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1 Introduction

Many problems from applied sciences lead to dynamical systems, where the
state space variables have certain components which vary rapidly, and other
which vary relatively slowly in time. Usually, such problems are studied
within the framework of singular perturbations and integral manifolds. We
will consider the singularity in a broad sense as the change of some qualitative
characteristics of a perturbed problem if a small parameter equals zero.

The most part of publications devoted to singularly perturbed control
problems deals with continuous systems while a lot of problems in economic-
s, sociology, biology is described by discrete models. The another source of



336 G.A. Kurina, M.G. Dmitriev, and D.S. Naidu

appearing discrete models is digital simulation of continuous systems where
the differential equations are approximated by the corresponding difference
equations. The study of sampled-data control systems and computer-based
adaptive control systems leads in a natural way to the third source of discrete-
time models. The control theory for discrete-time systems and sampled sys-
tems are receiving growing attention since the controllers are implemented
by digital computers. If a dynamic system exhibits both continuous and dis-
crete dynamic behavior, then it is called a hybrid system. Such system has
the benefit of encompassing a larger class of systems within its structure,
allowing for more flexibility in modeling dynamic phenomena.

In many situations, dynamic models consisting of a large number of d-
ifference equations can be derived from theoretical considerations. Often
such models are so large that they may be impractical for many purposes,
including simulation, control system design, and stability properties. Con-
sequently, an approach to derive reduced order dynamic models from high
order models is needed. Several methods for simplifying linear large-scale
systems suggested in the literature have been listed in [16]. One of the most
popular methods for model reduction of large-scale systems is the singular
perturbation method. This technique has attracted much attention because
of its simplicity and good performance in some experimental situations. The
main advantage of the method is that it is applicable to nonlinear system-
s. Note that many physical systems are two-time scale systems, but do not
appear in the form of a system with a small parameter. The major problem
of the singular perturbation method is to group the state variables into slow
and fast states and to select formally a small parameter.

A. B. Vasil’eva [138], [139] was perhaps the first to study solutions of dis-
crete singularly perturbed dynamical systems using the asymptotic method
of boundary-layer functions that has proved to be an effective tool in the
analysis of singularly perturbed systems of ordinary differential equations.
Note also the works [17], [142], [137], [23], [52], [111], [141] where perturbed
discrete-time systems have been analyzed with the help of different method-
s. In [107], depending on the position of the small parameter, three state
space discrete models are formulated and techniques are developed to obtain
approximate series solutions. The idea of singular perturbation method for
two-time scale discrete nonlinear systems is described, for instance, in [16]
and [13].

Apparently, [4] is the first paper dealing with an asymptotic solution of a
continuous singularly perturbed optimal control problem. Discrete singular-
ly perturbed control problems have been the topic for the intensive research
since the ending of the seventies of the last century (the corresponding ref-
erences see, for instance, in [115], [140], [120], [107], [102], [8], [78], [29], [30],
[155]).

Studying optimal control problems with a small parameter starts from
solving the degenerate problem with the zero value of the parameter whenever
possible. Sometimes this solution is enough. However, for the most of applied
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problems such approximation is too rough.

Two approaches are possible for constructing asymptotic solution of opti-
mal control problems with a small parameter. In the first approach boundary
value problems following from the control optimality conditions are used.
This method is mostly applied. In this connection, either an asymptotic-
s of a solution of boundary value problems is constructed immediately or,
beforehand, a transformation that decouples a singularly perturbed system
into a pure-slow and fast, reduced-order, systems is produced. The decom-
position of systems may allow us to make computations in parallel. The
second approach called the direct scheme consists of immediate substituting
a postulated asymptotic expansion into a problem conditions and determin-
ing problems series for finding asymptotic terms. The variational nature of
a original problem is taken into account in this case. The essential signifi-
cance in the second approach is the possibility to prove, that for every fixed
sufficiently small positive parameter, values of a minimized functional do not
increase when a new approximation to an optimal control is used. Also,
programme packages of solving optimal control problems can be applied for
finding terms of asymptotic expansion of a solution. For linear-quadratic
optimal control problems, asymptotic solution can also be constructed using
the presentation of an optimal control in a feedback form and asymptotic
solution of an appropriate discrete Riccati equations.

If in a constructed solution expansion with respect to powers of a small
parameter ε we remove all terms of order higher than εn, we obtain the n-th
order solution approximation. Under some conditions, it is possible to prove
(see, for instance, [82]) that for sufficiently small ε > 0 the difference between
a solution of the original perturbed problem and an approximation of this
solution of the n-th order has the order εn+1 and the difference between
the value of the minimized functional evaluated for an approximation of an
optimal control of the n-th order and the minimal value of this functional
has the order ε2(n+1). Therefore the sequence of constructed approximations
for an optimal control is minimizing for the considered performance index.

When a small parameter in a singularly perturbed state equation is equal
to zero, we can sometimes obtain the system which is not resolved with
respect to a state variable in a future time moment, so-called descriptor
system. Hence, the study of singularly perturbed optimal control problems
and control problems by descriptor systems are closely connected.

There are reviews of publications devoted to singularly perturbed control
problems (see, for instance, [70], [104], [103], [29], [30], [155]), discrete prob-
lems in which occupy a negligible part. We should note here the overviews
[106] (1987) and [34] (1995) where singular perturbations in discrete control
systems are mainly considered. The focus in [106] is in three areas: mod-
eling, analysis, and control. The authors of [34] consider four major classes
of problems, commonly encountered in the control theory of discrete singu-
larly perturbed dynamical systems: stabilization, design of a state identifier
(observer) and control using phase state vector estimates, optimal quadrat-
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ic performance criterion control, and robustness of discrete adaptive control
systems towards minor dynamical imperfections.

The present survey deals with discrete singularly perturbed control prob-
lems only. Namely, we give the review of the publications where asymptotic
solutions of discrete optimal control problems have either the form of ex-
pansions of boundary-layer type or regular expansions with respect to non-
negative powers of a small parameter. Methods of decoupling motions into
pure-slow and fast ones are also considered. Besides, we review publications
devoted to the stabilization of discrete systems, control problems by discrete
systems with a small step, descriptor and stochastic systems, game problems,
and applications in various fields.

The part of this survey was presented at the 13th Viennese Workshop
”Optimal Control and Dynamic Games” [77].

Everywhere in this paper, ε ≥ 0 is a small parameter, N is a fixed natural
number, the prime denotes the transposition, I means an identity matrix of

any size, diag(A,B) =

(
A 0
0 B

)
, and Eε = diag(I, εI). In all sections,

except the ninth, state and control variables have values in some real finite-
dimensional spaces.

The paper is organized as follows.
In the introduction, the role of the small parameter methods and espe-

cially methods of singular perturbations in studying of control problems is
described. The history of using small parameter methods for studying dis-
crete dynamical systems is also shortly presented.

The second section is devoted to the perturbed discrete control problems,
where approximate solutions are found by means of asymptotic expansions,
which are analogues to ones used in the method of boundary-layer functions
for ordinary differential equations.

In the next section, the results of the publications are presented, where
asymptotic solutions in the series form with respect to non-negative integer
powers of a small parameter were constructed for nonlinear discrete peri-
odic singularly perturbed and weakly controllable systems, using immediate
substituting a postulated asymptotic expansion of a solution into a problem
conditions and determining problems series for finding asymptotics terms.

