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1 Introduction

A basic problem in the control system theory is the mathematical modeling
of a physical system. The modeling of many systems calls for high-order
dynamic equations. The presence of some “parasitic” parameters such as
small time constants, resistances, inductances, capacitances, moments of in-
ertia, and Reynolds number, is often the source for the increased order and
“stiffness” of these systems. The stiffness, attributed to the simultaneous
occurrence of “slow” and “fast” phenomena, gives rise to time scales. The
systems in which the suppression of a small parameter is responsible for the
degeneration (or reduction) of dimension (or order) of the system are labeled
as “singularly perturbed” systems, which are a special representation of the
general class of time-scale systems. The “curse” of dimensionality coupled
with stiffness poses formidable computational complexities for the analysis
and design of multiple time-scale systems.

From the perspective of systems and control, Kokotovic and Sannuti
[372, 233, 373] were the first to explore the application of the theory of sin-
gular perturbations to continuous-time optimal control, both open-loop for-
mulation leading to two-point boundary value problem [233] and closed-loop
formulation leading to the matrix Riccati equation [373]. The methodology of

1Note: Parts of this article were adapted from, D. S. Naidu and A. J. Calise, “Singular
perturbations and time scales in guidance and control of aerospace systems: a survey”,
AIAA Journal of Guidance, Control and Dynamics, Vol. 24, pp. 1057-1078, November-
December, 2001. Copyright c© 2001 by D. Subbaram Naidu and Anthony J. Calise
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singular perturbations and time-scales (SPaTS), “gifted” with the remedial
features of both dimensional reduction and stiffness relief, is considered as a
“boon” to systems and control engineers. The technique has now attained
a high level of maturity in the theory of continuous-time and discrete-time
control systems described by ordinary differential and difference equations
respectively. The growth of research activity in the field of SPaTS resulted
in the publication of excellent survey papers [439, 336, 50, 250, 149, 231, 440,
226, 371, 227, 321, 315, 192, 244, 313, 51, 441, 316, 314, 317], reports and
proceedings of special conferences [232, 105, 15]. Also, see research mono-
graphs and books (including the general area of singular perturbation theory)
[110, 102, 458, 198, 80, 103, 327, 442, 337, 104, 296, 299, 203, 328, 64, 183,
57, 325, 329, 411, 229, 230, 161, 228, 32, 311, 118, 141, 245, 174, 309, 338, 49,
452, 143, 9, 443, 204, 205, 31, 376, 10, 138], encyclopedia [403] and control
handbook [206].

In this paper we present an overview of SPaTS in control theory and ap-
plications during the period 1985-present (the last such overviews or surveys
were provided by [231, 371, 226, 227]). This overview is in no way meant to
be an exhaustive survey due to limitations on space. A brief introductory
material is provided to those readers who do not have prior knowledge in
SPaTS.

2 Modeling

2.1 Singularly Perturbed Systems

Here, we present some basic definitions and mathematical preliminaries of
SPaTS. Consider a system described by a linear, second order, boundary
value problem

εẍ(t) + ẋ(t) + x(t) = 0; x(t = 0) = xi, x(t = 1) = xf (1)

where the small parameter ε multiplies the highest derivative. Here and in
the rest of this paper, dot (.) and double dot (..) indicate first and second
derivatives, respectively, with respect to t. As ε tends to zero either from
positive or negative values, we have

lim
ε→0+

{x(t, ε)} = xf exp(1 − t), 0 < t ≤ 1

lim
ε→0−

{x(t, ε)} = xiexp(−t), 0 ≤ t < 1. (2)

The degenerate (outer, or reduced order) problem,

ẋ(0)(t) + x(0)(t) = 0 (3)

obtained by suppressing the small parameter ε in (1), has the boundary
condition x(0)(t = 1) = xf if ε tends to 0+ and x(0)(t = 0) = xi if ε tends
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to 0−. In either case, one boundary condition has to be “sacrificed” in the
process of degeneration. The important features of singular perturbations
are summarized as follows.

1. The problem (1) where the small parameter ε is multiplying the highest
derivative is called a “singularly perturbed” (singular perturbation)
problem if the order of the problem becomes lower for ε = 0 than for
ε �= 0 [458].

2. There exists a boundary layer where the solution changes rapidly.

3. The degenerate problem, also called the “unperturbed” problem, is of
reduced order and cannot satisfy all the given boundary conditions of
the original (full, or perturbed) problem.

4. The singularly perturbed problem (1) has two widely separated char-
acteristic roots giving rise to “slow” and “fast” components (modes) in
its solution. Thus, the singularly perturbed problem possesses a “two-
time-scale” property. The simultaneous presence of “slow” and “fast”
phenomena makes the problem “stiff” from the numerical solution point
of view.

2.2 Continuous-Time Control Systems

Let us now introduce the idea of singular perturbations from the systems
and control perspective. Using the state variable representation for a general
case of (1), a linear time-invariant system becomes

ẋ(t) = A11x(t) + A12z(t) + B1u(t), x(t = 0) = x0,

εż(t) = A21x(t) + A22z(t) + B2u(t), z(t = 0) = z0, (4)

where, x(t) and z(t) are n− and m−dimensional state vectors, respectively,
u(t) is an r−dimensional control vector and ε is a small, scalar parameter.
The matrices A and B are of appropriate dimensions. The system (4) is said
to be in the singularly perturbed form in the sense that by making ε = 0 in
(4) the degenerate system

ẋ(0)(t) = A11x(0)(t) + A12z(0)(t) + B1u(t), x(0)(t = 0) = x0

0 = A21x(0)(t) + A22z(0)(t) + B2u(t), z(0)(t = 0) �= z0 (5)

is a combination of “differential” system in x(0)(t) of order n and “algebraic”
system in z(0)(t) of order m. The effect of degeneration is not only to “crip-
ple” the order of the system from (n + m) to n by “dethroning” z(t) from
its original state variable status, but also to “desert” its initial conditions z0.
This is a harsh “punishment” on z(t) for having a close association (multi-
plication) with the singular perturbation parameter ε. We assume that the
matrix A22 is nonsingular and hence we have a standard singular perturba-
tion problem. However, [209, 295, 237, 201] deal with the situation where
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A22 may be singular in which case it is called a nonstandard singular pertur-
bation problem. We can also view the degeneration as equivalent to letting
the forward gain of the system go to infinity.

