The following equations will be given on the first exam in this form. All of your solutions for the problems should start from these equations.

## EQUATIONS

$\mathbf{v}_{\mathrm{avg}}=\Delta \mathbf{r} / \Delta \mathrm{t}$
$\mathbf{a}=\mathrm{d} \mathbf{v} / \mathrm{dt}$
$\mathrm{v}=\mathrm{v}_{\mathrm{o}}+\mathrm{at}$
$\mathrm{v}=2 \pi \mathrm{r} / \mathrm{T}$

$$
\begin{array}{ll}
\mathbf{v}=\mathrm{d} \mathbf{r} / \mathrm{dt} & \mathbf{a}_{\mathrm{avg}}=\Delta \mathbf{v} / \Delta \mathrm{t} \\
\mathrm{v}^{2}=\mathrm{v}_{\mathrm{o}}^{2}+2 \mathrm{a} \Delta \mathrm{x} & \Delta \mathrm{x}=\mathrm{v}_{\mathrm{o}}^{\mathrm{t}}+1 / 2 \mathrm{at}^{2} \\
\Delta \mathrm{x}=1 / 2\left(\mathrm{v}_{\mathrm{o}}+\mathrm{v}\right) \mathrm{t} & \mathrm{a}=\mathrm{v}^{2} / \mathrm{R} \\
\mathrm{x}=-\mathrm{b} \pm \text { sq.rt. }\left(\mathrm{b}^{2}-4 \mathrm{ac}\right) / 2 \mathrm{a} &
\end{array}
$$

## CONSTANTS

$$
\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

