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Abstract

Barrientos and Minion [1] introduced the notion of snake polyomino
graphs and proved that they admit an alpha labeling. We introduce a
related family of graphs called straight simple polyominal caterpillars and
prove that they also admit an alpha labeling. This implies that every
straight simple polyominal caterpillar with n edges decomposes the com-
plete graph K2kn+1 for any positive integer k.
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1 Introduction

In her talk at the Forty-Fifth Southeastern International Conference on
Combinatorics, Graph Theory, and Computing in Boca Raton in March,
2014, Sarah Minion (an undergraduate student) presented her joint re-
sults with Christian Barrientos on alpha labelings of snake polyominoes
and other related graphs [1]. The first author of this paper then proposed
a generalization of their result as a topic for the final project in his graph
theory class. The two other co-authors (also undergraduate students) wrote
a project report that later developed into the presented paper.

Barrientos and Minion [1] define a snake polyomino as a chain of m
edge-amalgamated four-cycles C1, C2, . . . , Cm with the property that C1

shares one edge with C2, Cm shares one edge with Cm−1, and for i =
2, 3, . . . ,m − 1, each Ci shares one edge with Ci−1 and another edge with
Ci+1. Note that no edge appears in more than two of those four-cycles.

We generalize this notion and define a straight simple polyominal cater-
pillar as follows. The spine of the caterpillar is a straight snake polyomino
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Figure 1: Straight simple polyominal caterpillar

in which the edges of Ci shared with Ci−1 and Ci+1 are non-adjacent,
which means that every vertex is of degree at most three. The spine can
be also viewed as the Cartesian product Pm+12P2. We denote the ver-
tices of the two paths as x0, x1, . . . , xm and y0, y1, . . . , ym, respectively. A
straight simple polyominal caterpillar than can be constructed by amalga-
mating at most one four-cycle to each of the edges xjxj+1 and ylyl+1 for
j, l ∈ {0, 1, . . . ,m − 1}. Notice that we can amalgamate the four-cycles to
none, one, or both of the two edges xjxj+1 and yjyj+1 for any admissible
value of j. The number of four-cycles in the spine will be referred to as the
length of the caterpillar. An example is shown in Figure 1.

A. Rosa [3] introduced in 1967 certain types of vertex labelings as impor-
tant tools for decompositions of complete graphs K2n+1 into graphs with
n edges.

A labeling of a graph G with n edges is an injection from V (G), the
vertex set of G, into a subset S of the set {0, 1, 2, . . . , 2n} of elements of
the additive group Z2n+1. Let ρ be the injection. The length of an edge
xy is defined as ℓ(x, y) = min{ρ(x) − ρ(y), ρ(y) − ρ(x))}. The subtraction
is performed in Z2n+1 and hence 0 < ℓ(x, y) ≤ n. If the set of all lengths
of the n edges is equal to {1, 2, . . . , n} and S ⊆ {0, 1, . . . , 2n}, then ρ is a
rosy labeling (called originally ρ-valuation by A. Rosa); if S ⊆ {0, 1, . . . , n}
instead, then ρ is a graceful labeling (called β-valuation by A. Rosa). A
graph admitting a graceful labeling is called a graceful graph. A graceful
labeling ρ is said to be an α-labeling if there exists a number λ (called
the boundary value) with the property that for every edge xy ∈ G with
ρ(x) < ρ(y) it holds that ρ(x) ≤ λ < ρ(y). Obviously, G must be bipartite
to allow an α-labeling. A graph admitting an α-labeling is called an α-
graph. For an exhaustive survey of graph labelings, see [2] by J. Gallian.

Let G be a graph with at most n vertices. We say that the complete
graph Kn has a G-decomposition if there are subgraphs G0, G1, G2, . . . , Gs

ofKn, all isomorphic to G, such that each edge ofKn belongs to exactly one
Gi. Such a decomposition is called cyclic if there exists a graph isomorphism
φ such that φ(Gi) = Gi+1 for i = 0, 1, . . . , s− 1 and φ(Gs) = G0.
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Each graceful labeling is of course also a rosy labeling. The following
theorem was proved by A. Rosa in [3].

Theorem 1.1. A cyclic G-decomposition of K2n+1 for a graph G with n
edges exists if and only if G has a rosy labeling.

The main idea of the proof is the following. K2n+1 has exactly 2n + 1
edges of length i for every i = 1, 2, . . . , n and each copy ofG contains exactly
one edge of each length. The cyclic decomposition is constructed by taking
a labeled copy of G, say G0, and then adding an element i ∈ Z2n+1 to the
label of each vertex of G0 to obtain a copy Gi for i = 1, 2, . . . , 2n.

For graphs with an α-labeling, even stronger result was proved by A.
Rosa.

Theorem 1.2. If a graph G with n edges has an α-labeling, then there
exists a G-decomposition of K2kn+1 for any positive integer k.