In the case of a nonlinear singularly perturbed system, we have

ẋ(t) = f(x(t), z(t),u(t), ε, t), x(t = 0) = x0

εż(t) = g(x(t), z(t),u(t), ε, t), z(t = 0) = z0. (6)

In the above discussion, we assumed an “initial” value problem. As a “bound-
ary” value problem, we have the conditions as x(t = 0) = x0, and z(t = tf ) =
zf or other sets of boundary conditions.

Also, see [11] for a new method for modeling a two-time scale system in
the singularly perturbed form using an “ordered” real Schur decomposition
which can be easily computed. In [397], relative gain array, used in the design
of multivariable control systems to determine the best pairings of the input
and output variables, was applied to singular perturbations illustrating via a
three-stage chemical distillation system.

2.3 Discrete-Time Control Systems

As in the case of continuous-time systems, there are singularly perturbed,
discrete-time control systems. Basically, there are two sources of modeling
the discrete-time systems [325, 311].

Source 1: Pure Difference Equations: For a general linear, time-
invariant discrete-time system,

x(k + 1) = A11x(k) + ε1−jA12z(k) + B1u(k)
ε2iz(k + 1) = εiA21x(k) + εA22z(k) + εjB2u(k) (7)

i ∈ {0, 1}; j ∈ {0, 1}, where, x(k) and z(k) are n- and m-dimensional state
vectors respectively, and u(k) is an r-dimensional control vector. Depending
on the values for i and j, the three limiting cases of (7) are (i) C-model
(i = 0; j = 0), where the small parameter ε appears in the “column” of the
system matrix, (ii) R-model (i = 0; j = 1), where we see the small parameter
ε in the “row” of the system matrix, and (iii) D-model (i = 1; j = 1), where ε
is positioned in an identical fashion to that of the continuous-time system (4)
described by “differential” equations. See Refs. [325, 311] for further details.
Source 2: Discrete-Time Modeling of Continuous-Time Systems:
Under this case, either numerical solution or sampling of singularly per-
turbed continuous-time systems results in discrete-time models. Consider
the continuous-time system (4). Applying a block diagonalization transfor-
mation [280], the original state variables x(t) and z(t) can be expressed in
terms of the decoupled system consisting of slow and fast variables xs(t) and
zf (t) respectively. Using a sampling device with the decoupled continuous-
time system, we get a discrete-time model which critically depends on the
sampling interval T [195].
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Depending on the sampling interval, we get a “fast”(subscripted by f) or
“slow” (subscripted by s) sampling model. In a particular case, when Tf = ε,
we get the fast sampling model as

x(n + 1) = (Is + εD11)x(n) + εD12z(n) + εE1u(n)
z(n + 1) = D21x(n) + D22z(n) + E2u(n) (8)

where n denotes with the fast sampling instant (not to be confused with the
system order described previously). Similarly, if Ts = 1, we obtain the slow
sampling model as

x(k + 1) = E11x(k) + εE12z(k) + E1u(k)
z(k + 1) = E21x(k) + εE22z(k) + E2u(k) (9)

where k represents the slow sampling instant, and n = k[1/ε]. Also, the D
and E matrices are related to the matrices A, B, and transformation matrices
[195]. Note that the fast sampling model (8) can be viewed as the discrete
analog (either by exact calculation using the exponential matrix or by using
the Euler approximation) of the continuous-time system

dx
dτ

= εA11x(τ) + εA12z(τ) + εB1u(τ)

dz
dτ

= A21x(τ) + A22z(τ) + B2u(τ) (10)

which itself is obtained from the continuous-time system (4) using the stretch-
ing transformation τ = t/ε. It is usually said that the singularly perturbed
continuous-time systems (4) and (10) are the slow time scale (t) and fast time
scale (τ) versions, respectively. Also, note that the slow sampling model (9)
is the same as the state space C-model.

See [28, 41] for some more results regarding slow and fast sampling models
for singularly perturbed systems.

3 Singular Perturbation Technique

3.1 Basic Theorems

For simplicity, consider the nonlinear initial value problem (6) without input
function u as

ẋ(t) = f(x(t), z(t), ε, t), x(t = 0) = x0

εż(t) = g(x(t), z(t), ε, t), z(t = 0) = z0. (11)

Here, we follow the seminal works of Tikhonov [430] Vasileva [439]. By setting
the small parameter ε = 0 in (11), the degenerate problem is given by

ẋ(0)(t) = f(x(0)(t), z(0)(t), 0, t) (12)
0 = g(x(0)(t), z(0)(t), 0, t). (13)



238 D. S. Naidu

Assuming that we are able to solve the above algebraic equation (13), we
have

z(0)(t) = h(x(0)(t), t). (14)

Using (14) in (12), the reduced order problem becomes

ẋ(0)(t) = f0(x(0)(t), t), x(0)(t = 0) = x0. (15)

From (14), it is evident that z(0)(0) is, not in general, equal to z0. The
two important features of singular perturbation theory are degeneration and
asymptotic expansion. An important assumption is given below.

Assumption 1 The solution z(0)(t) of (12) is an asymptotically stable equi-
librium point of the boundary layer equation

dz(τ)
dτ

= g(x(0), z(τ), 0, 0) (16)

as τ → ∞. This means that the Jacobian matrix gz of (16) has all eigenvalues
with negative real parts.

In degeneration, our interest is to find the conditions under which the
solution of the full problem (11) tends to the solution of the degenerate
problem (15). A theorem due to Tikhonov [430] concerning degeneration
is given below without listing all the assumptions (for details see [458] and
[311]).