The publications devoted the approximate decomposition methods are
discussed in Section 4. The splitting transformations leading to an approxi-
mate decomposition into separate subsystems are considered.

The fifth section is devoted to stabilization problems of the discrete per-
turbed systems. The works on the stability analysis of discrete linear and
nonlinear systems, including systems with delays, are considered. Asymptot-
ic stabilizing composite feedback controls are presented.

The stochastic problems are considered in the sixth section. Here the
questions of decomposition for singularly perturbed discrete linear-quadratic
Gaussian control problems and Kalman’s filter are discussed.

The works on the theory of dynamical games, where the discrete dynamic
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equations have fast and slow movements, are studied in section 7.
The theory of discrete singularly perturbed optimal control problems with

a small step is discussed in the eighth section of this review.
The results for descriptor discrete problems are analyzed in the next sec-

tion of the review. The papers connected with program controls and feedback
are considered.

The tenth section deals with some results related to the sampling of con-
tinuous nonlinear singularly perturbed optimal control problems.

The overview of various results on singularly perturbed hybrid control
systems, robust stabilization for discrete-time fuzzy singularly perturbed
systems with parameter uncertainty, nonlinear dynamic systems driven by
Markov chains, discrete minimax problems in the presence of regular and
singular perturbations in the dynamics, and others is made in the 11-th sec-
tion.

In the twelfth section, the review of papers, devoted to various appli-
cations of the theory of discrete singularly perturbed control problems, is
given.

The thirteenth section contains the short conclusion.

2 Expansions of boundary-layer type

For finding asymptotic solutions of discrete singularly perturbed optimal con-
trol problems, the analog of Vasil’eva’s boundary-layer functions method for
continuous systems is very often used in order to construct asymptotic solu-
tions of two-point boundary value problems following from control optimality
conditions. Namely, the solution is sought in the form of a sum of three series
with respect to powers of a small parameter ε, where the main term of one
series, called the regular series, is a solution of a degenerate problem obtained
from the original perturbed problem if we set ε = 0. Other two series are
initial boundary-layer correction series and final boundary-layer correction
series.

We explain the reason of the appearance of a boundary layer with the
help of the following system considered, for instance, in [156]

x(k + 1) = f1(x(k), εy(k)) + g1(x(k), εy(k))u(k), x(0) = x0,
y(k + 1) = f2(x(k), εy(k)) + g2(x(k), εy(k))u(k), y(0) = y0.

(1)

If ε = 0, we obtain the degenerate problem

x(k + 1) = f1(x(k), 0) + g1(x(k), 0)u(k), x(0) = x0,

y(k + 1) = f2(x(k), 0) + g2(x(k), 0)u(k).

It is straightforward to see that x starts from the same initial position as x,
however y is not free to start from y0. Therefore, the approximation of x by
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x may be uniform for all k ∈ N , that is x(k) = x(k) +O(ε). By contrast the
approximation

y(k) = y(k) +O(ε) (2)

holds only on an interval excluding 0, for k ∈ {k1, k1 + 1, ...}, where k1 > 0.
Boundary-layer correction terms have to be added to the solution y(k) for
the approximation (2) to be valid over the entire interval.

The algorithm for constructing an asymptotic expansion of a solution
v(k, ε) of a two-point boundary value problem for the Hamiltonian system
derived from control optimality conditions in the problem with time-invariant
coefficients(

x(k + 1)
y(k + 1)

)
=

(
A1 εA2

A3 εA4

)(
x(k)
y(k)

)
+

(
B1

B2

)
u(k), k = 0, N − 1,

x(0) = x0, y(0) = y0,

Jε(u) = 1
2z
′(N)Fz(N) + 1

2

N−1∑
k=0

(z′(k)Wz(k) + u′(k)Ru(k))→ min, (3)

where z′(k) = (x′(k), εy′(k)), F, W ≥ 0, R > 0, is presented in [107], [102].
The asymptotics for v(k, ε) has the form

v(k, ε) =
∑
i≥0

εi(v̄i(k) + εkΠiv(k) + εN−kQiv(k)),

where v̄i(k) corresponds to the regular (outer) series, Πiv(k) corresponds to
the initial boundary-layer correction series, and Qiv(k) corresponds to the
final boundary-layer correction series.

The algorithm for constructing the asymptotic solution of the discrete
Riccati equation of the form

P (k) = W +A′P (k + 1)(I +BR−1B′P (k + 1))−1A (4)

with the final condition P (N) = F appearing in describing the feedback for
this problem is also given. Here

A =

(
A1 εA2

A3 εA4

)
, B =

(
B1

B2

)
,

W =

(
W1 εW2

εW ′2 ε2W3

)
, F =

(
F1 εF2

εF ′2 ε2F3

)
.

In [63], a quadratic functional on a finite-time interval with time-varying
matrices is minimized on trajectories of a singularly perturbed linear system
of the type

Eε

(
x(k + 1)
y(k + 1)

)
= A(k, ε)

(
x(k)
y(k)

)
+B(k, ε)u(k),
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x(0) = x0, y(0) = y0.

Each of the relations between the discrete Riccati equations, the optimal con-
trols, and the corresponding trajectories of the full system and the associated
degenerate system is discussed, when a small positive parameter ε tends to
zero.

Asymptotic solution of two-point boundary value problems for three-time-
scale systems x(k + 1)

y(k + 1)
εz(k + 1)

 =

 A1 εA2 A3

A4 εA5 A6

A7 εA8 A9

 x(k)
y(k)
z(k)

+

 B1

B2

B3

u(k),

k = 0, N − 1, x(0) = x0 or x(N) = xN , y(0) = y0, z(N) = zN

is presented in [102], [107]. It is assumed that A9 is non-singular.
Paper [68] deals with a class of initial and boundary value problems for

multi-parameter linear time-invariant discrete equations. In this case, the
approximate solution consists of an outer solution and a number of boundary
layer correction solutions equal to the number of initial conditions lost in the
process of degeneration.

The three types of boundary value problem arising in singularly per-
turbed discrete control systems with two small parameters are considered in
[69]. Methods are developed to obtain approximate solutions. Suboptimal
control of singularly perturbed two parameter discrete control system is also
discussed in [65].

3 Regular expansions

Using the direct scheme, an asymptotic solution in a series form with respect
to non-negative integer powers of a small parameter has been constructed
under some conditions for the following three types of problems.

3.1 - nonlinear discrete periodic optimal control problem with a small
parameter [79], [82]:

Jε(u) =
N−1∑
k=0

F (k, y(k), εz(k), u(k))→ min,

y(k + 1) = f(k, y(k), εz(k), u(k)),
z(k + 1) = g(k, y(k), εz(k), u(k)), k = 0, N − 1,

y(0) = y(N), z(0) = z(N).

(5)

If ε = 0, then we obtain from (5) the degenerate problem, from which we
can obtain the optimal control problem with a state variable of a smaller
dimension than that of the original perturbed problem.

3.2 - nonlinear discrete singularly perturbed optimal control problem
where slow state variables have a fixed left point and fast state variables



342 G.A. Kurina, M.G. Dmitriev, and D.S. Naidu

satisfy the periodic condition [80]:

Jε(u) = F (N, y(N)) +
N−1∑
k=0

F (k, y(k), z(k), u(k))→ min,

y(k + 1) = f(k, y(k), z(k), u(k)),
εz(k + 1) = g(k, y(k), z(k), u(k)), k = 0, N − 1,

y(0) = y0, z(0) = z(N).

