigi+1(xi+1), . . . , rigk(xk))

= r(g1(x1), . . . , gk(xk)) +

k∑
i=1

(0, . . . , 0, wGi(xi)− rigi(xi), 0, . . . , 0)

= (wG1
(x1) + (r − r1)g1(x1), . . . , wGk

(xk) + (r − rk)gk(xk)). (2)
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Since exp(Ai) is a divisor of r− ri by our assumption, we have (r− ri)gi(xi) = 0 in Ai for each i. Hence

w(x) = (wG1(x1), . . . , wGk
(xk)). (In all computations, the operation on the ith coordinate is performed

in Ai.) Since each Gi is assumed to be Ai-distance antimagic, it follows that f is an A1×· · ·×Ak-distance

antimagic labelling of G12 · · ·2Gk.

(b) Define f as in (a) with the understanding that each gi is an Ai-distance magic labelling of Gi.

The computation above yields, for any x,

w(x) = (wG1
(x1), . . . , wGk

(xk)).

Since gi is an Ai-distance magic labelling of Gi, say, with magic constant µi ∈ Ai, we have wGi
(xi) = µi for

all xi ∈ V (Gi). Therefore, w(x) = (µ1, . . . , µk) for all x, and hence G12 · · ·2Gk is A1×· · ·×Ak-distance

magic.

Since exp(Zd
n) = n, Theorem 3.4 implies:

Corollary 3.5. Let di, ri ≥ 1 and ni ≥ 2 be integers, 1 ≤ i ≤ k. Let Gi be an ri-regular graph with ndi
i

vertices, 1 ≤ i ≤ k. Suppose ni is a divisor of r − ri, 1 ≤ i ≤ k, where r =
∑k

i=1 ri.

(a) If Gi is Zdi
ni

-distance antimagic for 1 ≤ i ≤ k, then G12 · · ·2Gk is Zd1
n1
× · · · × Zdk

nk
-distance

antimagic.

(b) If Gi is Zdi
ni

-distance magic for 1 ≤ i ≤ k, then G12 · · ·2Gk is Zd1
n1
× · · · × Zdk

nk
-distance magic.

Setting k = 2 and n1 = n2 = 2 in Corollary 3.5, we obtain:

Corollary 3.6. Let G,H be regular graphs with 2d, 2e vertices, respectively. Suppose both G and H have

even degrees.

(a) If G is Zd
2-distance antimagic and H is Ze

2-distance antimagic, then G2H is Zd+e
2 -distance an-

timagic.

(b) If G is Zd
2-distance magic and H is Ze

2-distance magic, then G2H is Zd+e
2 -distance magic.

Theorem 3.4 and its corollaries above enable us to construct group distance antimagic/magic graphs

from known ones. As an example, from Corollary 2.6 and Corollary 3.5 we obtain the following result (a

general result involving more than two factors can be formulated similarly).

Corollary 3.7. Let pi ≥ 2 be a prime and di, ri ≥ 1 be integers with 2 ≤ ri ≤ pdi
i for i = 1, 2. Let Gi be

any Cayley graph on Zdi
pi

with degree ri for i = 1, 2.

(a) If p1 divides r2 but not r1, and p2 divides r1 but not r2, then G12G2 is Zd1
p1
×Zd2

p2
-distance antimagic.

(b) If both p1 and p2 divide each of r1 and r2, then G12G2 is Zd1
p1
× Zd2

p2
-distance magic.

Theorem 3.1 and part (a) of Theorem 3.4 together imply the following result.

Corollary 3.8. Let di ≥ 1 and qi ≥ 2 be integers which are coprime, 1 ≤ i ≤ k. If qdi
i is a divisor of∑

j 6=i dj(qj − 1) for 1 ≤ i ≤ k, then H(d1, q1)2 · · ·2H(dk, qk) is Z
q
d1
1
× · · · × Z

q
dk
k

-distance antimagic.

We will use a special case of this corollary, with all (di, qi) = (1, 2), in the proof of the following result.

Theorem 3.9. Let d ≥ 3 be an integer. If d is odd or d ≡ 0 (mod 4), then Qd is Zd
2-distance antimagic.

Proof. Choosing all di = 1 and qi = 2, we have Qk = H(d1, q1)2 · · ·2H(dk, qk), and qdi
i divides∑

j 6=i dj(qj − 1) if and only if k is odd. Thus, by Corollary 3.8, if k is odd, then Qk is Zk
2-distance

antimagic.

Next we prove that Q4 is Z4
2-distance antimagic. In fact, Q4 can be viewed as C42C4, and one can

verify that it admits a Z4
2-distance antimagic labelling as given in the following table:
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(0,0,0,0) (0,1,0,0) (1,1,1,1) (1,1,0,0)
(0,0,0,1) (1,0,1,1) (1,1,1,0) (0,1,0,1)
(0,0,1,1) (1,0,1,0) (1,0,0,1) (0,1,1,0)
(0,0,1,0) (0,1,1,1) (1,0,0,0) (1,1,0,1)

(In the table every entry represents a vertex label, and the vertex neighbours are the entries immediately

above, below, on the left and on the right, where the top row is considered to be next to the bottom and

the first column next to the last.)