Theorem 3.1 The exact solutions x(t, ε) and z(t, ε) of the full problem (11)
are related to the solutions x(0)(t) and z(0)(t) of the degenerate problem (12)
and (13) as

lim
ε→0

[x(t, ε)] = x(0)(t), 0 ≤ t ≤ T

lim
ε→0

[z(t, ε)] = z(0)(t), 0 < t ≤ T (17)

under certain assumptions [458, 311]. Here, T is any number such that
z(0)(t) = h(x(0)(t), t) is an isolated stable root of (13) for 0 ≤ t ≤ T . The
convergence is uniform in 0 ≤ t ≤ T for x(t, ε), and in any interval 0 < t1 ≤
t ≤ T for z(t, ε) and the convergence of z(t, ε) will usually be nonuniform at
t = 0.

Also, see the result in [20, 451] where the reduced order system is not the
standard limit as ε → 0 but invariant measures of parameterized fast flow
are employed to describe the limit behavior.

The second feature in singular perturbation theory is the asymptotic ex-
pansion for the solutions. The main result was given by Vasileva [439, 458,
311] in the form of the following theorem.
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Theorem 3.2 Under the same assumptions required for Tikhonov’s theorem
[430, 439, 458], there exist an ε0 > 0, 0 ≤ ε ≤ ε0, and R(t, ε) and S(t, ε)
uniformly bounded in the interval considered, such that

x(t, ε) =
j∑

i=0

[
x(i)(t) + x̄(i)(τ) − x(i)(τ)

]
εi + R(t, ε)εj+1

z(t, ε) =
j∑

i=0

[
z(i)(t) + z̄(i)(τ) − z(i)(τ)

]
εi + S(t, ε)εj+1 (18)

where, τ = t/ε, x(i)(t) and z(i)(t) are the outer or degenerate series solu-
tions (so-called because these solutions are valid outside the boundary layer,
x̄(i)(τ) and z̄(i)(τ) are the inner solutions (so-called because these solutions
are valid inside the boundary layer, and x(i)(τ) and z(i)(τ) are the interme-
diate solutions (so-called because of the common part of the outer and inner
solutions).

The details of obtaining these various series solutions are given in [458, 311].
The inner and intermediate series solutions are obtained from the “stretched”
system

dx(τ)
dτ

= εf(x(τ), z(τ), ε, ετ)

dz(τ)
dτ

= g(x(τ), z(τ), ε, ετ) (19)

obtained by using the stretching transformation τ = t/ε in (11).
Alternatively, the solution is obtained as

x(t, ε) = x0(t, ε) + xc(τ, ε)
z(t, ε) = z0(t, ε) + zc(τ, ε) (20)

where, xc(τ) = x̄(τ)−x(τ) and zc(τ) = z̄(τ)−z(τ) are often called “boundary
layer corrections” which are obtained as series solutions from [337, 311]

dxc(τ)
dτ

= εf(x0(ετ, ε) + xc(τ, ε), z0(ετ, ε) + zc(τ, ε), ε, ετ) −

εf(x0(ετ, ε), z0(ετ, ε), ε, ετ)
dz(τ)
dτ

= g(x0(ετ, ε) + xc(τ, ε), z0(ετ, ε) + zc(τ, ε), ε, ετ) −

g(x0(ετ, ε), z0(ετ, ε), ε, ετ) (21)

In the case of a singularly perturbed linear system (4), the above two
theorems imply that stability conditions require that

Re {λi[A22]} < 0, i = 1, ..., m. (22)
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In other words, if the matrix A22 is stable, then the asymptotic expansions
can be carried out to arbitrary order [230, 51].

In the case of a general boundary value problem, it is expected to have ini-
tial and final boundary layers and hence the asymptotic solution is obtained
as an outer solution in terms of the original independent variable t, initial
layer correction in terms of an initial stretched variable τ = t/ε, and final
layer correction in terms of a final stretched variable σ = (tf − t)/ε [338].

In [92], a Tikhonov-type theorem was developed for singularly perturbed
differential inclusions. Also, see [162] for an exposition of singularly per-
turbed initial value problems, and some recent results in [44, 42, 43] for mod-
eling and analysis of two-time scale, discrete nonlinear systems including a
discrete version of the well-known Tikhonov’s theorem for continuous-time
system.

4 Time Scale Analysis

In general, a time-scale system need not be in the singularly perturbed form
with a small parameter multiplying the highest derivative or some of the state
variables of the state equation as given in (4) or (6). In other words, a singu-
larly perturbed structure is only one form of the two-time scale systems. In
time-scale analysis of a linear system, a block diagonalization transformation
[412] is used to decouple the original two-time scale system into two low-order
slow and fast subsystems. Let us consider a general two-time scale, linear
system

ẋ(t) = A11x(t) + A12z(t) + B1u(t)
ż(t) = A21x(t) + A22z(t) + B2u(t) (23)

possessing two widely-separated groups of eigenvalues. Thus, we assume
that the n eigenvalues of the system (23) are “small” and the remaining m
eigenvalues are “large”, giving rise to slow and fast responses respectively.
We now use a two-stage linear transformation [56, 225],

xs(t) = (Is − ML)x(t) − Mz(t)
zf (t) = Lx(t) + Ifz(t) (24)

to decouple the original system (23) into two slow and fast subsystems,

ẋs(t) = Asxs(t) + Bsu(t)
żf (t) = Afzf (t) + Bfu(t) (25)

where,

As = A11 − A12L; Af = A22 + LA12

Bs = B1 − MLB1 − MB; Bf = B2 + LB1 (26)
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L and M are the solutions of the nonlinear algebraic Riccati type equations

LA11 + A12 − LA12L− A22L = 0
A11M − A12LM− MA22 − MLA12 + A12 = 0 (27)

and I is unity matrix.
Further results on control of two-time scale systems are found in [207]

where parameterization of the set of all stabilizing compensators was achieved
preserving the two-time scale character. Also, see [269] for an algebraic
approach to time-scale analysis and [286] for more results on decoupling ideas
where fast subsystem is not influenced by slow subsystem and [287] for a
similar treatment for a nonlinear system.
Similar analysis exists for two-time scale discrete-time systems [325, 278,
218, 311] and see [109] for an overview of singularly perturbed discrete-time
system.

