The following equations will be given on the second exam in this form. All of your solutions for the problems should start from these equations.

## EQUATIONS

| $\mathbf{v}_{\mathrm{av}}=\Delta \mathbf{r} / \Delta \mathrm{t}$ | $\mathbf{v}=\mathrm{d} \mathbf{r} / \mathrm{dt}$ | $\mathbf{a}_{\mathrm{av}}=\Delta \mathbf{v} / \Delta \mathrm{t}$ |
| :---: | :---: | :---: |
| $\mathbf{a}=\mathrm{dv} / \mathrm{dt}$ | $\mathrm{v}^{2}=\mathrm{v}_{\mathrm{o}}^{2}+2 \mathrm{a} \Delta \mathrm{x}$ | $\Delta \mathrm{x}=\mathrm{v}_{\mathrm{o}} \mathrm{t}+1 / 2 \mathrm{at}^{2}$ |
| $\mathrm{v}=\mathrm{v}_{\mathrm{o}}+\mathrm{at}$ | $\Delta \mathrm{x}=1 / 2\left(\mathrm{v}_{\mathrm{o}}+\mathrm{v}\right) \mathrm{t}$ | $a=v^{2} / R$ |
| $\mathrm{v}=2 \pi \mathrm{r} / \mathrm{T}$ | $x=-b \pm$ sq.rt. $\left(b^{2}-4 a c\right) / 2 a$ |  |
| $\mathbf{F}_{\mathbf{N E T}}=\mathrm{ma}$ | $\mathrm{W}=\mathrm{F}_{\mathrm{g}}=\mathrm{mg}$ | $\mathrm{D}={ }_{1 / 2} \mathrm{CPAv}^{2}$ |
| $\mathrm{F}=\mathrm{Gm}_{1} \mathrm{~m}_{2} / \mathrm{r}^{2}$ | $\mathbf{F}_{1}=\int \mathrm{d} \mathbf{F}$ | $\mathrm{f}_{\mathrm{s}, \text { max }}=\mu_{\mathrm{s}} \mathrm{F}_{\mathrm{N}}$ |
| $\mathrm{f}_{\mathrm{k}}=\mu_{\mathrm{k}} \mathrm{F}_{\mathrm{N}}$ | $\mathrm{K}=1 / 2 \mathrm{mv}^{2}$ | $\mathrm{W}=\mathrm{Fd} \cos \phi=\mathbf{F} \cdot \mathbf{d}$ |
| $\mathrm{W}=\Delta \mathrm{K}$ | $\mathrm{F}_{\mathrm{x}}=-\mathrm{kx}$ | $\mathrm{W}_{\mathrm{s}}={ }_{1 / 2} \mathrm{kx}_{\mathrm{i}}{ }^{2}-1 / 2 \mathrm{kx}_{\mathrm{f}}^{2}$ |
| $\mathrm{W}={ }_{\mathrm{x} 1}{ }^{\mathrm{x} 2} \mathrm{~F}(\mathrm{x}) \mathrm{dx}$ | $\mathrm{P}_{\mathrm{avg}}=\mathrm{W} / \Delta \mathrm{t}$ | $\mathrm{P}=\mathrm{dW} / \mathrm{dt}$ |
| $\mathrm{W}=\int_{\mathrm{ri}} \mathrm{rf}^{\mathrm{rf}} \mathrm{F} \cos \phi \mathrm{dr}=\int_{\mathrm{ri}}{ }^{\mathrm{rf}} \mathbf{F} \cdot \mathbf{d r}$ | $\mathrm{U}(\mathrm{y})=\mathrm{mgy}$ | $\mathrm{U}(\mathrm{x})={ }_{1 / 2} \mathrm{kx}^{2}$ |
| $F(x)=-d U(x) / d x$ | $\mathrm{W}=\Delta \mathrm{E}=\Delta \mathrm{E}_{\text {mec }}+\Delta \mathrm{E}_{\text {th }}+\Delta \mathrm{E}_{\text {int }}$ | $\Delta E_{t h}=f_{k} d$ |
| $\mathrm{U}=-\mathrm{GMm} / \mathrm{r}$ | $\mathbf{r}_{\text {com }}=1 / \mathrm{M} \Sigma \mathrm{m}_{\mathrm{i}} \mathbf{r}_{\mathrm{i}}$ | $\mathrm{x}_{\text {com }}=\int \mathrm{xdm}$ |
| $\mathbf{p}=\mathrm{m} \mathbf{v}$ | $\mathbf{J}=\Delta \mathbf{p}$ | $\mathbf{J}={ }_{\mathrm{ti}}{ }^{\mathrm{tf}} \mathbf{F}(\mathrm{t}) \mathrm{dt}$ |
| $\mathbf{J}=\mathbf{F}_{\mathrm{avg}} \Delta \mathrm{t}$ | $\mathrm{s}=\mathrm{r} \theta$ | $\omega_{\mathrm{av}}=\Delta \theta / \Delta \mathrm{t}$ |
| $\omega=\mathrm{d} \theta / \mathrm{dt}$ | $\alpha_{a v}=\Delta \omega / \Delta t$ | $\alpha=\mathrm{d} \omega / \mathrm{dt}$ |
| $\omega=\omega_{\mathrm{o}}+\alpha \mathrm{t}$ | $\Delta \theta=\omega_{0} \mathrm{t}+1 / 2 \alpha \mathrm{t}^{2}$ | $\omega^{2}=\omega_{\mathrm{o}}^{2}+2 \alpha \Delta \theta$ |
| $\Delta \theta=1 / 2\left(\omega_{\mathrm{o}}+\omega\right) \mathrm{t}$ | $\mathrm{v}=\mathrm{r} \omega$ | $\mathrm{a}_{\mathrm{t}}=\mathrm{r} \alpha$ |
| $\mathrm{I}=\Sigma \mathrm{m}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}{ }^{2}$ | $\mathrm{K}=1 / 2 \mathrm{I} \omega^{2}$ | $\mathrm{I}=\int \mathrm{r}^{2} \mathrm{dm}$ |
| $\mathrm{I}=\mathrm{I}_{\mathrm{cm}}+\mathrm{Mh}^{2}$ | $\tau=\mathrm{Fr}_{\perp}=\operatorname{Frsin} \phi$ | $\tau_{\text {net }}=\mathrm{I} \alpha$ |
|  | $\boldsymbol{\tau}=\mathbf{r} \times \mathbf{F}$ | $\mathbf{l}=\mathbf{r} \times \mathbf{p}$ |
| $\tau_{\text {net }}=\mathrm{dl} / \mathrm{dt}$ | $\mathrm{L}=\mathrm{I} \omega$ | $\Omega=\mathrm{Mgr} / \mathrm{I} \omega$ |
| $\rho=\mathrm{M} / \mathrm{V}$ | $\mathrm{P}=\mathrm{F} / \mathrm{A}$ | $\mathrm{P}=\mathrm{P}_{\mathrm{o}}+\rho \mathrm{gh}$ |
| $\rho_{1} \mathrm{~A}_{1} \mathrm{v}_{1}=\rho_{2} \mathrm{~A}_{2} \mathrm{v}_{2}$ | $\mathrm{T}=\mathrm{T}_{\mathrm{C}}+273.15$ | $\begin{aligned} & \mathrm{p}_{1}+\rho \mathrm{gy}_{1}+1 / 2 \rho \mathrm{v}_{1}^{2}= \\ & \mathrm{p}_{2}+\rho \mathrm{gy}_{2}+1 / 2 \rho \mathrm{v}_{2}^{2} \end{aligned}$ |
| $\Delta \mathrm{L}=\alpha \mathrm{L} \Delta \mathrm{T}$ | $\mathrm{T}=9 / 5 \mathrm{~T}+32$ | $\mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$ |