Since Q4 is Z4
2-distance antimagic, by part (a) of Corollary 3.6, Q42Q4 is Z8

2-distance antimagic since

Z4
2×Z4

2
∼= Z8

2. Similarly, by induction and part (a) of Corollary 3.6, one can see that Q4t
∼= Q42 · · ·2Q4

(t factors) is Z4t
2 -distance antimagic. In other words, if k ≥ 4 is a multiple of 4, then Qk is Zk

2-distance

antimagic.

Remark 3.10. If Qk is Zk
2-distance antimagic for some integer k ≥ 6 with k ≡ 2 (mod 4), then Qd is

Zd
2-distance antimagic for every integer d ≥ k with d ≡ 2 (mod 4).

In particular, if we can prove that Q6 is Z6
2-distance antimagic, then by Theorem 3.9, Qd is Zd

2-distance

antimagic for all integers d ≥ 3.

In fact, we have d = 4t + k for some t and so Qd
∼= Q4t2Qk. We may assume t > 0. Since Q4t is

Z4t
2 -distance antimagic by Theorem 3.9, if Qk is Zk

2-distance antimagic, then by part (a) of Corollary 3.6,

Qd is Zd
2-distance antimagic.

Unfortunately, at the time of writing we do not known whether Q6 is Z6
2-distance antimagic.

Applying part (a) of Corollary 3.5 to cycles, we obtain the following result, where Cn denotes the

cycle of length n.

Theorem 3.11. (a) If n ≥ 3 is an odd integer, then Cn is Zn-distance antimagic.

(b) Let n1, . . . , nk ≥ 3 be odd integers, where k ≥ 2. If each ni is a divisor of k−1, then Cn12 · · ·2Cnk

is Zn1
× · · · × Znk

-distance antimagic.

In particular, for any prime p and any integer d ≥ 1, Cp2 · · ·2Cp (pd+1 factors) is Zpd+1
p -distance

antimagic.

Proof. (a) Label the vertices along Cn by 0, 1, . . . , n−1 consecutively. Since n is odd, one can verify that

this is a Zn-distance antimagic labelling of Cn.

(b) By (a), each Cni
is Zni

-distance antimagic as ni is odd. Applying Corollary 3.5 and noting that

all di = 1 and ri = 2, we have r − ri = 2(k − 1) and so the result follows.

In part (b) of Theorem 3.11, k ought to be relatively large comparable to n1, . . . , nk. It would be

interesting to find other conditions under which the same result holds.

We now give a generalisation of part (a) of Theorem 3.4. To this end we introduce the following

concept which will also be used in the next section. Given an r-regular graph G with n vertices and an

Abelian group A of order n, a bijection f : V (G) → A is called an A-balanced labelling if w(x) = rf(x)

for every x ∈ V (G). We refer the reader to Lemmas 5.1 and 5.8 for examples of graphs admitting

Zn-balanced labellings.

Theorem 3.12. Let Gi be an ri-regular graph with ni ≥ 2 vertices, 1 ≤ i ≤ k. Let Ai be an Abelian group

of order ni, 1 ≤ i ≤ k, and let r =
∑k

i=1 ri. Suppose {1, . . . , k} is partitioned into, say, I = {1, . . . , k1},
J = {k1 + 1, . . . , k2} and L = {k2 + 1, . . . , k} for some 0 ≤ k1 ≤ k2 ≤ k, possibly with one or two of

I, J, L to be empty, such that the following conditions are satisfied:

(a) for each i ∈ I, Gi is Ai-distance magic and r − ri is coprime to ni;

(b) for each j ∈ J , Gj is Aj-distance antimagic and exp(Aj) is a divisor of r − rj;

(c) for each l ∈ L, Gl admits an Al-balanced labelling and r is coprime to nl.

Then G12 · · ·2Gk is A1 × · · · ×Ak-distance antimagic.
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Proof. For i ∈ I, let gi be an Ai-distance magic labelling of Gi, with corresponding magic constant µi.

For j ∈ J , let gj be an Aj-distance antimagic labelling of Gj . For l ∈ L, let gl be an Al-balanced

labelling of Gl. Then, for every vertex x = (x1, . . . , xk) of G12 · · ·2Gk, we have wGi
(xi) = µi if i ∈ I,

(r− rj)gj(xj) = 0 if j ∈ J as exp(Aj) is a divisor of r− rj , and wGl
(xl) = rlgl(xl) if l ∈ L, where wGt(xt)

is the weight of xt with respect to gt. Define f as in (1). Then the weight of x under f is given by (2).