The proof is based on the observation that if we increase all labels in
the partite set with labels exceeding λ by t, then all edge lengths will also
stretch by t. Hence, we can take k copies of G and increase the labels in
the upper partite set in the j-th copy by jn, where j = 0, 1, . . . , k−1. This
way we obtain edge lengths 1, 2, . . . , nk, each exactly once.

2 Amalgamation of alpha labeled graphs

Barrientos and Minion [1] made the following observation.

Theorem 2.1. If G1 of order v1 with n1 edges and G2 of order v2 with n2

edges are two α-graphs with boundary values λ1 and λ2, respectively, then
there exist their edge-amalgamation Γ of order v1 + v2 − 2 with n1 +n2 − 1
edges that is also an α-graph with boundary value λ = λ1 + λ2.

For i = 1, 2 let Xi be the partite sets with the lower labels, that is,
at most λi, and Yi the sets with the upper labels. Call the respective
labelings f1 and f2. Further, let e1 = x1y1 be the longest edge of G1 of
length n1 and e2 = x2y2 the shortest edge of G2 of length 1. Then indeed
f1(x1) = 0, f1(y1) = n1, f2(x2) = λ2, and f2(y2) = λ2 + 1.

Barrientos and Minion observed that one can amalgamate x1 with x2

and y1 with y2 and increase the labels in X1 and Y1 by λ2 and labels in
Y2 by n1 − 1 to obtain the desired graph Γ. The amalgamated edge arising
from e1 and e2 is called the link. Notice that the shortest edge of Γ is in the
subgraph arising from G1 while the longest one is in the subgraph arising
from G2. The edge-amalgamation of G1 and G2 as described above will be
denoted as G1∥G2.

It is easy to observe that this concept can be used for consecutive amal-
gamation of any number of α-graphs into a larger α-graph. We will use
that observation in the next section.

3



3 Construction

Using the above result, we now prove that every straight simple polyominal
caterpillar is an α-graph. The proof will be performed by strong induction.
Therefore, we will first need to show suitable α-labelings of certain base
cases of our caterpillars.

We define graphs O,B, I, J, U, and Y by their drawings in Figure 2.
We also find their α-labelings and present them in Figure 3. Notice that
the edge labeled s in each graph in Figure 2 has length 1 induced by the
labeling in Figure 3 and the edge labeled l is the longest one induced by
the labeling in Figure 3. There is no edge labeled s in graph B since we
never use it in the inductive step. The reason is that it does not admit the
labeling required by Theorem 2.1.
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Figure 2: Graphs Y, V, J,O, I,N,B (clockwise from upper left)

The assertion of the Lemma below follows directly from the labelings in
Figure 3.

Lemma 3.1. Graphs O,B, I, J, U,N and Y have α-labelings that induce
length 1 on edge s = x0y0 (except B) and longest length on edge l = x1y1
(graphs O,B, I) or l = x2y2 (graphs J, U,N, Y ). Moreover, vertices x0 and
y0 are always labeled so that fH(x0) = λH and fH(y0) = λH + 1 for every
graph H on the list except graph B.

We will also need the following Lemma, proved by Rosa [3].

Lemma 3.2. Let G with n edges admit an α-labeling f . Then the mapping
f ′ defined as f ′(x) = n − f(x) is also an α-labeling. Moreover, the length
of every edge is the same in both f and f ′.

4



8

1

5

6 2

0

16

7

9

15

11 14

13

16 7

10

13

129

6

1

0

13

5

3 1

5

1

1

0

10

4

6

7

8

10

10

12

7 13

9

1

0

13

5

6

1

4

5

1

0

1

4

9

10

10

6

7

3

4

4

2

1

0

7

6

54

0

7

3

Figure 3: Graphs Y, V, J,O, I,N,B with labelings

We will say that the labeling f ′ is a dual labeling of f . One can also
observe that if the boundary values of f and f ′ are λ and λ′, respectively,
then λ′ = n− 1− λ.

For any graph H of the list above, we define its reflection H ′ as the
graph horizontally symmetric with H. Although they are mutually isomor-
phic, we need to treat the graphs and their reflections separately since an
amalgamation of two caterpillars H1 and H2 may give two non-isomorphic
graphs.

Lemma 3.3. All straight simple polyominal caterpillars of length m, where
m = 1 or m = 2, have an α-labeling f with the property that the longest
edge is xmym with f(xm) = 0.

Proof. There are four caterpillars of length one: O, I,B, and B′. The
former three have the labeling by Lemma 3.1 shown in Figure 3, the latter
by Lemma 3.2.

There are 16 caterpillars of length two. Four of them, J, U,N and Y
have α-labelings as in Figure 3. Their reflections J ′, U ′, N ′ and Y ′ have
α-labelings by Lemma 3.2.

The remaining ones are shown in Figure 4. Caterpillars D and X can
be amalgamated of two copies of O and I, respectively, using Theorem 2.1.
Caterpillar T and its vertical reflection can be obtained by amalgamating
O∥I and I∥O, respectively. Caterpillar L arises from amalgamation B∥O,
and L′ follows by Lemma 3.2. Finally, V is amalgamated as B∥I and V ′

follows again by Lemma 3.2.
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Figure 4: Graphs X,T, V, L,D (clockwise from upper left)

Now we are ready to prove our main result.