(6)

It is assumed that the system g(k, y(k), z(k), u(k)) = 0, k = 0, N − 1, is
uniquely solvable with respect to z(k) for any y(k), u(k). If ε = 0 we can
obtain from (6) the optimal control problem with the control variable u(k)
and the state variable y(k). As in the previous problem, the dimension of
the state variable is decreased.

3.3 - nonlinear discrete optimal control problem for a class of weakly
controllable systems [81], [83]:

Jε(u) =
N∑

k=0

F (k, x(k)) + ε
N−1∑
k=0

G(k, x(k), u(k))→ min,

x(k + 1) = f(k, x(k)) + εpg(k, x(k), u(k)), k = 0, N − 1,
x(0) = x0,

(7)

p ≥ 2 is a natural number. For p = 1, the problem (7) has been studied in
[74].

Control by small signals is encountered in controlled spacecrafts with
low thrust (electronuclear engines, solar sail, etc.), in a variety of correction
problems and in economics.

In the considered case, the degenerate problem

P−p : x(k + 1) = f(k, x(k)), k = 0, N − 1, x(0) = x0,

obtained from (7) with ε = 0, is uncontrollable.
Periodic conditions in problems (5), (6) and the absence of the additional

conditions loss under the passage to the degenerate problem in (7) allow us
to construct asymptotic expansions of solutions of these problems in a series
form with respect to integer non-negative powers of ε.

In problems (5) and (6), we set x = (y′, z′)′. Asymptotic expansion of
problems (5)-(7) solution is sought in the form

x(k) =
∑
j≥0

εjxj(k), k = 0, N, u(k) =
∑
j≥0

εjuj(k), k = 0, N − 1. (8)

Substituting expansions (8) into problems (5)-(7) conditions we obtain
an expansion of the minimized functional in series form with respect to inte-
ger non-negative powers of ε and relations for coefficients of expansions (8),
from here, under some conditions, the problems Pj for finding expansions
coefficients are explicitly defined.



Discrete Singularly Perturbed Control Problems 343

For problems (5) and (6), the zero-order approximation of a solution is
found from the degenerate problem P0, and the j-th order approximations
are found from linear-quadratic problems Pj . For problem (7), the problem
Pj , where j = −p,−1, is an initial problem from which xj+p is found, the
problem Pj , where j = 0, p− 2, is reduced to an unconditional minimization
problem for finding uj and an initial problem for finding xj+p. For defining
the pair of functions (uj , xj+p), where j ≥ p − 1, linear-quadratic problems
Pj are used.

The unique solvability of problems (5)-(7) in a neighborhood of the control
u0 has been proved. Estimates of the proximity of an approximate asymptotic
solution to the exact one with respect to the control, trajectory and functional
have been obtained. The non-increasing of minimized functional values with
each new asymptotic approximation of optimal control has been established,
i. e.

Jε(

n∑
j=0

εjuj(k)) ≤ Jε(
n−1∑
j=0

εjuj(k)).

4 Asymptotic decomposition method

The essence of the asymptotic decomposition method used for asymptotic
solving singularly perturbed optimal control problems consists of decoupling
a system following from control optimality conditions into slow and fast sub-
systems.

At first, we present here a result from [143], [147] concerning a nonlinear
discrete system

x(k + 1) = x(k) + εf(x(k), y(k), ε),
y(k + 1) = g0(x(k)) +D(x(k), ε)y(k) + εg(x(k), y(k), ε), g(x(k), 0, ε) = 0,

(9)

where k = 0, 1, 2, ..., x(k) is a slow variable, y(k) is a fast variable, eigen-
values of the matrix D(x(k), 0) are situated inside of a unit circle. The
existence of a splitting transformation of the form

x(k) = v(k) + εH(v(k), z(k), ε), y(k) = z(k) + h(x(k), ε), (10)

reducing systems (9) to a ”block-triangular” form

v(k + 1) = v(k) + εF (v(k), ε),

z(k + 1) = G(v(k), z(k), ε), G(v(k), 0, ε) = 0, (11)

with an independent slow subsystem is established.
Splitting transformation (10) can be found with an arbitrary order of

accuracy in the asymptotic expansion form in powers of ε, i. e.

H(v(k), z(k), ε) =
∑
j≥0

εjHj(v(k), z(k)), h(x(k), ε) =
∑
j≥0

εjhj(x(k)).
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Note that the L - transformation in [2] used for the decomposition of
linear discrete systems is analogous to transformation (10).

Justification of the asymptotic decomposition method for nonlinear dis-
crete systems with slow and fast variables of the form (9) is presented in
[145].

In the papers [149] and [146], similar results are obtained for the discrete
nonlinear system

x(k + 1) = Ax(k) + εf(x(k), y(k), ε),
y(k + 1) = εg(x(k), y(k), ε),

(12)

where the matrix A is nonsingular. Using a splitting transformation of type
(10) system (12) is reduced to a ”block-triangular” form

v(k + 1) = Av(k) + εF (v(k), ε),

z(k + 1) = εG(v(k), z(k), ε), G(v(k), 0, ε) = 0.

A mode-decoupling approach which yields two separate subsystems con-
taining approximations of the zero order for the slow and fast parts is dis-
cussed in [14] for a system of the form

x(k + 1) = f(k, x(k), εy(k)), x(0) = x0,
y(k + 1) = g(k, x(k), εy(k)), y(0) = y0.

(13)

An existence and smoothness result for center-like invariant manifolds of
non-autonomous difference equations with slow and fast state-space variables
is presented in [116].

The method of nonlinear systems decomposition has been used for split-
ting matrix discrete Riccati equations of the form (4) appearing under solv-
ing linear-quadratic optimal control problems on finite-time interval. See,

for instance, [148] for A =

(
I + εA1 εA2

A3 A4

)
, B =

(
εB1

εB2

)
and [146] for

A =

(
A1 εA2

εA3 εA4

)
, B =

(
B1

εB2

)
. The paper [144], where optimal con-

trol and estimation problems are studied, also deals with the decomposition
of matrix discrete Riccati equations.

Following to [90], in [43], linear-quadratic problems with a state equation,
containing slow and fast variables, of the form

x(k + 1) = (I + εA1)x(k) + εA2y(k) + εB1u(k), x(0) = x0,
y(k + 1) = A3x(k) +A4y(k) +B2u(k), y(0) = y0

(14)

are studied with the performance indices (3), where z′(k) = (x′(k), y′(k)),

F =

(
1
εF1 F2

F ′2 F3

)
≥ 0, and

Jε(u) =
ε

2

∞∑
k=0

(z′(k)Wz(k) + u′(k)Ru(k)), (15)
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where z′(k) = (x′(k), y′(k)),W = W ′ ≥ 0, R = R′ > 0. The problem with
infinite-time interval is considered in [89] for the nonstandard case, i.e. in
contrast to [43] it is assumed that the matrix A4 − I is singular.