Thus the tth component of w(x) is equal to µt + (r − rt)gt(xt) if t ∈ I, wGt
(xt) if t ∈ J , and rgt(xt) if

t ∈ L. For any vertex x′ = (x′1, . . . , x
′
k) 6= x of G12 · · ·2Gk, there exists at least one t such that xt 6= x′t.

If t ∈ I, then (r − rt)gt(xt) 6= (r − rt)gt(x′t) since r − rt is coprime to nt and the order of gt(xt)− gt(x′t)
(6= 0) in At is a divisor of nt. If t ∈ J , then wGt(xt) 6= wGt(x

′
t) as gt is At-distance antimagic. If t ∈ L,

then rgt(xt) 6= rgt(x
′
t) as r is coprime to nt. In any case we have w(x) 6= w(x′). Therefore, f is an

A1 × · · · ×Ak-distance antimagic labelling of G12 · · ·2Gk.

Note that part (a) of Theorem 3.4 can be obtained from Theorem 3.12 by setting I = L = ∅.
Theorem 3.12 enables us to construct new families of distance antimagic graphs based on known

distance antimagic graphs and distance magic graphs. We illustrate this by the following corollary, which

is obtained by setting nt = 2dt and At = Zdt
2 for 1 ≤ t ≤ s+ t, and I = {1, . . . , s}, J = {s+ 1, . . . , s+ t}

and L = ∅, in Theorem 3.12.

Corollary 3.13. Suppose Gi is an ri-regular Zdi
2 -distance magic graph, 1 ≤ i ≤ s, and Gj an rj-regular

Zdj

2 -distance antimagic graph, s + 1 ≤ j ≤ s + t. Let r =
∑s+t

i=1 ri and d =
∑s+t

i=1 di. If ri and r have

different parity for i = 1, . . . , s and the same parity for i = s + 1, . . . , s + t, then G12 · · ·2Gs+t is

Zd
2-distance antimagic.

In particular, if G1 is a regular Zd1
2 -distance magic graph with even degree, and G2 a regular Zd2

2 -

distance antimagic graph with odd degree, then G12G2 is Zd1+d2
2 -distance antimagic.

The reader is invited to compare the last statement in Corollary 3.13 with Corollary 3.6. To satisfy

the conditions in Corollary 3.13, s must be even when r is even, and t must be odd when r is odd.

4 Labelling direct products

The direct product G1 × · · · ×Gd of d graphs G1, . . . , Gd is defined [12] to have vertex set V (G1)× · · · ×
V (Gd), such that two vertices (x1, . . . , xd) and (y1, · · · , yd) are adjacent if and only if xi is adjacent to

yi in Gi for i = 1, . . . , d.

Theorem 4.1. Let Gi be an ri-regular graph with ni vertices and Ai an Abelian group of order ni,

i = 1, . . . , d. Denote r = r1 · · · rd. If Gi is Ai-distance antimagic and ni and r/ri are coprime for

i = 1, . . . , d, then G1 × · · · ×Gd is A1 × · · · ×Ad-distance antimagic.

Proof. Since Gi is Ai-distance antimagic, it admits at least one Ai-distance antimagic labelling, say,

gi : V (Gi)→ Ai, i = 1, . . . , d. Denote G = G1 × · · · ×Gd and A = A1 × · · · × Ad. Define f : V (G)→ A

by

f(x) = (g1(x1), . . . , gd(xd)), for x = (x1, . . . , xd).

Obviously, f is a bijection. The weight of x under f is given by

w(x) =
∑

(y1,...,yd)∈NG(x)

(g1(y1), . . . , gd(yd))

=

 ∑
yi∈NGi

(xi), i 6=1

g1(y1), . . . ,
∑

yi∈NGi
(xi), i 6=d

gd(yd)


= ((r/r1)wG1

(x1), . . . , (r/rd)wGd
(xd)).

Since gcd(r/ri, ni) = 1 for each i, the mapping defined by (a1, . . . , ad) 7→ ((r/r1)a1, . . . , (r/rd)ad),

(a1, . . . , ad) ∈ A, is a bijection from A to itself. Combining this with the assumption that each gi is

an Ai-distance antimagic labelling, we obtain that f is an A-distance antimagic labelling of G.
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Denote Gd
× = G × · · · ×G (d factors) and Ad = A × · · · × A (d factors). By Theorem 4.1 we obtain

the following result.

Corollary 4.2. Suppose G is an r-regular A-distance antimagic graph with n vertices, where A is an

Abelian group of order n. If n and r are coprime, then for any integer d ≥ 1, Gd
× is Ad-distance antimagic.

Since Cn is Zn-distance antimagic when n is odd (Theorem 3.11), Theorem 4.1 implies the following

result.

Corollary 4.3. For any odd integers n1, . . . , nd ≥ 3, Cn1×· · ·×Cnd
is Zn1×· · ·×Znd

-distance antimagic.