Theorem 3.1. Every straight simple polyominal caterpillar admits an α-
labeling.

Proof. We prove the claim by strong induction on the number of four-cycles
in the spine. LetGm be a straight simple polyominal caterpillar of lengthm,
that is, with m spine four-cycles. As before, we will denote the spine path
vertices by x0, x1, . . . , xm and y0, y1, . . . , ym, respectively. The labeling will
be denoted by f .

In fact, we will be proving a stronger statement. Namely, that all such
caterpillars admit an α-labeling such that xmym is the longest edge and
f(xm) = 0. It is easy to observe that if we have an α-labeling with f(xm) >
f(ym) = 0, we can use the dual f ′ instead to get f ′(xm) = 0. Hence, we
can assume that the condition f(xm) = 0 is always satisfied.

By Lemma 3.3, all caterpillars of lengths one and two are α-graphs. Now
for m ≥ 3 we look at the subgraph of Gm induced by the spine vertices
xm−1, xm, ym−1, ym and possibly the vertices of the four-cycles amalga-
mated to edges xm−1xm and ym−1ym, if there are any. If the subgraph is
isomorphic to either I or O, then we create Gm−1 by removing all vertices of
that subgraph except xm−1 and ym−1. By the inductive hypothesis, Gm−1

has an α-labeling such that xm−1ym−1 is the longest edge and f(xm−1) = 0.
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We use Theorem 2.1 to amalgamate Gm−1 with either I or O to obtain the
desired α-labeling of Gm with the longest edge xmym. We notice that
f(xm) > f(ym) = 0, so we use the dual labeling f ′ of Gm and we are done.

If the subgraph of Gm induced by the spine vertices xm−1, xm, ym−1, ym
and the vertices of the four-cycles amalgamated to edges xm−1xm and
ym−1ym is not isomorphic to either I or O, then it must be isomorphic
to B. In this case we will be removing vertices xm−1, xm, ym−1, ym, the
neighbors of either xm−1 and xm or ym−1 and ym belonging to B and pos-
sibly the vertices of the four-cycles amalgamated to edges xm−2xm−1 and
ym−2ym−1, if there are any. Then we receive Gm−2 and a graph H induced
by vertices xm−2, xm−1, xm, ym−2, ym−1, ym and the vertices of the cycles
amalgamated to them.

Because we have excluded some cases above, H must be isomorphic
to one of graphs J, U,N, Y or their horizontal reflections J ′, U ′, N ′, Y ′.
Now Gm−2 has the required labeling by inductive hypothesis and H by
Lemma 3.3. Hence, we amalgamate edge xm−2ym−2 with the shortest edge
x′
0y

′
0 of H of length one to obtain Gm = Gm−2∥H which has the desired

labeling by Theorem 2.1. It is easy to check that the longest edge is now
xmym and f(xm) = 0. This completes the proof.

The result on decompositions of complete graphs into straight simple
polyominal caterpillars now follows directly from Theorems 3.1 and 1.2.

Corollary 3.4. Every straight simple polyominal caterpillar with n edges
decomposes the complete graph K2kn+1 for any positive integer k.

4 Further research

One can similarly define more general polyominal caterpillars as follows.
Recall that a polyominal snake PSm of length m is a graph consisting of
m edge-amalgamated four-cycles C1, C2, . . . , Cm with the property that
C1 shares one edge with C2, Cm shares one edge with Cm−1, and for
i = 2, 3, . . . ,m − 1, each Ci shares one edge with Ci−1 and another edge
with Ci+1. No edge appears in more than two of those four-cycles. This
definition is equivalent to that given by Barrientos and Minion in [1].

Obviously, PSm is an outerplanar graph. We denote by x and y the
only two vertices of degree two in C0 and by x′ and y′ the only two vertices
of degree two in Cm. A polyominal caterpillar PCm of length m is a graph
arising from PSm (called spine) by an amalgamation of any number of
four-cycles to any of the outer edges of PSm except xy and x′y′. Such
caterpillar is straight if the spine is the graph Pm+12P2, and is simple if at
any outer edge there is at most one amalgamated four-cycle.

The obvious next steps would be to investigate α-labelings of simple
polyominal caterpillars, straight polyominal caterpillars, and general poly-
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ominal caterpillars. Our guess is that they are listed here in the increasing
order of difficulty. Even more general case would be if we allow amalgama-
tion of multiple four-cycles at edges xy and x′y′.

References

[1] C. Barrientos and S. Minion, Alpha labelings of snake polyominoes and
hexagonal chains, manuscript.

[2] J. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal
of Combinatorics, 16 (2009), # DS6.

[3] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs
(Intl. Symp. Rome 1966), Gordon and Breach, Dunod, Paris (1967), 349–
355.

8