An interesting work [87] on the representation of a system by bond graph
model allows greater simplification of order reduction and decoupling of the
system and the results are very close to those obtained by singular pertur-
bation method.

Time scale analysis of input-output systems was studied in [400, 401, 402]
including the study of positive realness for both linear and nonlinear systems.

See [78] for a coordinate-free or geometric setting for decomposing a linear
singularly perturbed system using ideas of analytic manifolds.

In [466], a new approach to singular systems which includes singular per-
turbations was presented with applications to proportional and derivative
control and state feedback.

Using delta operators [297], it was shown in [429] with a correction in [459]
that, under sampling of a continuous linear single-input, single output (SISO)
system of relative degree ≤ 2, the resulting delta model can be regarded as
a regular perturbation if the sampling interval is considered as a parameter
but that the zero dynamics is singularly perturbed.

In [76], a new general bilinear relationship was found between the con-
tinuous and discrete generalized singular perturbation (GSP) reduced order
models with applications to balanced systems. Also, see related results in
[268, 350, 332] and [310] for a further generalization of GSP by introducing
several parameters that can be tuned to provide a specific performance.

In [445], continuity properties of the solutions to a differential inclusion
subject to a singular perturbation were studied. Also, asymptotic properties
of nonlinear, discrete-time control systems were discussed in [154, 155, 156]
using averaging method and differential inclusions.

Various schemes were proposed for both state feedback and output feed-
back control of discrete-time systems in [274, 281, 260, 258, 259, 262].
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5 SPaTS in Optimal Control

5.1 Open-Loop Optimal Control

The need for order reduction associated with singular perturbation methodol-
ogy is most acutely felt in optimal control design which demands the solution
of state and costate equations with initial and final conditions. For the sin-
gularly perturbed continuous-time, nonlinear system (6), the performance
index in a simplified form is usually taken as

J = S (x(tf ), z(tf ), tf , ε)) +
∫ tf

0

V (x(t), z(t),u(t), t, ε) dt. (28)

Using the well-known theory of optimal control [48], the optimization of the
performance index (28) subject to the plant equation (6) and the boundary
conditions (with fixed initial conditions x(t = 0) = x0, z(t = 0) = z0 and
free final conditions x(tf ) = xf , z(tf ) = zf ), leads us to (for unconstrained
control).

0 = +
∂H
∂u

dλx

dt
= −∂H

∂x
; λx(tf ) =

∂S

∂x

∣∣∣∣
tf

ε
dλz

dt
= −∂H

∂z
; ελz(tf ) =

∂S

∂z

∣∣∣∣
tf

(29)

where, λx and ελz are the costates or adjoints corresponding to the states
x(t) and z(t) respectively, and H is the Hamiltonian given by

H = V (x(t), z(t),u(t), t, ε) +
λ′
xf(x(t), z(t),u(t), t, ε) + λ′

zg(x(t), z(t),u(t), t, ε) (30)

where, ′ denotes transpose. Note that u(t) = arg minu∈U{H} for constrained
control, where U is a set of admissible controls. The system of state equations
(6) and costate equations (29) constitute a singularly perturbed, two-point
boundary value problem (TPBVP) leading to the formulation of the solution
in terms of an outer solution, initial layer correction and final layer correction.
It is to be noted that the final boundary layer system needs to be asymp-
totically stable in backward time, i.e., inherently unstable in forward time.
This situation can create difficulties in trying to satisfy the given boundary
conditions and Kelley [202] and Cliff [77] suggested that a proper selection
of boundary conditions to suppress any unstable component of the boundary
layer solution.

Also, note that there is another important Mayer problem in optimal
control where the performance index (28) contains the terminal cost function
only [48]. The optimal control and the related tracking problems were studied
by many workers [94, 453, 187, 188, 19].
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See [131, 132, 133] for a new methodology on solving singularly perturbed
optimal control problems where the traditional boundary layer method [230,
443] cannot be used when the optimal control contains fast oscillations. The
new method is based on approximation of a family of low-order solutions
using differential inclusions.

In particular, optimal control problem with control constraints where the
fast system contains a stable part and an unstable part which are weakly
coupled to each other was studied in [94]. Further results including on state-
constrained optimal control problems are found in [193, 213, 52, 134, 37, 27,
38, 39].

See [125] for a study on Hamilton-Jacobi equation resulting from the
optimal control of a nonlinear singularly perturbed system and a method
of exact decomposition of the full-order slow-fast manifold into a low-order
slow submanifold of the Hamiltonian system and a fast submanifold of an
auxiliary system. See similar result [126] for a linearized system. Also, see
[157] for developing a maximum principle of Pontryagin type for the time
optimal control of a hybrid system described by coupled ordinary differential
equations and partial differential equations.

Also, see [298] for solving optimal control problems using averaging method
and [352] for studying the convergence of value-functions for a nonlinear opti-
mal control problem with singular perturbation. Dynamic programming has
also been used for singularly perturbed optimal control problems in [236, 33].

Similar results exist for singularly perturbed, discrete-time optimal con-
trol systems [266, 325, 311].

5.2 Closed-Loop Optimal Control

The closed-loop optimal control has some very elegant results for linear sys-
tems leading to a matrix Riccati differential or algebraic equations. For the
singularly perturbed, linear continuous-time system (4), consider a quadratic
performance index [311]

J =
1
2
y′(tf )Sy(tf ) +

1
2

∫ tf

0

(y′(t)Qy(t) + u′(t)Ru(t)) dt (31)

where, y = [x, εz]′, S and Q are positive semidefinite (n + m)x(n + m)
dimensional matrices, and R is a positive definite rxr matrix, we arrive at
the closed-loop optimal control as

u(t) = −R−1B′Py(t) (32)

Here, P is an (n + m)x(n + m)-dimensional, positive-definite, symmetric
matrix satisfying the singularly perturbed matrix Riccati differential equation

Ṗ(t) = −P(t)A − A′P(t) + P(t)BR−1B′P(t) − Q, P(tf ) = S (33)
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where,

A =
[

A11 A12
A21

ε
A22

ε

]
; B =

[
B1
B2
ε

]
;

P(t) =
[

P11(t) εP12(t)
εP′

12(t) εP22(t)

]
(34)

Note that the matrix P in the above Riccati equation, is dependent on the
small parameter ε and is in the singularly perturbed form. Assuming se-
ries expansions for P’s, we can get their asymptotic series solutions. There
are several studies on closed-loop optimal control of singularly perturbed
continuous-time systems [226, 227, 53, 94, 453, 303]. The linear quadratic
regulator problem with three-time-scale behavior has been investigated in
[374]. Related work is the closed-loop optimal control including tracking
linear and nonlinear systems decomposed into slow and fast subsystems
[152, 425, 365, 160, 200, 126].