Under some assumptions, non-degenerate linear transformations are ap-
plied to decompose the linear Hamiltonian system obtained from the control
optimality condition into reduced-order independent systems. For control
on an infinite interval, a solution of the discrete algebraic matrix Riccati
equation

P = W +A′PA−A′PB(R+B′PB)−1B′PA,

where P =

(
1
εP1 P2

P ′2 P3

)
, A =

(
I + εA1 εA2

A3 A4

)
, B =

(
εB1

B2

)
, ex-

pressing the optimal control as a feedback is found using two reduced order
non-symmetric pure-slow and pure-fast algebraic Riccati equations.

Using the exact decomposition and the conversion of discrete algebra-
ic Riccati equations into corresponding continuous-time equations, infinite-
time optimal linear regulator problem for a linear discrete-time singularly
perturbed system with performance index (15) is also studied in [8]. The
research of problem (14), (15) by applying a bilinear transformation to the
discrete algebraic Riccati equation is also described in [46]. A controller for
system of form (14) is considered in [87].

The paper [150] deals with the application of the invariant manifold
method to problem (14), (3), where B2 = O(ε) and F = 0. The trans-
formation is constructed reducing the boundary value problem for a linear
Hamiltonian system, following from the maximum principle, to a bound-
ary value problem for slow variables and two initial value problems for fast
variables. Splitting transformation is constructed in the form of asymptotic
expansion with respect to non-negative integer powers of ε.

The regulator problem on an infinity interval with the state equation

x(k + 1) = f(x(k), εy(k), u(k)), x(0) = x0,
y(k + 1) = g(x(k), εy(k), u(k)), y(0) = y0

(16)

and with the performance index

Jε(u) =

∞∑
k=0

F (x(k), y(k), u(k)) (17)

is considered in [15] and [13]. Composite feedback controls are proposed
which are based on a decomposition of the model into reduced and boundary
layer models.

A class of nonlinear discrete-time systems for which the control is designed
using slow and fast sliding controllers is considered in [121]. In addition,
a discrete-time observer is designed to estimate the nonmeasurable states
required in control law.
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5 Stability and stabilization

In the last years, the singularly perturbed discrete systems have received
much attention for the stability analysis and controller design (see, for in-
stance, [96], [112]).

We note here the paper [14] where the discrete version of well-known
Tikhonov’s theorem on singular perturbation for continuous-time systems is
established for a discrete-time nonlinear system of form (13). Using the Lya-
punov function both asymptotic and exponential stability of the equilibrium
of system (13) are tested in [14] on the base of the analysis of a lower order
slow and fast subsystems. See also [15].

In [114], the exponential stability of singularly perturbed discrete system-
s with time delay is investigated via Lyapunov’s direct method. In term of
the LMI (Linear Matrix Inequality), the sufficient condition for the exponen-
tial stability of linear systems is presented. Based on the linear result, the
exponential stability of nonlinear systems with time-delay is also considered.

It is well-known that the accurate knowledge of the stability bound ε∗

of a singularly perturbed system (i.e. the system is stable for ε ∈ [0, ε∗]) is
very important for applications. The information of the upper bounds of the
small parameter ε is obtained in [14] and [19].

In the paper [21], the exact stability bound for discrete multiple time-
delay singularly perturbed system with constant coefficients

x(k + 1) =

n∑
i=0

A1ix(k − i) + ε

n∑
i=0

A2iy(k − i),

y(k + 1) =

n∑
i=0

A3ix(k − i) + ε

n∑
i=0

A4iy(k − i)

is examined. Instead of directly proving the relationship of stability between
the original systems and the reduced systems, it is proved that for their
equivalent models. Slow and fast subsystems are derived using the methods
of the singular perturbation approach from [106], [102].

Robust stability bounds of linear discrete two-time scale systems are ob-
tained in [94]. The possibility of presenting robust properties through the
critical values of the parameter of singular perturbations is also discussed
in [33] for linear continuous and discrete systems. Robustness problem of
discrete multiple time-delay singularly perturbed systems is investigated in
[136]). The paper [113] is devoted to the robust stability of nonstandard
nonlinear singularly perturbed discrete systems with uncertainties. The Lya-
punov function method is used. The stability analysis and robust controller
design for uncertain discrete-time singularly perturbed systems are investi-
gated via a matrix inequality approach in [131].

The paper [86] addresses the static output-feedback stabilization prob-
lem for a singularly perturbed discrete-time system. Three issues for this
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kind of problems are investigated in details. State feedback stabilization of
a linear singularly perturbed system with several independent small param-
eters and discrete time is studied in [95]. The solution algorithm is based on
decomposition of the problem into subproblems for slow and fast subsystem-
s. The value domain of parameters within which the closed-loop system is
asymptotically stable is estimated.

The conditions are derived in [67] under which a discrete singularly per-
turbed nonlinear dynamic system is exponentially stable uniformly with re-
spect to a small parameter if its isolated subsystems defining fast and slow
motions have the same property. Conditions are stated that guarantee stabi-
lization in the class of feedbacks with respect to the part of the state variables
corresponding slow motions.

The design of a stabilizing feedback control for linear singularly perturbed
discrete-time systems is decomposed in [91] into the design of slow and fast
controllers which are combined to form the composite control. Stabilizing
problems for discrete systems via singular perturbation approach are also
investigated in [60]. A composite observer-based control is presented in [53].

It is shown in [15] that the asymptotic stabilizing composite feedback
control, proposed for problem (16), (17), produces a finite cost which tends
to the optimal cost of a slow problem as the singular perturbation parameter
tends to zero.

The paper [156] deals with nonlinear singularly perturbed discrete-time
systems of the form (1), which decoupled into reduced order slow and fast
boundary-layer subsystems. Considering these subsystems on infinite in-
terval together with quadratic performance indices, where weight matrices
depend on the states, nonlinear suboptimal controllers us(k) and uf (k) are
designed separately for the slow and fast subsystems using discrete-time ma-
trix Riccati equation with state-dependent coefficients. Under some assump-
tions the local stability of the closed-loop system with composite controller
us(k) + εk+1uf (k) as input is proved.

The stabilization of discrete singularly perturbed systems of the form

x(k + 1) =

n∑
i=0

A1ix(k − i) + ε

n∑
i=0

A2iy(k − i) +B1u(k),

y(k + 1) =

n∑
i=0

A3ix(k − i) + ε

n∑
i=0

A4iy(k − i) +B2u(k),

z(k) = C1x(k) + C2y(k)

is considered in [110]. The corresponding slow and fast subsystems of the
original system are first derived. Then the state feedback controller for the
slow and fast subsystems are separately designed and a composite stable
feedback controller for the original system is after synthesized.

The D-stability problem is studied for discrete time-delay singularly per-
turbed systems in [54] where a system is called D-stable if the poles of the
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system are within the specific disk D(a, r) centered at (a, 0) with radius r,
in which |a|+ r < 1. Robust D-stability analysis of discrete uncertain time-
delay systems by time-scale separation is presented in [109]. Note here the
previous papers [84], [130], [56], and [55] connected with D-stability analysis.

6 Stochastic systems

An approach to the decomposition and approximation of linear-quadratic
Gaussian control problems for singularly perturbed discrete systems at steady
state is presented in [45]. The global Kalman filter is decomposed into sep-
arate reduced-order local filters through the use of a decoupling transforma-
tion. A near-optimal control law is derived by approximating coefficients of
the optimal control law. The proposed method allows parallel processing of
information.