In particular, for any integer d ≥ 1 and odd integer n ≥ 3, (Cn)d× is Zd
n-distance antimagic.

Since Kn is Zn-distance antimagic (Theorem 3.1), by Theorem 4.1 we obtain:

Corollary 4.4. Let n1, . . . , nd ≥ 3 be integers such that ni and nj −1 are coprime for distinct i, j. Then

Kn1
× · · · ×Knd

is Zn1
× · · · × Znd

-distance antimagic.

In particular, for any integers d ≥ 1 and n ≥ 3, (Kn)d× is Zd
n-distance antimagic.

Denote by Dn = Cn2P2 the prism of 2n ≥ 6 vertices.

Lemma 4.5. Let n ≥ 4 be an integer not divisible by 3. Then Dn is Z2n-distance antimagic.

Proof. Denote the vertices of Dn by xi,j such that xi,jxi+1,j and xi,1xi,2 are edges of Dn for i =

0, 1, . . . , n− 1 and j = 1, 2, where the first subscript is taken modulo n. Define

f(xi,j) =

{
2i, if j = 1

2i+ 1, if j = 2

Then

w(xi,1) = f(xi−1, 1) + f(xi+1, 1) + f(xi, 2) ≡ 6i+ 1 (mod 2n)

w(xi,2) = f(xi−1, 2) + f(xi+1, 2) + f(xi, 1) ≡ 6i+ 2 (mod 2n).

Since n 6= 0 (mod 3), g(x) = 3x+1, x ∈ Z2n defines a bijection from Z2n to itself. Therefore, the weights

are all different elements of Z2n.

Combining Theorem 4.1 and Lemma 4.5, we obtain the following result.

Corollary 4.6. Let n1, . . . , nd ≥ 4 be integers not divisible by 3. Then Dn1×· · ·×Dnd
is Zn1×· · ·×Znd

-

distance antimagic.

In particular, for any d ≥ 1, and any n ≥ 4 not divisible by 3, (Dn)d× is Zd
n-distance antimagic.

5 Zn-distance antimagic product graphs

For brevity, a Zn-balanced labelling of a regular graph is called a balanced labelling. In other words,

a balanced labelling of an r-regular graph G with n vertices is a bijection f : V (G) → Zn such that

w(x) ≡ rf(x) (mod n) for every x ∈ V (G).

Lemma 5.1. (a) The cycle Cn for any n ≥ 3 admits a balanced labelling.

(b) The complete graph Kn on n ≥ 2 vertices admits a balanced labelling if and only if n is odd.

Proof. (a) The labelling that sequentially assigns 0, 1, . . . , n − 1 to the vertices of Cn along the cycle is

balanced.

(b) Denote the vertices of Kn by xi, 1 ≤ i ≤ n. Define f : V (G) → Zn by f(xi) = i − 1. Then

(n− 1)f(xi) ≡ 1− i (mod n) for each i. If n is odd, then
∑n

i=1 f(xi) ≡ n(n− 1)/2 ≡ 0 (mod n) and the

weight of xi is w(xi) =
∑n

j=1 f(xj)− f(xi) ≡ 1− i ≡ (n− 1)f(xi). Thus f is a balanced labelling of Kn

when n is odd.
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Conversely, suppose Kn admits a balanced labelling f : V (G) → Zn. Then w(xi) = (n − 1)f(xi) ≡
−f(xi) (mod n) for each i, and on the other hand w(xi) =

∑n
j=1 f(xj) − f(xi). Since f is a bijection,

we have
n∑

j=1

f(xj) ≡
n∑

j=1

j ≡

{
0, if n is odd,

n
2 , if n is even.

It follows that n must be odd.

Theorem 5.2. Suppose Gi is an ri-regular graph with ni vertices which admits a balanced labelling,

1 ≤ i ≤ k. Suppose further that ri ≤ nj for any 1 ≤ i, j ≤ k and that r =
∑k

i=1 ri is coprime to n1 · · ·nk.

Then G12 · · ·2Gk is Zn1···nk
-distance antimagic.

Proof. Let gi : V (Gi) → {0, 1, . . . , ni − 1} be a balanced labelling of Gi, 1 ≤ i ≤ k. Define f :

V (G1)× · · · × V (Gk)→ Zn1···nk
by

f(x) = (g1(x1) modn1) + (g2(x2) modn2) n1 + (g3(x3) modn3) n1n2

+ · · ·+ (gk(xk) modnk) n1 · · ·nk−1 (3)

for any x = (x1, . . . , xk) ∈ V (G1) × · · · × V (Gk). This is indeed a mapping from V (G1) × · · · × V (Gk)

to Zn1···nk
because f takes minimum value 0 and maximum value (n1 − 1) + (n2 − 1)n1 + · · · + (nk −

1)n1 · · ·nk−1 = n1 · · ·nk − 1. Moreover, f is injective, and hence must be bijective since |V (G1) ×
· · · × V (Gk)| = n1 · · ·nk. In fact, if f(x) = f(x′) but x 6= x′, then gi(xi) 6= gi(x