| o | F |  |
| :---: | :---: | :---: |
| $\Delta \mathrm{V}=\beta \mathrm{V}_{\mathrm{o}} \Delta \mathrm{T}$ | $\mathrm{W}={ }_{\mathrm{Vi}} \mathrm{Vf}^{\mathrm{Pd}} \mathrm{PdV}$ | $\mathrm{Q}=\mathrm{mL}$ |
| $\Delta \mathrm{E}_{\mathrm{int}}=\mathrm{Q}-\mathrm{W}$ | $\mathrm{P}_{\text {cond }}=\mathrm{Q} / \mathrm{t}=\mathrm{kA}\left(\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}\right) / \mathrm{L}$ | $\operatorname{Prad}=\sigma \varepsilon \mathrm{AT}^{4}$ |
| $\mathrm{N}=\mathrm{nN}_{\mathrm{A}}$ | $\mathrm{M}_{\text {sam }}=\mathrm{nM}$ | $\mathrm{M}=\mathrm{mN} \mathrm{A}$ |
| $\mathrm{PV}=\mathrm{nRT}$ | $\mathrm{PV}=\mathrm{NkT}$ | $\mathrm{K}_{\mathrm{AV}}=3 / 2 \mathrm{kT}$ |
| $\mathrm{v}_{\mathrm{rms}}=$ sq.rt.(3RT/M) | $\lambda=\mathrm{V} /\left(\right.$ sq.rt. 2 ) $\pi \mathrm{d}^{2} \mathrm{~N}$ ) | $\mathrm{E}_{\mathrm{int}}=3 / 2 \mathrm{nRT}$ |
| $\mathrm{Q}=\mathrm{nC} \Delta \mathrm{T}$ | $\Delta \mathrm{S}={ }_{\mathrm{i}} \int^{\mathrm{f}} \mathrm{dQ} / \mathrm{T}$ | $\mathrm{e}=\|\mathrm{W}\| /\left\|\mathrm{Q}_{\mathrm{H}}\right\|$ |
| $\mathrm{T}=1 / \mathrm{f}$ | $\mathrm{K}=\left\|\mathrm{Q}_{\mathrm{L}}\right\|^{/ /}\|\mathrm{W}\|$ | $\mathrm{e}_{\mathrm{C}}=1-\mathrm{T}_{\mathrm{L}} / \mathrm{T}_{\mathrm{H}}$ |
| $\omega=2 \pi f$ | $\mathrm{x}(\mathrm{t})=\mathrm{x}_{\mathrm{M}} \cos (\omega \mathrm{t}+\phi)$ | $\mathrm{T}=2 \pi \mathrm{sq} . \mathrm{rt} .(\mathrm{m} / \mathrm{k})$ |
| $\mathrm{T}=2 \pi \mathrm{sq} . \operatorname{root}(\mathrm{L} / \mathrm{g})$ | $\mathrm{v}=\mathrm{f} \lambda$ |  |

## CONSTANTS

$$
\begin{array}{lll}
\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2} & \mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2} & \rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3} \\
1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa} & \mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K} & \mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}
\end{array}
$$