Note also the papers [118] and [58] dealing with singularly perturbed
discrete-time stochastic systems, in particular, with the Kalman filter.

We consider here the described in [43] singularly perturbed discrete linear
stochastic system(

x1(k + 1)
x2(k + 1)

)
=

(
I + εA1 εA2

A3 A4

)(
x1(k)
x2(k)

)
+

(
εB1

B2

)
u(k)+

+

(
εG1

G2

)
w1(k), y(k) = C1x1(k) + C2x2(k) + w2(k)

with the performance index

Jε(u) =
ε

2
E{

∞∑
k=0

(z′(k)z(k) + u′(k)Ru(k))}, R > 0,

where xi(k), i = 1, 2, are slow and fast state vectors respectively, u(t) is the
control input, y(k) is the observed output, w1(k) and w2(k) are independent
zero-mean stationary Gaussian mutually uncorrelated white noise processes
with intensities W1 > 0 and W2 > 0, respectively,

z(k) = D1x1(k) +D2x2(k)

is the controlled output. All matrices are of appropriate dimensions and
assumed to be constant.

The optimal control law is given by

u(k) = −Fx̂(k)

with the time-invariant filter

x̂(k + 1) = Ax̂(k) +Bu(k) +K(y(k)− Cx̂(k)),
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where A =

(
I + εA1 εA2

A3 A4

)
, B =

(
εB1

B2

)
, C = (C1 C2), K =(

εK1

K2

)
.

The regulator gain F and filter gain K are obtained from

F = (R+B′PRB)−1B′PRA, K = APFC
′(W2 + CPFC

′)−1,

where PR and PF are, respectively, the positive semidefinite stabilizing so-
lutions of the discrete-time algebraic regulator and filter Riccati equations,
respectively, given by

PR = D′D +A′PRA−A′PRB(R+B′PRB)−1B′PRA,

PF = APFA
′ −A′PFC

′(W2 + CPFC
′)−1CPFA

′ +GW1G
′

with D = (D1 D2), G =

(
εG1

G2

)
.

Under some conditions, the exact decomposition method of the discrete-
time algebraic regulator and filter Riccati equations presented in [43] (see also
[88] ) produces two sets of two reduced-order continuous-time nonsymmetric
pure-slow and pure-fast algebraic Riccati equations. In addition, the optimal
global Kalman filter is decomposed into pure-slow and pure-fast local optimal
filters. It is shown that these two filters can be implemented independently in
parallel in the different time scales. As a result, the optimal linear-quadratic
Gaussian control problem for singularly perturbed linear discrete systems
takes the complete decomposition and parallelism between optimal pure-slow
and pure-fast filters and controllers.

The similar problem has been considered in [144] for finite time interval.

The same problem as in [43] is studied in [61], only in contrast to [43] the
problem is nonstandard.

The recursive approach for obtaining parallel reduced-order controllers
for stochastic linear singularly perturbed systems, based on the fixed-point
iterations, has been developed in [44]. No analyticity requirements are im-
posed on the system coefficients, which is the standard assumption in the
power series expansion method.

In [124], a singular perturbation approach is presented to study discrete
systems with stochastic jump parameters. The feedback controller design is
decomposed into the design of slow and fast controllers which are combined
to form the composite control. Conditions for complete separation of slow
and fast regulator designs are given. It is shown that the composite feedback
control is O(ε) close to the optimal one, which yields an O(ε2) approximation
of optimal performance.
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7 Game problems

In [135], a multi-step control system(
x1(k + 1)
x2(k + 1)

)
=

(
I + εA1 εA2

A3 A4

)(
x1(k)
x2(k)

)
+

(
εB1 εB2

B3 B4

)(
u1(k)
u2(k)

)
,

y(k) = C1x1(k) + C2x2(k),

where x1(k) is the slow variable, x2(k) is the fast variable, u1(k) and u2(k)
are the controls of the first and second players, respectively, and all matrices
in the preceding system are constant, is studied. The payoff function of the
i-th player (i = 1, 2) is of the form

J1 = −J2 =
1

2

∞∑
k=0

(y′(k)y(k) + u′1(k)R1u1(k) + u′2(k)R2u2(k)).

The given system is split into a fast and a slow subsystems. Let {u1f , u2f}
and {u1s, u2s} be the Nash equilibrium strategy profile for the fast and slow
subsystems, respectively. The strategy profile {u1c, u2c} = {u1f + u1s, u2f +
u2s} is compared with the Nash equilibrium strategy profile of the given game
{u∗1, u∗2}. It is proved that uic = u∗i + O(ε) and Jic = J∗i + O(ε2) (i = 1, 2),
where J∗i is the payoff of the i-th player in the Nash equilibrium strategy
profile of the initial game and Jic is the payoff of the i-th player in the
strategy profile {u1c, u2c} if motions are split into fast and slow motions.

When the system contains slow and fast modes, the Stackelberg game is
numerically stiff and ill-conditioned. It is necessary to find some methods to
alleviate this ill-conditioning and to reduce the amount of computation. In
[119], linear closed-loop Stackelberg strategies in sequential decision-making
for linear time-invariant discrete systems with slow and fast modes are in-
vestigated. Near-optimal strategies that do not require any knowledge of the
small singular perturbation parameter are derived. Linear-quadratic infinite-
time Stackelberg game for discrete-time systems with slow and fast modes is
studied in [100], [129]. A team-near optimal incentive strategy is constructed
by solving a series of well-conditioned and reduced-order problems.

In [125], a singularly perturbed zero-sum dynamic game with full informa-
tion has been considered. The upper (lower) value function of the dynamic
game, in which the minimizer (maximizer) can be guaranteed if at the be-
ginning of each interval his move (the choice of decision) precedes the move
of the maximizer (minimizer), was introduced. It was shown that when the
singular perturbations parameter tends to zero, the upper (lower) value func-
tion of the dynamic game has a limit which coincides with a viscosity solution
of a Hamilton-Jacobi-Isaacs-type equation.

The paper [51] deals with a class of hybrid stochastic games with the
piecewise open-loop information structure. These games are indexed over
a parameter which represents the time-scale ratio between the stochastic
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(jump process) and the deterministic (differential state equation) parts of
the dynamical system. The limit behavior of Nash equilibrium solutions of
the hybrid stochastic games when the time-scale ratio tends to 0, is studied.
It is also established that an approximate equilibrium can be obtained for
the hybrid stochastic games using a Nash equilibrium solution of a reduced
order sequential discrete-state stochastic game and a family of local deter-
ministic infinite horizon open-loop differential games defined in the stretched
out time-scale. A numerical illustration of this approximation scheme is also
developed.

8 Discrete systems with a small step

For solving discrete problems with a small step, it is necessary a large number
of calculations. Therefore the use of asymptotic methods in this case is very
efficiency. After the first paper [138], devoted to discrete systems with a small
step, asymptotic methods for the analysis of such systems have been applied
under different conditions in [139], [17], [142], [111], [141]. In particular, the
paper [17] deals with the system

x(t+ ε) = A(t)x(t) + εf(x(t), t)

where t = 0, ε, 2ε, ... and the part of eigenvalues of the matrix A(t) is equal
to one. The system of the last form appears, for instance, in the theory of
linear accelerators and discrete Markov chains.

Asymptotic solutions of two discrete linear-quadratic optimal control prob-
lems with a small step were first constructed in [50] by applying the technique
of boundary-layer functions.