′
i) for at least one

i as all mappings gj are bijective. Let t be the largest subscript such that gt(xt) 6= gt(x
′
t). Then

g1(x1) + g2(x2)n1 + · · · + gt(xt)n1 · · ·nt−1 = g1(x′1) + g2(x′2)n1 + · · · + gt(x
′
t)n1 · · ·nt−1. Without loss

of generality we may assume gt(xt) > gt(x
′
t). Then (gt(xt) − gt(x′t))n1 · · ·nt−1 = (g1(x′1) − g1(x1)) +

(g2(x′2) − g2(x2))n1 + · · · + (gt−1(x′t−1) − gt−1(xt−1))n1 · · ·nt−2. However, the right-hand side of this

equality is no more than (n1 − 1) + (n2 − 1)n1 + · · · + (nt−1 − 1)n1 · · ·nt−2 = n1 · · ·nt−1 − 1, but the

left-hand side of it is no less than n1 · · ·nt−1. This contradiction shows that f is a bijection.

Denote wGi
(xi) =

∑
x′
i: xix′

i∈E(Gi)
gi(x

′
i) for xi ∈ V (Gi), 1 ≤ i ≤ k. With congruence modulo n1 · · ·nk,

we have

w(x) ≡
k∑

i=1

∑
x′
i: xix′

i∈E(Gi)

f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xk)

≡
k∑

i=1

∑
x′
i: xix′

i∈E(Gi)

{(g1(x1) modn1) + · · ·+ (gi(x
′
i) modni) n1 · · ·ni−1

+ · · ·+ (gk(xk) modnk) n1 · · ·nk−1}

≡
k∑

i=1

{(rig1(x1) modn1) + · · ·+ (wGi
(xi) modni) n1 · · ·ni−1

+ · · ·+ (rigk(xk) modnk) n1 · · ·nk−1}

≡ rf(x) +

k∑
i=1

{(wGi
(xi)− rigi(xi)) modni}n1 · · ·ni−1

≡ rf(x).

In the last two steps we used the assumption that ri ≤ nj for each pair i, j and that gi is a balanced

labelling of Gi. (Since ri ≤ nj , we have (rigj(xj)) modnj = ri · (gj(xj) modnj).) If w(x) ≡ w(x′) (mod

n1 · · ·nk), then r(f(x) − f(x′)) ≡ 0 (mod n1 · · ·nk), which implies f(x) ≡ f(x′) since r is coprime to

n1 · · ·nk. Since f is bijective as shown above, it follows that f is a Zn1···nk
-distance antimagic labelling

of G12 · · ·2Gk.

Denote Gk
2 = G2 · · ·2G (k factors). We have the following corollary of Theorem 5.2 and Corollary

2.3.
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Corollary 5.3. Let n1, . . . , nk ≥ 3 be (not necessarily distinct) integers such that k is coprime to n1 · · ·nk.

Then Cn12 · · ·2Cnk
is Zn1···nk

-distance antimagic if and only if all n1, . . . , nk are odd.

In particular, for any integer k ≥ 1 and odd integer n ≥ 3 that are coprime, (Cn)k2 is Znk -distance

antimagic.

Proof. Since Cn1
2 · · ·2Cnk

has even degree, namely 2k, by Corollary 2.3, Cn1
2 · · ·2Cnk

cannot be

Zn1···nk
-distance antimagic unless n1, . . . , nk are all odd.

Suppose n1, . . . , nk ≥ 3 are all odd. Applying Theorem 5.2 to Cn1 , . . . , Cnk
, we have ri = 2 < nj ,

r = 2k, and each Cni
admits a balanced labelling by Lemma 5.1. Since n1, . . . , nk are odd and k is

coprime to n1 · · ·nk by our assumption, r is coprime to n1 · · ·nk. Thus, by Theorem 5.2, Cn12 · · ·2Cnk

is Zn1···nk
-distance antimagic.

In particular, when k is a prime, Corollary 5.3 yields the following result.

Corollary 5.4. Let p be a prime, and let n1, . . . , np ≥ 3 be (not necessarily distinct) integers none of

which has p as a factor. Then Cn1
2 · · ·2Cnp

is Zn1···np
-distance antimagic if and only if all n1, . . . , np

are odd.

In particular, for any integers n1, n2 ≥ 3, Cn1
2Cn2

is Zn1n2
-distance antimagic if and only if both n1

and n2 are odd.

Moreover, if a prime p is not a divisor of an odd integer n ≥ 3, then (Cn)p2 is Znp-distance antimagic.

Applying Theorem 5.2 to d copies of Kq and using Lemma 5.1, we obtain that H(d, q) (∼= (Kq)d2) is

Zqd -distance antimagic for any d ≥ 1 and odd q ≥ 3 that are coprime. It is interesting to note that this

is also given in part (a) of Theorem 3.1 where q is not required to be odd.