A two-time scale approximation to the linear quadratic optimal output
regulator problem was examined in Refs. [302, 301, 303]. Also, see [9] for
optimal control of bilinear systems. Also see [308] for design of a high gain
regulator for linear multivariable system in terms of decoupling and the sin-
gular perturbation theory. Also, see [455, 454] for more details on complete
decomposition of sub-optimal regulator for singularly perturbed systems.

Similar results exist for closed-loop optimal control of singularly per-
turbed, discrete-time linear systems, leading to matrix Riccati difference
equation [311, 265, 266, 351, 323, 325, 341, 257, 258, 259]. Time scale analysis
of optimal regulator problems in discrete-time control systems was considered
in [341, 195, 196, 319, 197, 320, 275, 276]. Time-optimal control of singularly
perturbed continuous systems was studied in [94, 385] and discrete systems
in [384]. Also, see [331] for heuristic approach to reducing the order of a
two-time scale discrete, linear, time-varying system subjected to white noise
representation of a fast state vector. In [169] the effect of quantization of
control signal was studied and [170] analyzed a piece-wise linear system.

Another type of problem that arises more often in aerospace systems is
differential games. In the design of multi-input control problems, the objec-
tive in the optimal policy may be met by formulating the control problem as
a differential game problem. In a general differential game, there are several
players, each trying to minimize his or her individual cost functional. Each
player controls a different set of inputs to a single system. The strategies usu-
ally considered are Pareto optimal, Nash equilibrium or Stackelberg [214]. In
the case of two-player Nash game, we have

ẋ(t) = f(x(t), z(t), u1(t), u2(t), t), x(t = 0) = x0

εż(t) = g(x(t), z(t), u1(t), u2(t), t), z(t = 0) = z0 (35)
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and the performance index

J =
∫ tf

0

Vi(x(t), z(t), u1(t), u2(t), t)dt, i = 1, 2. (36)

The main question investigated has been one of well-posedness whereby the
limit of performance using the exact strategies as ε → 0 is compared to the
performance using simplified strategies with ε = 0. The problem is said to be
well posed if the two limits are equal and the singularly perturbed zero-sum
games are always well posed. Also, it is important to note that the structure
of a well-posed singularly perturbed (two-player) Nash game is composed of
a reduced-order Nash game and two independent optimal control problems
of the players [368]. Further results on well-posedness are available in [136]
for stochastic systems. These and other aspects of differential games have
been studied in [369, 370, 367, 371, 133, 424, 460].

Time-optimal control of singularly perturbed systems with an applica-
tion to disk-drive actuator was discussed in [18, 17]. In [75], an optimal
control problem exhibiting chattering phenomena was transformed into a
problem similar to a relaxation oscillator, having slow, almost equilibrium
motions connected by fast, jump type transitions and an asymptotic expan-
sion constructed. A new design method for regulator problems for singu-
larly perturbed systems with and without constrained controls was given in
[435, 436].

Matrix Riccati Equations

Gajić and his associates [135, 159, 140, 165, 141, 390, 391, 142, 353, 423,
143, 392, 393, 139, 85, 138] have developed systematic methodologies for
exact decomposition of algebraic Riccati equations (including numerical al-
gorithms) arising in optimal control of singularly perturbed deterministic and
stochastic and continuous-time and discrete-time systems. See their recent
book [138] for complete details. In particular, recursive algorithm for solving
the cross-coupled algebraic Riccati equations arising in singularly perturbed
systems have been developed in [300, 306, 307]. Further, the Kleinman al-
gorithm was used in [304] to solve the algebraic Riccati equation where the
quadratic terms may be indefinite.

A new method for composite optimal control was proposed in [457, 461,
460] based on a generalized algebraic Riccati equation arising in descriptor
systems and valid for both standard and nonstandard singularly perturbed
systems. Also, see [456] for further details on this topic.

A method is developed in [464] for asymptotic solution of the optimal
periodic control of linear systems

A “cheap” control problem where the control cost is associated with a
small parameter was investigated by [379, 374, 254, 365, 36, 349, 386].
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6 Other Control Problems

6.1 Nonlinear Systems and Stability

Here, we review the SPaTS methodology as applicable to nonlinear systems
and the related stability problems.

In [364], a composite control is designed for stabilization and regulation of
a class of nonlinear singularly perturbed systems establishing well-posedness
of the full regulator problem. Also see related works by the same authors
[363, 362].

See [222, 220, 215, 217] for addressing feedback linearization of full order
nonlinear system via that of reduced-order systems. Also, see [389, 388] for
design of composite control for a particular class of nonlinear systems using
integral manifold approach. Hopf bifurcation in the simplest way in which
periodic solutions can emerge from an equilibrium point of an autonomous
systems described by ordinary differential equations containing a small pa-
rameter. See relevant results in [5]

In [89] one finds a study on asymptotic stability of a three-time scale
nonlinear system and [93] for studying Lipschitz properties of linear singularly
perturbed systems. Also see [419] for the stability analysis using relaxed
method for nonlinear systems with periodic input. It was shown in [377] that
when a linear or nonlinear system with relative degree equal or higher than
2, then their zero dynamics may be singularly perturbed.