The first problem consists of minimization of the functional

c′x(1) +
1

2

N−1∑
k=0

(x′(kε)D(kε)x(kε) + u′(kε)R(kε)u(kε))

on trajectories of the system

x(t+ ε) = A(t)x(t) +B(t)u(t), t = kε, x(0) = x0,

where c is a constant vector, k = 0, N − 1, N = 1/ε. Two-point boundary
value problem derived from the control optimality condition is used. An
asymptotic solution of the considered problem has the form

z(t, ε) =
∑
i≥0

εi(z̄i(t) + Πiz(k) +Qiz(k −N)), z =

(
x
u

)
, t = kε,

where boundary-layer functions have the estimates

‖ Πiz(k) ‖≤ aexp(−αk/ε), ‖ Qiz(k −N) ‖≤ aexp(α(k −N)/ε), a, α > 0.
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This problem is also considered in [27] under other conditions. In this con-
nection, discrete matrix Riccati equation is used.

In the second problem, the linear term outside of the sum in the per-
formance index is changed by a quadratic term 1

2x
′(1)Fx(1) and a feedback

control is studied.
For a discrete linear-quadratic optimal control problem with a small step

and small coefficient in front of the sum in the criterion, an asymptotic ex-
pansion with respect to a small step for the solution of the corresponding
discrete Riccati equation and quasi-optimal control are constructed in [48].

In [49], an asymptotic solution for a minimization problem of a quadratic
quality criterion on trajectories of a linear discrete system of equations with
a small step, fixed left and right points, belonging to some domain defined
by linear inequalities, is constructed.

For the discrete nonlinear problem with a small step

Jε(u) = G(x(T )) + ε

N−1∑
k=0

F (x(kε), u(kε), kε)→ min,

x(t+ ε) = f(x(t), u(t), t), t = kε, x(0) = x0, k = 0, N − 1, T = Nε,

the asymptotic solution of the boundary-layer type is constructed by the
direct scheme in [39], [28].

Note, that the second term in Jε(u) is an integral sum, therefore the limit
problem has in this case the following form:

J0(x0, u0) = G(xT0 ) +

T∫
0

F (x0(t), u0(t), t) dt→ min,

x0(t) = f(x0(t), u0(t), t), xT0 = argminG(x).

In [40], an asymptotic solution of a discrete linear-quadratic problem with
a small step ε under a linear inequality-type terminal constraint is construct-
ed by the direct scheme and then this asymptotics is used to find an ε-
suboptimal admissible control of order 2(n+ 1), where n is the order of the
asymptotics.

Discrete linear-quadratic problems with a cheap control have been studied
in [41].

According to [42], if the proper motions in discrete time-varying linear
systems with a small step are stable, complete controllability conditions are
the same as for stationary systems.

9 Descriptor systems

An implicit discrete systems may appear in singularly perturbed control prob-
lems if a small parameter is neglected. Such systems have extensive applica-
tions in chemical engineering, telecommunications, and economical systems.
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They form a topic for intensive research in the last three decades and are
also referred to as descriptor or singular difference systems. The most part
of publications is devoted to linear systems. A brief survey of the devel-
opment of the theory of singular difference systems and singular stochastic
difference systems (the solvability of initial value problems and multi-point
boundary value problems, the stability and robust stability of solutions) is
given in [1]. The reviews of publications devoted to control problems for
discrete descriptor systems are presented, for instance, in [85] and [70]. See
also the bibliographic index [38].

Control optimality conditions are obtained for discrete optimal control
problems by descriptor systems both for program and feedback controls. We
present here the results for two problems.

9.1. The papers [75], [76] deal with the problem of minimizing the
quadratic functional

J(u) =
1

2
〈x(N), V x(N)〉+

1

2

N−1∑
k=0

〈
(
x(k)
u(k)

)
,

(
W (k) S(k)
S(k)∗ R(k)

)(
x(k)
u(k)

)
〉

(18)
on trajectories of a descriptor system of the form

A(k + 1)B(k + 1)x(k + 1) = C(k)x(k) +D(k)u(k), k = 0, N − 1,
A(0)B(0)x(0) = z0.

(19)

Here x(k) ∈ X, u(k) ∈ U , B(k) ∈ L(X,Y ), A(k) ∈ L(Y,Z), C(k) ∈ L(X,Z),
D(k) ∈ L(U,Z), V,W (k) ∈ L(X), S(k) ∈ L(U,X), R(k) ∈ L(U); X,Y, Z, U
are real Hilbert spaces, z0 is a given element from Z, V = V ∗ ≥ 0, W (k) =

W (k)∗, R(k) = R(k)∗,

(
W (k) S(k)
S(k)∗ R(k)

)
≥ 0, 〈·, ·〉 means an inner product

in appropriate spaces, the exponent star with the notation of an operator
denotes the adjoint operator.

The control u(k), k = 0, N − 1, is admissible, if there is a solution of
problem (19).

If the control u∗(k), k = 0, N − 1, is a solution of the system

A(k + 1)B(k + 1)x(k + 1) = C(k)x(k) +D(k)u(k), A(0)B(0)x(0) = z0,
B(k)∗A(k)∗ψ(k) = −W (k)x(k)− S(k)u(k) + C(k)∗ψ(k + 1),

B(N)∗A(N)∗ψ(N) = −V x(N),
0 = −S(k)∗x(k) +D(k)∗ψ(k + 1)−R(k)u(k), k = 0, N − 1,

(20)

then u∗(k) is an optimal control for problem (18), ( 19).
Under some conditions (see [76]) the implicit system (20), following from

the control optimality condition, provides for the pair (B(k)x(k), A(k)∗ψ(k))
an explicit non-negative standard Hamiltonian system(

B(k + 1)x(k + 1)
−A(k)∗ψ(k)

)
= E(k)

(
B(k)x(k)

A(k + 1)∗ψ(k + 1)

)
, k = 0, N − 1,
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where E(k) =

(
E1(k) E2(k)
E3(k) −E1(k)∗

)
, the operators E2(k), E3(k) are sym-

metric and nonnegative.
From the last statement, it follows that two-point boundary value problem

(20) has a unique solution, hence the optimal control problem (18), (19) is
solvable.

In contrast to the works [6], [101], [98], devoted to linear-quadratic dis-
crete optimal control problems for standard descriptor systems (B(k) ≡ I in
(19)) with constant coefficients in a finite-dimensional case, the regularity of
the pencil of the operators from the state equation is not required here. It is
also not assumed that the system is causal.

Linear-quadratic discrete optimal control problems for descriptor systems
with unbounded operator coefficients in Hilbert spaces have been studied for
constant coefficients in [11] and for variable coefficients in [12]. The existence
and uniqueness of an optimal control are established under certain restriction
on the resolvent growth at infinity.

The sufficient control optimality conditions in the maximum principle
form are given in [71] for a discrete descriptor system with values of controls
in some set.

Necessary optimality conditions for linear-quadratic discrete control prob-
lem, where the state equation is a descriptor system of the order more than
one, are given in [99].

9.2. For discrete linear-quadratic optimal control problem (18), (19) with
B(k) ≡ I we give the result from [72], [73] concerning an optimal feedback
control.

