The following equations will be given on the second exam in this form. All of your solutions for the problems should start from these equations.

EQUATIONS

$\mathbf{v}_{\mathrm{av}}=\Delta \mathbf{r} / \Delta \mathrm{t}$	
$\mathbf{a}=\mathrm{d} \mathbf{v} / \mathrm{dt}$	
	$\mathrm{v}=\mathrm{v}_{\mathrm{o}}+\mathrm{at}$
$\mathrm{v}=2 \pi \mathrm{r} / \mathrm{T}$	
$\mathbf{F}_{\mathbf{N E T}}=\mathrm{ma}$	
$\mathrm{F}=\mathrm{Gm}_{1} \mathrm{~m}_{2} / \mathrm{r}^{2}$	
$\mathrm{f}_{\mathrm{k}}=\mu_{\mathrm{k}} \mathrm{F}_{\mathrm{N}}$	
$\mathrm{W}=\Delta \mathrm{K}$	
$\mathrm{W}={ }_{\mathrm{x} 1} \int^{\mathrm{x} 2} \mathrm{~F}(\mathrm{x}) \mathrm{dx}$	
$\mathrm{W}={ }_{\mathrm{ri}} \mathrm{rf}^{\mathrm{rf}} \mathrm{F} \cos \phi \mathrm{dr}={ }_{\mathrm{ri}} \mathrm{rff}^{\mathrm{rf}} \mathbf{F} \cdot \mathbf{d r}$	
$F(x)=-d U(x) / d x$	
$\mathrm{U}=-\mathrm{GMm} / \mathrm{r}$	
$\mathbf{p}=\mathrm{m} \mathbf{v}$	
$\mathbf{J}=\mathbf{F}_{\mathrm{avg}} \Delta \mathrm{t}$	
$\omega=\mathrm{d} \theta / \mathrm{dt}$	
$\omega=\omega_{\mathrm{o}}+\alpha \mathrm{t}$	
$\Delta \theta=1 / 2\left(\omega_{\mathrm{o}}+\omega\right) \mathrm{t}$	
$\mathrm{I}=\Sigma \mathrm{m}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}^{2}$	
	$\mathrm{I}=\mathrm{I}_{\mathrm{cm}}+\mathrm{Mh}^{2}$
	$\mathrm{W}={ }_{\theta \mathrm{i}}{ }^{\text {橎 } \tau \mathrm{d} \theta}$
	$\tau_{\text {net }}=\mathrm{dl} / \mathrm{dt}$

$\mathbf{v}=\mathrm{d} \mathbf{r} / \mathrm{dt}$
$v^{2}=v_{o}^{2}+2 a \Delta x$
$\Delta \mathrm{x}=1 / 2\left(\mathrm{v}_{\mathrm{o}}+\mathrm{v}\right) \mathrm{t}$
$x=-b \pm$ sq.rt. $\left(b^{2}-4 a c\right) / 2 a$
$\mathrm{W}=\mathrm{F}_{\mathrm{g}}=\mathrm{mg}$
$\mathbf{F}_{1}=\int \mathrm{d} \mathbf{F}$
$\mathrm{K}=1 / 2 \mathrm{mv}^{2}$
$F_{x}=-k x$
$\mathrm{P}_{\mathrm{avg}}=\mathrm{W} / \Delta \mathrm{t}$
$\mathrm{U}(\mathrm{y})=\mathrm{mgy}$
$\mathrm{W}=\Delta \mathrm{E}=\Delta \mathrm{E}_{\text {mec }}+\Delta \mathrm{E}_{\text {th }}+\Delta \mathrm{E}_{\text {int }}$
$\mathbf{r}_{\text {com }}=1 / \mathrm{M} \Sigma \mathrm{m}_{\mathrm{i}} \mathbf{r}_{\mathrm{i}}$
$\mathbf{J}=\Delta \mathbf{p}$
$\mathrm{s}=\mathrm{r} \theta$
$\alpha_{a v}=\Delta \omega / \Delta t$
$\Delta \theta=\omega_{\mathrm{o}} \mathrm{t}+1 / 2 \alpha \mathrm{t}^{2}$
$\mathrm{v}=\mathrm{r} \omega$
$\mathrm{K}=1 / 2 \mathrm{I} \omega^{2}$
$\tau=\mathrm{Fr}_{\perp}=\operatorname{Frsin} \phi$
$\boldsymbol{\tau}=\mathbf{r} \times \mathbf{F}$
$\mathrm{L}=\mathrm{I} \omega$
$\mathbf{a}_{\mathrm{av}}=\Delta \mathbf{v} / \Delta \mathrm{t}$
$\Delta \mathrm{x}=\mathrm{v}_{\mathrm{o}} \mathrm{t}+1 / 2 \mathrm{at}^{2}$
$a=v^{2} / R$
$\mathrm{D}={ }_{1 / 2} \mathrm{C} \rho \mathrm{Av}^{2}$
$\mathrm{f}_{\mathrm{s}, \max }=\mu_{\mathrm{s}} \mathrm{F}_{\mathrm{N}}$
$\mathrm{W}=\mathrm{Fd} \cos \phi=\mathbf{F} \cdot \mathbf{d}$
$\mathrm{W}_{\mathrm{s}}=1 / 2 \mathrm{kx}_{\mathrm{i}}{ }^{2}-1 / 2 \mathrm{kx}_{\mathrm{f}}{ }^{2}$
$\mathrm{P}=\mathrm{dW} / \mathrm{dt}$
$\mathrm{U}(\mathrm{x})={ }_{1 / 2} \mathrm{kx}^{2}$
$\Delta \mathrm{E}_{\mathrm{th}}=\mathrm{f}_{\mathrm{k}} \mathrm{d}$
$x_{\text {com }}=\int x d m$
$\mathbf{J}={ }_{\mathrm{ti}} \int^{\mathrm{tf}} \mathbf{F}(\mathrm{t}) \mathrm{dt}$
$\omega_{\mathrm{av}}=\Delta \theta / \Delta \mathrm{t}$
$\alpha=\mathrm{d} \omega / \mathrm{dt}$
$\omega^{2}=\omega_{\mathrm{o}}^{2}+2 \alpha \Delta \theta$
$a_{t}=r \alpha$
$I=\int r^{2} d m$
$\tau_{\text {net }}=\mathrm{I} \alpha$
$\mathbf{l}=\mathbf{r} \times \mathbf{p}$
$\Omega=\operatorname{Mgr} / \mathrm{I} \omega$

CONSTANTS

$$
\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2} \quad \mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}
$$