For further results in nonlinear systems, see [333, 22, 23] where the stabi-
lization of a class of nonlinear systems was presented using singular perturba-
tion principles and high-gain observer designs; [60] for proposing a globally
exponentially stabilizing composite feedback control for a general class of
nonlinear systems by choosing two appropriate Lyapunov functions one for
the reduced-order system and the other for boundary layer system and then
forming a composite Lyapunov function to investigate the stability for the
full-order nonlinear system; [284] for analysis of nonlinear problems using
geometric approach.

Also, a system F is said to be D-stable if the eigenvalues of DF have neg-
ative real parts for any diagonal matrix D with positive diagonal elements.
The issues of D stability for singularly perturbed systems were discussed in
[8]. Regarding stability issues, see some results in [4, 161, 291, 115, 260, 383,
259, 267, 292, 151, 180, 59, 256, 179] for stability bounds on the singular
perturbation parameter for both continuous-time and discrete-time systems.
For discrete-time systems in particular, stability bounds on the small para-
meter were obtained in [61] for a composite controlled system in terms of
the bounds for subsystems. Also, see [264, 256] for more on this topic. A
related problem of utilizing guardian map theory was studied in [378] to in-
vestigate stability issues of linear time-invariant systems containing singular
perturbation parameter ε and another uncertain parameter µ.

In [71], analysis of a singularly perturbed system having a reduced-order
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system that is input-to-state stable with respect to disturbances was per-
formed. Also see [68] to design a well-conditioned state feedback controllers
using a combination of singular perturbation and geometric methods for a
two-time scale nonlinear system and [69] for developing a feedforward/feedback
control methodology for a nonlinear system with time-varying disturbances.
Also, see [84] for showing that the full-order system is exponential stable if
the reduced order slow and fast subsystems are exponentially stable.

In [98] find a detailed study of the stability radius of a singularly perturbed
system based on generalized Popov-Yakubovich theory and work in [158]
investigates on the problem of asymptotics of Lyapunov exponents for a class
of nonlinear singularly perturbed systems using an averaging technique.

See a recent result [437] for a multivariable circle criteria for multipa-
rameter singularly perturbed systems obtained directly without using the
Kalman-Yukubovich-Popov lemma based on the results of [435, 436].

Integral Manifold Theory

For some results on the topic of manifolds theory, see [413, 234, 14] and
[167, 167] for an integral manifold approach to a class of single-input, single-
output non-minimum phase linear systems with time-scale character.

Further, the decomposition of singularly perturbed systems using integral
manifold approach [129, 422, 230] was discussed for linear and nonlinear
optimal control theory by Fridman and associates [121, 120, 122, 124, 123,
125, 126, 128]. In particular, the exact pure-slow and pure-fast decomposition
of the linear quadratic optimal control problems was addressed based on slow-
fast integral manifold theory in [129, 413, 422, 121, 122, 124] for both finite
horizon and infinite horizon cases similar to the Hamilton approach [423].
The approach to H∞ optimal control of time-delay systems was discussed
in [128, 128] and to some classes of nonlinear optimal control problems in
[413, 125, 126].

6.2 Robustness

Here we briefly present the robustness of singularly perturbed linear and
nonlinear systems. See [216] for feedback stabilization of a nonlinear system
subject to two sources of uncertainty due uncertain elements and parameters
and the unmodeled high frequency dynamics and [395] for an investigation
of the problem of robust stability and robust disturbance attenuation with
norm-bounded parameter uncertainties in both state and output relations.

In [62] we find two types of robust controllers for stabilizing singularly
perturbed discrete-time bilinear systems, one is ε-dependent and the other
ε-independent. See [72, 70] for developing robust controllers for a multi-input
and multi-output (MIMO) two-time scale systems. See [111] for a brief study
on the robustness of a discrete-time system with unmodeled high-frequency
dynamics showing that the frequency of unmodeled dynamics needs to be
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much higher than the sampling frequency. See related results in [450, 340,
261, 434].

For synthesizing a robust output feedback controller that ensures bound-
edness and robust asymptotic output tracking for a system with time-varying
uncertain variables using a high-gain observer, see [67]. Also, see [79] for de-
signing robust controllers for systems with order uncertainty.

Recently [210] addresses the design of a robust output feedback controller
for minimum phase nonlinear systems to achieve asymptotic tracking and
disturbance rejection.

6.3 High-Gain Feedback

The high-gain feedback is a source for singular perturbation behavior of any
physical system. In [361], a stabilizing high-gain dynamic output feedback
controller with almost-disturbance-decoupling property is designed for a class
of square-invertible and minimum phase systems and see [99] for stabilizing
a linear system by using high-gain feedback using procedures similar to the
stabilization of singularly perturbed systems. Also, see [283] for investigating
high-gain state and output feedback for nonlinear systems using a control-
dependent fast equilibrium manifold and change of coordinates and [366]
for developing a systematic general theory of assigning desired time-scale
structure to a multivariable system via either state or output feedback.

6.4 Observers

For singular perturbation analysis using observer principles, see [95] for de-
signing mutli-time scale observers for linear systems with several time scales
and [130] for placement and observer designs, [334] for designing a stabiliz-
ing controller in terms of the controllers for the slow and fast subsystems of
the original shift-invariant discrete-time singularly perturbed systems with
inaccessible states. Also see [432, 433, 431] for this and related topics in
discrete-time systems.

An interesting approach to the design of discrete-time observers for non-
linear singularly perturbed continuous-time systems based on inversion of
state-to-measurement maps was given in [398].

Also, see [22, 23, 86] where a separation principle was advocated for stabi-
lization of a class of nonlinear systems using fast high-gain observer designs.

6.5 Multi-Time-Scale and Stochastic Systems

In multimodeling or multiparameter (multi-time-scale) deterministic and sto-
chastic systems, we decompose a full-order system with several small parame-
ters into one low-order slow subsystem and several low-order fast subsystems.
The corresponding results are found in [3, 221, 247, 6, 7, 249, 164, 208, 199,
248, 153, 85].
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Further, see [273, 270, 271, 272] for treatment of multitime scale systems
from the frequency domain point of view. Further results on this are found in
[335] for a study of the asymptotic behavior of the zeros of a two-frequency
scale transfer function in terms of the zeros of its slow and fast transfer
functions.