If symmetric operators K(k) are the solution of the problem

A(k)∗K(k)A(k) = W (k) + C(k)∗K(k + 1)C(k)−
−(S(k) + C(k)∗K(k + 1)D(k))L(k)(S(k) + C(k)∗K(k + 1)D(k))∗,

k = 0, N − 1, A(N)∗K(N)A(N) = V
(21)

such that the operators

L(k)−1 = R(k) +D(k)∗K(k + 1)D(k) (22)

are positive definite and x∗(k) is a solution of problem (19) with the control
u∗(k) given by the formula

u∗(k) = −L(k)(S(k)∗ +D(k)∗K(k + 1)C(k))x∗(k)

then u∗(k), k = 0, N − 1, is an optimal control for the problem (18), (19)
and the minimal value for the performance index is

J(u∗) =
1

2
〈z0,K(0)z0〉.

Similar results are obtained in [73] for the problem with fixed points,
periodic problem and for the regulation problem with constant coefficients
on an infinite interval.
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In contrast to the papers [63], [6], [101], the regularity of the pencil of
the operators from the state equation is not required here. In these three
papers, an optimal control is determined with the help of the part of the
state variable.

In general case, the implicit discrete operator Riccati equation (21) has
no symmetric nonnegative definite solution though it may have a solution
ensuring the positive definiteness of the operators L(k) of form (22) (see the
corresponding example in [73]). In [98], a nonnegative definite solution of
equation (21) has been used.

The form of the relations defining the control in the feedback form is
identical both for a singular state equation and for a nonsingular state e-
quation. This is very convenient while studying singularly perturbed control
problems.

Note here paper [132] which deals with H∞-control for discrete-time sin-
gular delay systems of the form

Ax(k + 1) = Cx(k) + Cdx(k − d) +D1u(k) +D2w(k), z(k) = Gx(k),

where w(k) is a disturbance input, d > 0 is an integer representing a constant
time delay. H∞-control for discrete descriptor systems is also considered in
[152], where a state feedback controller is designed satisfying a prescribed
H∞-norm-bound condition.

Stabilization of discrete descriptor systems is studied, for instance, in
[153] and [151].

10 Discretization of continuous-time singular-
ly perturbed problems

In applied sciences, investigations of the dynamical behavior of nonlinear
evolutionary equations such as ordinary, functional, or partial differential
equations are mainly computional. For that purpose problems are discretized.
Discretization of different equations is presented, for instance, in [117]. In
[107], p. 39-40, some aspects of singular perturbations in difference equations
are examined along with those in differential equations. Difference schemes
for singularly perturbed differential equations with turning points or interior
layers are presented in [123].

In [63] and [60], a discrete approximation is presented to singularly per-
turbed linear, time-varying, continuous-time control systems. Discrete-time
modeling of such type systems is also shortly discussed in [103] (see the ref-
erences therein). Discretization schemes for nonlinear singularly perturbed
continuous-time control systems, which are linear with respect to a control,
can be found in, e.g., [5] and [121].

The authors of the paper [7] present a discretization scheme of two-time
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scale nonlinear continuous-time systems of the form

dx

dt
= f(t, x, z, u, ε), x(0) = η(ε),

ε
dz

dt
= g(t, x, z, u, ε), z(0) = ζ(ε),

y = h(t, x, z, ε).

This discretization scheme was adopted from Euler’s methodology. It uses
two periods, slow and fast, which are determined with respect to slow and
fast variables rate, respectively. This scheme enables us to define and then
to implement a multi-rate digital control for the considered type of systems.
To this end, two reduced order observers are constructed for the slow and
fast subsystems.

Note here the paper [26] dealing with the digital control of a particular
class of nonlinear singularly perturbed systems which are linear with respect
to a fast variable and control. Three distinct multi-rate composite control
strategies are discussed. The method used in this paper is a nonlinear exten-
sion of the composite technique used for the linear case in [91].

State-feedback H∞-control problem for linear singularly perturbed sys-
tems with norm-bounded uncertainties

Eε
dx(t)

dt
= (A+H∆F0)x(t) + (B1 +H∆F1)w(t) + (B2 +H∆F2)u(t),

z(t) = Cx(t) +Du(t),

where u(t) is the control input, w(t) is the exogenous disturbance signal, ∆
is an uncertain time-varying matrix, is studied in [37]. The fast variables
are sampled with fast rates, while for the slow variables both cases of slow
and fast sampling are considered. The closed-loop system is represented as
a continuous one with time-varying input delay.

11 Other control problems

The stability of hybrid control systems singularly perturbed by fast but con-
tinuous actuators is analyzed in [122]. The paper [35] deals with a class
of stochastic optimal control problems involving two different time scales.
The fast mode of the system is represented by deterministic state equation-
s whereas the slow mode of the system corresponds to a jump disturbance
process. The authors show how an approximate optimal control law can be
constructed from the solution of the limit control problem.

Based on the stability analysis of both continuous-time and discrete-time
fuzzy singularly perturbed systems, stabilizing feedback controller gains are
designed in [93]. The reduced-control law, which is only dependent on the
slow variables, is also discussed.
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The authors of the paper [20] investigate the problem of the state feedback
robust stabilization for discrete-time fuzzy singularly perturbed systems with
parameter uncertainty, where the i-th rule is formulated as follows:

x(k + 1) = Eε(Ai + ∆Ai)x(k) + EεBiu(k),

where the matrix ∆Ai represents a time-varying uncertain matrix.
In [127] and [154], the delta-operator approach is applied for obtaining a

singularly perturbed unified model which can be used in both continuous-time
domain and discrete-time domain. A method of designing a state feedback
gain achieving a specified insensitivity of the closed-loop trajectory is pro-
posed in [127]. The condition to find the robust controller is derived for a
fuzzy singularly perturbed unified model [154].

The H∞ - optimal control and risk-sensitive control of linear singularly
perturbed discrete-time systems is described in [105].

Two methods for designing state feedback H∞-controllers for standard
discrete-time singularly perturbed systems with polytopic uncertainties in
terms of solutions of a set of linear matrix inequalities are considered in [31].
Moreover, a method of evaluating the upper bound of singular perturbation
parameter is given (see also [32], [92] for more results regarding to H∞-control
problems of discrete singularly perturbed systems).

Paper [128] deals with an unified approach to H∞-optimal control of sin-
gularly perturbed systems. The key contribution of the paper is to present
continuous-time and discrete-time singularly perturbed cases simultaneously
under general imperfect state measurements using infinite-horizon formula-
tions. Note that an unified approach is also applied for linear-quadratic
regulator design in [126].

The design of a mixed H2/H∞-linear state variable feedback suboptimal
controller for a discrete-time singularly perturbed system

x(k + 1) = Ax(k) +B1u(k) +B2w(k),

z(k) = Cx(k) +Du(k),

where x(k) = (x1(k)′, x2(k)′)′, A =

(
I + εA11 εA12

A21 A22

)
, B1 = (εB′11 B

′
21)′,

B2 = (εB′12 B
′
22)′, C = (C1 C2), u is the control input, w is the disturbance

input, is described in [25] using reduced order slow and fast subsystems. It
is shown that the designed controller based on reduced order models and the
corresponding performance index both are O(ε) close to those synthesized
using the full order system.

