eq1 2/24/12 11:32 AM

The following equations will be given on the second exam in this form. All of your solutions for the problems should start from these equations.

EQUATIONS

$\mathbf{v}_{\mathrm{av}} = \Delta \mathbf{r} / \Delta \mathbf{t}$	$\mathbf{v} = \mathbf{dr} / \mathbf{dt}$	$\mathbf{a}_{\mathrm{av}} = \Delta \mathbf{v} / \Delta \mathbf{t}$
$\mathbf{a} = \mathbf{d}\mathbf{v} / \mathbf{d}\mathbf{t}$	$v^2 = v_o^2 + 2a\Delta x$	$\Delta x = v_0 t + 1/2at^2$
$v = v_0 + at$	$\Delta x = 1/2(v_0 + v)t$	$a = v^2 / R$
$v = 2\pi r / T$	$x = -b \pm \text{sq.rt.}(b^2 - 4ac) / 2a$	
$\mathbf{F}_{\mathbf{NET}} = \mathbf{ma}$	$W = F_g = mg$	$D = 1/2 C\rho A v^2$
$F = Gm_1m_2/r^2$	$\mathbf{F}_1 = \int d\mathbf{F}$	$f_{s,max} = \mu_s F_N$
$f_k = \mu_k F_N$	$K = 1/2 \text{ mv}^2$	$\mathbf{W} = \mathbf{F} \mathbf{d} \mathbf{cos} \boldsymbol{\phi} = \mathbf{F} \cdot \mathbf{d}$
$W = \Delta K$	$F_{x} = -kx$	$W_{s} = \frac{1}{2}kx_{i}^{2} - \frac{1}{2}kx_{f}^{2}$
$W = \int_{x} 1^{x^2} F(x) dx$	$P_{avg} = W / \Delta t$	P = dW / dt
$W = \int_{r_i}^{r_f} F \cos \phi dr = \int_{r_i}^{r_f} \mathbf{F} \cdot d\mathbf{r}$	U(y) = mgy	$U(x) = 1/2kx^2$
F(x) = - dU(x) / dx	$W = \Delta E = \Delta E_{mec} + \Delta E_{th} + \Delta E_{int}$	U = -GMm / r

CONSTANTS

$$g = 9.8 \text{ m/s}^2$$
 $G = 6.67 \text{ x } 10^{-11} \text{ Nm}^2/\text{kg}^2$