Theorem 5.5. Let Gi be an ri-regular graph with ni vertices, i = 1, . . . , k. Suppose ni and r/ri are

coprime for i = 1, . . . , k, where r = r1 · · · rk.

(a) If each Gi is Zni
-distance antimagic, then G1 × · · · ×Gk is Zn1...nk

-distance antimagic.

(b) If each Gi is Zni-distance magic, then G1 × · · · ×Gk is Zn1...nk
-distance magic.

Proof. Denote G = G1 × · · · ×Gk and n = n1 . . . nk.

(a) Define f as in (3) with the understanding that each gi is a Zni
-distance antimagic labelling of Gi.

As shown in the proof of Theorem 5.2, f is a bijection from V (G) to Zn. The weight of x under f is

given by

w(x) ≡
∑

(y1,...,yk)∈NG(x)

f(y1, . . . , yk)

≡
∑

(y1,...,yk)∈NG(x)

{
k∑

i=1

(gi(yi) modni) n1 · · ·ni−1

}

≡
k∑

i=1

 ∑
(y1,...,yk)∈NG(x)

(gi(yi) modni) n1 · · ·ni−1


≡

k∑
i=1

{(
r

ri
wGi(xi) modni

)
n1 · · ·ni−1

}
,

where the congruence is modulo n. Similar to the proof after (3), one can show that for x = (x1, . . . , xk),

x′ = (x′1, . . . , x
′
k) ∈ V (G), w(x) ≡ w(x′) (mod n1 · · ·nk) if and only if r

ri
wGi

(xi) modni ≡ r
ri
wGi

(x′i) modni
for each i. Since gcd(r/ri, ni) = 1, the latter holds if and only if wGi

(xi) modni ≡ wGi
(x′i) modni for

each i. However, since gi is a Zni-distance antimagic labelling, we have wGi(xi) modni 6≡ wGi(x
′
i) modni

for xi 6= x′i. Therefore, w(x) 6≡ w(x′) (mod n1 · · ·nk) for distinct vertices x, x′ of G, and hence f is a

Zn-distance antimagic labelling of G.
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(b) Define f as above with the understanding that each gi is a Zni
-distance magic labelling of Gi.

Denote by µi the magic constant of Gi with respect to gi. The computation above yields

w(x) ≡
k∑

i=1

{(
rµi

ri
modni

)
n1 · · ·ni−1

}
.

Since this is independent of x, f is a Zn-distance magic labelling of G.

Combining part (a) of Theorem 5.5, Corollary 2.3 and part (a) of Theorem 3.11, we obtain the

following result.

Corollary 5.6. Let n1, . . . , nk ≥ 3 be (not necessarily distinct) integers. Then Cn1
× · · · × Cnk

is

Zn1···nk
-distance antimagic if and only if all n1, . . . , nk are odd.

In particular, for any integer d ≥ 1 and odd integer n ≥ 3, (Cn)d× is Znd-distance antimagic.

The strong product G1� · · ·�Gd of d graphs G1, . . . , Gd is defined [12] to have vertex set V (G1)×· · ·×
V (Gd), such that two vertices (x1, . . . , xd) and (y1, · · · , yd) are adjacent if and only if, for i = 1, . . . , d,

either xi is adjacent to yi in Gi or xi = yi.

Theorem 5.7. Let Gi be an ri-regular graph with ni vertices, for i = 1, 2.

(a) Suppose both G1 and G2 have balanced labellings and r1r2 + r1 + r2 is coprime to n1n2. Then

G1 �G2 is Zn1n2
-distance antimagic.

(b) Suppose G1 is Zn1
-distance magic, G2 is Zn2

-distance magic, r1 is coprime to n2, and r2 is coprime

to n1. Then G1 �G2 is Zn1n2-distance antimagic.

Proof. Denote G = G1 �G2 and n = n1n2.

(a) Let gi : V (Gi) → Zni
be a balanced labelling of Gi, i = 1, 2. Define, for x = (x1, x2) ∈

V (G1)× V (G2),

f(x) = (g1(x1) modn1) + (g2(x2) modn2) n1.

Then f is a bijection from V (G) to Zn, as we saw in the paragraph after (3). With congruence modulo

n, we have

w(x) ≡
∑

(y1,y2)∈NG(x)

f(y1, y2)

≡
∑

y1∈NG1
(x1)

f(y1, x2) +
∑

y2∈NG2
(x2)

f(x1, y2) +
∑

y1∈NG1
(x1), y2∈NG2

(x2)

f(y1, y2)

≡
∑

y1∈NG1
(x1)

{(g1(y1) modn1) + (g2(x2) modn2)n1}

+
∑

y2∈NG2
(x2)

{(g1(x1) modn1) + (g2(y2) modn2)n1}

+
∑

y1∈NG1
(x1), y2∈NG2

(x2)

{(g1(y1) modn1) + (g2(y2) modn2)n1}

≡ (wG1
(x1) modn1) + (r1g2(x2) modn2)n1 + (r2g1(x1) modn1) + (wG2

(x2) modn2)n1

+(r2wG1(x1) modn1) + (r1wG2(x2) modn2)n1

≡ {[(r2 + 1)wG1
(x1) + r2g1(x1)] modn1}+ {[(r1 + 1)wG2

(x2) + r1g2(x2)] modn2}n1
≡ {[(r1r2 + r1 + r2)g1(x1)] modn1}+ {[(r1r2 + r1 + r2)g2(x2)] modn2}n1.