The authors of [108] study the output feedback sliding mode control prob-
lem for a sampled data linear system with disturbances. By taking into ac-
count the disturbance compensation, a deadbeat high gain output feedback
control strategy with additional dynamics is able to attenuate the distur-
bances. It is shown that the closed loop system exhibits both singularly
perturbed and weakly coupled characteristics.
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We note here the paper [18], where a sub-optimal controller is designed for
nonstandard discrete-time singularly perturbed systems through LMI (Linear
Matrix Inequality) methodology. It is different from the general fast-slow
decomposition method.

In [101], a discrete minimax problem is considered in the presence of
regular and singular perturbations in the dynamics.

The paper [3] is devoted to near-optimal controls of large-scale discrete-
time nonlinear dynamic systems driven by Markov chains. The underlying
problem is to minimize an expected cost function.

Numerically-asymptotic method of solving discrete optimal control prob-
lem with fast and slow variables of the form

Jε(u) = Φ(x(N))→ minu∈U ,
x(k + 1) = x(k) + ε(X(k, x(k), y(k)) +A(x(k))φ(k, u(k)), x(0) = x0,

y(k + 1) = Y (k, x(k), y(k)), y(0) = y0,
k = 0, N − 1,

is described and justified in [10]. An asymptotically optimal control in the
original problem is found by the optimal control in the averaging problem.

Discrete singularly perturbed linear-quadratic problems are recursively
solved in [44] and [47]. In particular, a recursive algorithm is developed for
the discrete singularly perturbed output feedback stochastic control prob-
lem. Nonlinear algebraic matrix equations are decomposed to ones corre-
sponding to slow and fast modes, so that only low-order systems are involved
in algebraic computations. Moreover, such a decomposition removes the ill-
conditioning of the higher order system. The proposed algorithm gives the
accuracy of O(εn), where ε is a small perturbation parameter and n is the
number of iterations.

The controllability and observability of linear discrete-time systems sat-
isfying the two-time-scale property are considered in [134]. A method is
proposed for designing two state feedback gains which are used for sepa-
rate placement of slow and fast eigenvalues. This method is based on the
separability of the slow and fast controls.

12 Applications

The monographs [66], [102] and the overviews [104], [103], [29], [155] con-
tain the survey of publications devoted to singularly perturbed continuous
problems arising in fluid dynamics, electrical circuits and machines, electrical
power systems, aerospace systems, chemical reactions, diffusion and reactor
control systems, biology and biochemistry, and other applications. Numerous
references are given.

We present here some applications of the discrete singularly perturbed
control problems theory.
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The efficiency of the recursive method for solving discrete singularly per-
turbed linear-quadratic control problems, studied in [44] and [47], is demon-
strated in these monographs with examples of the discrete model of an air-
craft F-8 and a fifth order discrete model for a steam power system. Some
results concerning the investigation of the discretized model of an F-8 air-
craft are also presented in [46], [8], and [18]. The stabilization bounds for
a fifth-order discrete model of a steam power system obtained by three de-
sign procedures are given in [86]. The effectiveness of the proposed in [87]
controller is illustrated in this paper by the same discrete model for a steam
power system.

The problem of the form (14), (15) for the discrete linearized model of
an F-15 aircraft has been solved in [43] using the pure-slow and pure-fast
algebraic Riccati equations. There is the ideal proximity with the exact
solution.

The L-1011 aircraft model is used by the authors of [108] for sampled-data
output feedback sliding-mode control design.

Time-scale analysis and synthesis control methodology for continuous-
time model predictive control is presented in [157]. In this method, low-
order slow and fast subsystems are derived from a higher-order plant with a
two-time-scale character which is a wind energy conversion system with per-
manent magnet synchronous generators. Then slow and fast subcontrollers
are designed separately and a composite model predictive control is obtained.
The discrete-time model predictive controller is designed using the discretized
wind energy conversion system with a sample interval. The performance of
the discrete-time model predictive controller is compared with that of the
continuous-time model predictive controllers.

The authors of the paper [122] demonstrate the effect of the fast actuator
dynamics on hybrid feedback algorithms that, in the absence of actuator dy-
namics, globally asymptotically stabilize the inverted position of a pendulum
on a cart and the position and orientation of a mobile robot, respectively.

The problem of fault diagnosis of discrete singularly perturbed systems
is studied in [133] by designing residuals based on reduced slow subsystems.
Two examples of applications are given to demonstrate the efficiency of the
proposed method. The first of them deals with a real laboratory two tanks
system with single input and single output. In the second one, a discrete-time
singularly perturbed system with two outputs and one input is considered.

A reduced-order model for control design applications of a seventh-order
two-time-scale discrete-time model of synchronous machines is developed in
[22]. A tracking control law based on sliding-mode principles and singular
perturbation techniques, which allows to track a reference rotor angle for a
synchronous generator, is proposed in [121].

Obtained in [20] results, concerning the state feedback robust stabilization
for discrete-time fuzzy singularly perturbed systems with parameter uncer-
tainty, are applied in this paper for a tunnel diode circuit. It is shown that
the proposed method is effective in improving the upper bound of a small
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parameter.

Many control schemes for dc-dc converters begin with the assertion that
induced currents are ”fast” states and capacitor voltage are ”slow” states.
This assertion must be true for power factor correction converters to allow
independent control of current and voltage. In [62], separation criteria were
derived for boost, buck, and buck-boost controllers in both continuous and
discrete-time formulations.

The zero-order approximation for a asymptotic solution of a discrete
linear-quadratic problem of DC motor control with low inductance is con-
structed in [57].

Using the boundary-layer function method, the second order asymptotic
solution of a time-invariant discrete linear-quadratic optimal control problem
for the third order power system model is constructed in [64]. The comparison
of optimal solutions of a discrete linear-quadratic optimal control problem
and suboptimal asymptotic solutions of the orders up two is given in [65] for
a sampled fifth order power system model with two small parameters.

The algorithm of design of observers and stabilizing feedback controllers
for singularly perturbed discrete systems, proposed in [59], is applied in this
paper to a ninth-order boiler model.

The algorithm for constructing an uniform asymptotic approximation of
the zero-order to an optimal control leading to balanced growth trajectories
for a discrete model with a small step combining properties of the dynamical
models by Leontief and by Neumann is proposed in [24].

The paper [36] deals with a two-factor production model where one fac-
tor is characterized by a continuous state variable. It corresponds to the fast
mode of the system in the form of a controlled diffusion process. The sec-
ond production factor is characterized by a discrete variable. It corresponds
to the slow mode of the system in the form of a controlled jump process.
The authors define the limit-control problem approximated numerically and
implement a numerical technique, using approximating Markov chains and
observe the claimed convergence for the numerical solutions.

13 Conclusion

The present paper is the first review of publications for the last years entirely
devoted to study discrete control systems with the help of perturbations
theory approaches.

Note that reviews [103] and [155] cover mainly the works in English and
almost do not reflect the works, ideas and approaches of the Russian-speaking
authors. While prof. Vasil’eva A.B. (Moscow State University) and her
followers in the former USSR and Russia were the first to study the discrete
dynamic systems with the help of singular perturbations theory in 60-70s of
the last century.

This overview is constructed in such a way that in each section several
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papers are selected that most clearly demonstrate the subject of this section.

The authors apologize for any omission of references that should have
been included in this survey. They very hope that this paper will be useful
for readers dealing with discrete systems containing parameters.
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