For discrete-time control systems with multi-time scale character, see
[318, 242, 238, 255, 239, 240, 343, 241]

In stochastic systems, where the system is described by a set of sto-
chastic differential equations containing small parameters, there are several
results [212, 33, 246, 32, 245, 467, 1, 2, 191, 46, 201, 414] (to mention a few).
In addition, see [116] for optimal control of a hybrid system having a fast
deterministic system and a slow stochastic jump process.

See [108] for a highlight of the interplay of two asymptotic phenomena
in singularly perturbed systems one arising in deterministic systems and the
other arising in systems driven by wide-band noise and [137] for an LQG
problem for multi-time scale systems. Also, see [177] for a study of singularly
perturbed systems in the presence of noise under two aspects of quasi-steady
state and averaging principles and [101] for a study on a singularly perturbed
stochastic system such as phase locked loop system.

6.6 H∞ and Other Control Problems

Some of the first works to examine the H∞ control of singularly perturbed
systems are [272, 211, 449]. Further, Başar et. al., using differential game
theoretic approach, studied the H∞ optimal control of singularly perturbed
systems for both finite and infinite horizons, under perfect state measure-
ments [344] and under imperfect state measurements [345], robust controller
design for nonlinear systems [26, 347] and the optimal control of a class of
stochastic singularly perturbed systems with perfect and noisy state mea-
surements with positively and negatively exponential quadratic cost [346].
Further, see [305] for near-optimal Hinf control problems using iterative al-
gorithms.

Also see [428] for showing that any state/output feedback robust H∞
controller of the linearized singularly perturbed system yields a local solution
of the nonlinear H∞ control system.

In [122, 124], one finds exact decomposition of the full-order matrix Ric-
cati equations into reduced-order pure-slow and pure-fast equations arising
in H∞ optimal control and see [128] for an investigation of achieving min-
imum entropy by static output feedback ε-independent H∞ controller for
nonstandard singularly perturbed systems. Also, see [127] for designing state-
feedback H∞ controllers for nonlinear singularly perturbed systems.

One comes across in [97] a note on H∞-norm of the transfer function
matrix function of a singularly perturbed system tends to be the largest of
the H∞-norms for the boundary layer system and the reduced slow system.
Next, in [96], asymptotic expansions were obtained for solving Riccati equa-
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tions resulting in H∞ control using game-theoretic approach and a composite
controller was constructed based on the slow and fast subsystems and in [394]
the H∞ control of uncertain systems. Also, see [100] for a study on H∞ con-
trol problem with Markovian jump parameters and for Markov chains and
processes [35, 34, 2, 463].

For parameter identification see [58] where a new identification procedure
using two-time structure of the system was proposed to provide a more ac-
curate parameter estimation and for uncertain or imperfectly known systems
see [144]. The H2 guaranteed cost control problem for singularly perturbed
norm bounded uncertain systems was addressed using quadratic stabilizabil-
ity. Also, see [146, 147, 148, 82, 83, 38, 39].

Regarding Adaptive Control, see [183, 184, 185, 357, 186] for investi-
gations on the effects of unmodeled high frequency dynamics and bounded
disturbances on stability and performance of adaptive control systems includ-
ing multiparameter models. Also, see [279] for a study on the performance
and stability of discrete adaptive systems in the presence of fast parasitics.

See [168, 12] for addressing the robust asymptotic stability of a class of
nonlinear singularly perturbed systems using sliding-mode control tech-
niques.

The numerical issues associated with singularly perturbed systems are
addressed in [251, 235, 192, 21]. Another interesting study was found in [171],
which investigated the application of non-commutative computer algebra us-
ing Gröbner basis algorithms in analyzing the messy sets of non-commutative
polynomial equations arising in singular perturbation analysis.

A computational singular perturbation (CSP) analysis was developed by
[253, 252, 252, 16, 253], where the analysis does not depend upon the prior
knowledge of the system behavior, but the time-scale character is evolved
during a numerical simulation by neglecting the effect of a small parameter
when its contribution is negligibly small during a numerical computation
rather than simply neglecting the small parameter in the first place.

7 Applications of SPaTS

7.1 Aerospace

The theory of SPaTS has its roots in fluid dynamics and naturally found its
wide applications in the area of aerospace systems besides electrical circuits
and systems, machines and power systems. Here, in order to save space, we
merely mention recent surveys [51, 316, 314, 317] and in particular the recent
survey by the author [317] for a detailed exposition of applications of SPaTS
in aerospace systems under the categories of

1. singular perturbations in mathematics and fluid dynamics,

2. brief history of SPaTS in aerospace systems,
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3. method of matched asymptotic expansions,

4. selection of time-scales,

5. atmospheric flight,

6. pursuit-evasion and target interception,

7. digital flight control systems,

8. atmospheric entry,

9. satellite and interplanetary trajectories,

10. missiles,

11. launch vehicles and hypersonic flight, and

12. orbital transfer.

Also, see the research monograph [312] on optimal strategies in aeroassisted
orbital transfer.

There are a number of other interesting and challenging applications of
singular perturbation and time-scale methodologies in a variety of fields [448,
105, 411, 311]. Hence, some typical applications are briefly listed here.

7.2 Electrical and Electronics

For electrical circuits and systems see [73, 74] for a new approach based on the
calculation of infinitesimal deformations to singular perturbation problems
with application to bifurcation problems. Also, see [107] for a transforma-
tion of the original singularly perturbed system into a form where the normal
constraint can be solved for the fast state and the resulting reduced system
emerges without further manipulations and application to a set three elec-
trical network problems. In [181], we find a study on jump behavior in an
electrical network using geometric singular perturbation theory.

Regarding semiconductor device modeling and simulation, see [290, 289,
288, 420, 358, 359, 47, 421, 426, 339, 381]. For an interesting application on
computer disk drive system [18].

