

Properties of Sallen-Key Filters:

- 1. Simplicity of the design
- 2. Non-Inverting Amplifier (positive Gain)
- **3.** Replication of elements

Limitations of Sallen-Key Filters:

- 1. The Gain and Q are related
- 2. *Q* must be > $\frac{1}{2}$, since *A* must be > 1

Other Active Filters

Band Pass 2:

Band Pass 3:

Band Reject 1:

$$H(s) = \frac{R_4}{R_3 + R_4} \frac{s^2 + s\left(\frac{2}{R_2C} - \frac{R_3}{R_1R_4C}\right) + \frac{1}{C^2R_1R_2}}{s^2 + s\frac{2}{R_2C} + \frac{1}{C^2R_1R_2}}$$

Properties & Design Hints

- These amplifiers are "inverting amplifiers" (negative gain)
- **BPF1** is restricted to $Q > \frac{1}{2}$.
- BPF2 can have a $Q < \frac{1}{2}$ if $C_1 \neq C_2$.
- Both gain and Q can be controlled with the circuit elements.
- BRF1 does not have a true zero on the imaginary axis unless $\frac{R_3}{R_1R_4} = \frac{2}{R_2}$.
- A design may not require a true null, but a notch. The zero can be adjusted to control the "dip" in the response.
- Typical design: Specify the gain, Q, and resonant frequency, and then solve for the circuit elements.
 - Requires some assumptions for the values of *R*'s and *C*'s (problem is under-determined). Choose *R* to be large (> 1 k) when possible. Possibly choose relationships (such as $C_1 = k \times C_2$).
 - Equations for remaining elements can be nonlinear.
 - Not all values of Q, A_{ν} , and ω_o are necessarily possible.
 - Gain may not be as important as *Q* and resonant frequency if the amplifier is one stage of a system design.