In the last step we used the assumption that g1, g2 are balanced labellings of G1, G2 respectively. Since

r1r2 + r1 + r2 is coprime to n1n2, the computation above implies w(x) 6= w(x′) for distinct x, x′ ∈ V (G).

Thus f is a Zn-distance antimagic labelling of G.

(b) Define f : V (G) → Zn as in (a) with the understanding that gi is a Zni
-distance magic labelling

of Gi, i = 1, 2. Let µ1, µ2 be the corresponding magic constants of g1, g2 respectively. The computation
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in (a) implies that, for x = (x1, x2) ∈ V (G), w(x) = {[(r2 + 1)µ1 + r2g1(x1)] modn1} + {[(r1 + 1)µ2 +

r1g2(x2)] modn2}n1. Since both g1 and g2 are bijective, and since r1 is coprime to n2 and r2 is coprime

to n1, one can show that w(x) 6= w(x′) for distinct x, x′ ∈ V (G). Therefore, f is a Zn-distance antimagic

labelling of G.

Theorem 5.7 involves only two factor graphs. Nevertheless, with the help of the following lemma

(together with the associativity [12] of the strong product), we can obtain results about strong products

with more than two factors by recursively applying part (a) of Theorem 5.7.

Lemma 5.8. Let G1 and G2 be regular graphs. If both G1 and G2 have balanced labellings, then G1�G2

has a balanced labelling.

Proof. Denote ni = |V (Gi)|, and let gi : V (Gi) → Zni
be a balanced labelling of Gi, i = 1, 2. Define

g : V (G1)×V (G2)→ Zn1n2
by g(x1, x2) = g1(x1) + g2(x2)n1. Then g is a bijection from V (G1)×V (G2)

to Zn1n2
. One can verify that g is a balanced labelling of G1 �G2.

Since any cycle Cn admits a Zn-balanced labelling, in view of Corollary 2.3, we obtain the following

result from part (a) of Theorem 5.7.

Corollary 5.9. Let m,n ≥ 3 be (not necessarily distinct) integers. Then Cm � Cn is Zmn-distance

antimagic if and only if both m and n are odd.

Similarly, since Kn admits a Zn-balanced labelling if n is odd (Lemma 5.1), by part (a) of Theorem

5.7 we obtain the following corollary.

Corollary 5.10. For any odd integers m,n ≥ 3 (not necessarily distinct), Km � Kn is Zmn-distance

antimagic.

We conclude this section with the following theorem, the second part of which is obtained by using

a known result on magic rectangles. A magic (m,n)-rectangle is an m × n array in which each of the

integers 1, 2, . . . ,mn occurs exactly once such that the sum over each row is a constant and the sum over

each column is also a constant.

Theorem 5.11. Let G be a regular graph on m vertices other than the empty graph Km.

(a) If n is even, then Kn �G is Znm-distance antimagic.

(b) If both n and m are odd, then Kn �G is Znm-distance antimagic.

Proof. Let r ≥ 1 be the degree of G. Then Kn � G is (n(r + 1) − 1)-regular with mn vertices. Denote

V (Kn) = {x1, x2, . . . , xn} and V (G) = {v1, v2, . . . , vm}.
(a) Let n be even. As in [3], define f : V (Kn �G)→ {1, 2, . . . ,mn} by

f(xj , vi) =

{
i−1
2 n+ j − 1, if j is odd,

mn− 1− f(xj−1, vi), if j is even

for 1 ≤ i ≤ m and 1 ≤ j ≤ n. It can be verified that f is a bijection and w(x) = (r+ 1)n
2 − f(x) for each

x ∈ V (Kn �G). Hence f is a Znm-distance antimagic labelling of Kn �G.

(b) Suppose both n and m are odd. Then there exists [10, 11] a magic (n,m)-rectangle, say, with

(j, i)-entry aj,i, 1 ≤ j ≤ n, 1 ≤ i ≤ m and
∑n

j=1 aj,i = C for some constant C and every i. Define

f : V (Kn � G) → {1, 2, . . . , nm} by f(xj , vi) = aj,i for each pair (j, i). Obviously, f is a bijection

and moreover
∑n

j=1 f(xj , vi) = C for every i. Therefore, for any x ∈ V (Kn � G), we have w(x) =

(r + 1)C − f(x). It follows that f is a Znm-distance antimagic labelling of Kn �G.