For electrical machines and electric power systems see
[64, 182] for an overview on this area,
[66] for a time-scale approach to the decomposition and aggregation of dy-
namic networks with dense and sparse connections with an illustration of a
2000-node power network,
[324] the application to the discrete model of a fifth-order steam power system
with reheat and [348] for a design of a periodic output feedback controller,
[164] for a multi-time-scale analysis of automatic gain control (AGC) of an
interconnected power system and [444] for further analysis on interconnected
systems,
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[404, 405, 406, 407, 408, 447] for analysis of synchronous machines using time
scale techniques,
[234] for a slow manifold concept as a tool for decomposition of a nonlinear
system with an illustration of a synchronous machine,
[65] for designing a high-frequency filter for highly damped modes of a two-
mass turbine-generator model. Next, in [88], a three-time scale method was
presented in two stages of order reduction with an application to doubly fed
synchronous machines,
[63] for application of a two-time-scale discrete-time model of a seventh-order
synchronous machine,
[446] for a rigorous formulation of a time-varying phasor representation for
the balanced three-phase large power system leading to singular perturba-
tion behavior of the resulting dynamics. Also, see [356, 277, 223] for further
results on this topic.

7.3 Structures and Mechanics

Another interesting area of the application of SPaTS is structural dynamics
and control. In [380], “the deformed state of a thin, inextensible beam, which
is under the action of axial and transverse loading and which also rests on an
elastic foundation was considered by [117]. The asymptotic solution of a time-
optimal, soft-constrained “cheap” control problem was obtained using a new
approach solely based on expanding the controllability Grammian without
resorting to the method of matched asymptotic expansion and the method
was applied to the time-optimal single-axis rotation problem for a system
consisting of a rigid hub with an elastic appendage due to an external torque
applied at the hub [36].

Other works dealing with singular perturbations in structures are [118]
for analysis of a singularly perturbed eigenvalue problem describing an elastic
rod at the equilibrium state in the presence of a large-pulling out force with
one end clamped and the other being free, where the singular perturbation
parameter is identified as the inverse of the square root of the dimensionless
parameter describing the pulling-out longitudinal force. Also see [438, 294,
190] for more works on this topic. For mechanical systems involving flexible
dual rudder [81].

Singular perturbation concepts are exploited to develop a procedure for
designing a constant gain, output feedback control system with application
to a large space structure [53]. In this system, the third and fourth modes are
approximately five time faster than the first and second modes, thus leading
to the small parameter value as ε = 1/5.

A singular perturbation analysis which relaxes the requirement on the
boundary-layer system to stability (but not necessarily asymptotic stability,
as required in the normal case) was provided with an application to a flexible
dual rudder steering mechanism [81].

Recently, an interesting contribution to determine the underlying geo-
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metric structure of two-time scale, nonlinear optimal control systems was
developed by Rao and Mease [354, 355] without requiring a priori knowl-
edge of the singular perturbation structure. The methodology is based on
splitting the Hamiltonian boundary-value problem (HBVP) into stable and
unstable components using a dichotomic basis with an illustration via a mass
connected to a nonlinear spring.

7.4 Robotics

In robotics, the singular perturbation parameter is usually identified as the
inverse of a stiffness parameter associated with a flexible mode. For exam-
ple, in a typical flexible slewing arm with a rigid body rotation and flexible
“clamped mass” modes, one can select the quantity ε = (1/k2)1/2 as the
singular perturbation parameter, where k2 is the stiffness parameter associ-
ated with the second flexible mode. Thus, the slow subsystem states are the
joint angle, the first flexible modal displacement, and their respective rates,
whereas the fast subsystem states are the second flexible modal displacement
and its rate [399]. In particular we mention about space robotics [462] and
tele-operation and space robotics [409], intelligent robotics systems for space
exploration [90] and perturbation techniques for flexible manipulators [119]
and robotics [285, 219, 220, 416, 417, 418, 399, 150, 54, 30].

7.5 Chemical Reactors

For singular perturbations in chemical reaction and reaction-diffusion convec-
tion and related topics, see [145] for a study stability aspects of a singularly
perturbed reaction-diffusion system arising in a predator-prey interaction
model and [178] for a study nonlinear degenerate diffusion equation arising
in population dynamics in obtaining stationary solutions using the method of
matched asymptotic expansion and geometric singular perturbation method.
Also see [166, 40, 252, 253] for more works on this topic.

Related topics are chemical reactors [68, 69] where a biochemical con-
tinuous stirred tank reactor (CSTR) was analyzed, [70] for application to a
fluidized catalytic cracker, and nuclear reactors [113] in which an estimation
algorithm is presented using a joint state and parameter estimation tech-
nique akin to extended Kalman filter (EKF) for a sodium-cooled plutonium-
uranium (Pu-U) metal-fueled fast-breeder reactor.

Further see [382] for examining quasi-steady-state assumption as a case
study of singular perturbation in biochemistry with a biochemical reaction
wherein an enzyme reacts reversibly with another chemical concentration
substrate to form an enzyme-substrate complex.
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7.6 Other Areas

Other applications are soil mechanics [91], celestial mechanics [326, 448,
410, 375], quantum mechanics [114], thermodynamics [175, 282, 360], ther-
moelasticity [112] where a uniform asymptotic expansion was given for a one-
dimensional linear thermoelasticity in terms of the inertial constant assigned
as the singular perturbation parameter, plates and shells [448, 342], elasticity
[293, 112], lubrication [55], vibration [410], renewal processes [176], compres-
sors [263], magnetohydrodynamics (MHD) [396], oceanography [172], welding
[13], queuing theory [224], production inventory systems [45] and manufac-
turing [415, 189, 387], wave propagation [29], ionization of gases [173], lasers
[106] where a nonlinear diffusion equation which models a laser-sustained
plasma was analyzed using the method of matched asymptotic expansion,
automobiles and biped locomotion [263, 163], agricultural engineering [427],
reliability [243], 2D image modeling and processing [24, 25, 465, 194], ecology
[322, 178], and biology [330].
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[138] Z. Gajić and M. Lim. Optimal Control of Singularly Perturbed Linear Systems and
Applications: High- Accuracy Techniques. Marcel Dekker, Inc., New York, New
York, 2001.
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