14



6 Zn-distance antimagic circulants

A circulant graph is a Cayley graph Cay(Zn, S) on a cyclic group Zn, where S ⊆ Zn \ {0} such that

S = −S = {−s : s ∈ S} with operations modulo n. Note that the degree |S| of Cay(Zn, S) is odd if n is

even and n/2 ∈ S, and even otherwise.

The purpose of this section is to show the following result on Zn-distance antimagic circulants.

Theorem 6.1. The circulant graph Cay(Zn, S) is Zn-distance antimagic if one of the following holds:

(a) n is even, n/2 ∈ S, S contains 2s even integers and 2t odd integers other than n/2, and 2(s− t) + 1

and 2(t− s) + 1 are both coprime to n;

(b) |S| and n are coprime.

On the other hand, if |S| and n are both even, then Cay(Zn, S) is not Zn-distance antimagic.

Proof. To prove (a), assume n = 2m is even and m ∈ S. Denote Zn = {0, 1, . . . , 2m − 1} and let

S = {±i1,±i2, . . . ,±is,±j1,±j2, . . . ,±jt,m}, with operations modulo 2m, where 0 < i1 < i2 < · · · <
is (< m) are even and 0 < j1 < j2 < · · · < jt (< m) are odd. Define the labelling as f(k) = k for k odd

and f(k) = −k for k even.

If k is even, then the weight of vertex k under f is given by

w(k) =

s∑
`=1

(f(k + i`) + f(k − i`)) +

t∑
`=1

(f(k + j`) + f(k − j`)) + f(k +m)

=

s∑
`=1

(−(k + i`)− (k − i`)) +

t∑
`=1

((k + j`) + (k − j`)) + f(k +m)

=2(t− s)k + f(k +m).

Thus w(k) = (2(t − s) − 1)k −m if m is even, and w(k) = (2(t − s) + 1)k + m if m is odd. Since both

2(s− t)+1 and 2(t−s)+1 are coprime to 2m, if m is even, then w induces a bijection from even elements

of Z2m to even elements of Z2m; and if m is odd, then w induces a bijection from even elements of Z2m

to odd elements of Z2m.

Similarly, when k is odd, we have

w(k) =

s∑
`=1

((k + i`) + (k − i`)) +

t∑
`=1

(−(k + j`)− (k − j`)) + f(k +m)

=2(s− t)k + f(k +m).

Thus w(k) = (2(s− t) + 1)k+m if m is even, and w(k) = (2(s− t)− 1)k−m if m is odd. Similar to the

above, if m is even, then w induces a bijection from odd elements of Z2m to odd elements of Z2m; and if

m is odd, then w induces a bijection from odd elements of Z2m to even elements of Z2m. Combining this

with what we proved in the previous paragraph, we conclude that w is a bijection from Z2m to Z2m, and

this proves part (a).

Part (b) follows from Theorem 2.5. By Corollary 2.3, if both n and |S| are even, then Cay(Zn, S) is

not Zn-distance antimagic.

7 Remarks and questions

This paper represents the first attempt towards a systematic study of group distance antimagic and

group distance magic labellings of graphs under a general setting. These notions are natural extensions

of related concepts in the domain of graph labelling that have been extensively investigated in the past

decades. A major theme for these new labellings is to answer the following question for various families

of graph-group pairs (G,A) with |V (G)| = |A|: Under what conditions does G admit an A-distance

antimagic/magic labelling?
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In this paper we proved among other things several general results on group antimagic/magic la-

bellings for product graphs. As applications we obtained concrete families of graphs admitting distance

antimagic/magic labellings with respect to elementary Abelian groups, cyclic groups or direct products

of such groups.

Many problems and questions arise naturally from our studies. As examples we list a few of them

below that are relevant to this paper, with no attempt to be exhaustive.

1. When does a Cayley graph on Zd
2 with even degree (odd degree, respectively) admit a Zd

2-distance

antimagic (magic, respectively) labelling? (See Corollary 2.7.)

2. Give a necessary and sufficient condition for the Hamming graph H(d, q) (d ≥ 1, q ≥ 3) to be

Zqd -distance antimagic. (Partial results were obtained in Theorem 3.1, and when q = 2 the answer

was given in Corollary 3.2.)

3. Prove or disprove Q6 is Z6
2-distance antimagic. (See Remark 3.10.)

4. Give a necessary and sufficient condition for Cn1
2 · · ·2Cnd

to be Zn1···nd
-distance antimagic when

d is not coprime to n1 · · ·nd. (A necessary condition is that all ni’s must be odd. See Corollary 5.3

for the case when d and n1 · · ·nd are coprime.)

5. Give a necessary and sufficient condition for a circulant graph on n vertices to be Zn-distance

antimagic. (See Section 6.)
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