Second-Order Sallen-Key Filters

S.K. Low-Pass Filter

S.K. High-Pass Filter

S.K. Band-Pass Filter

Properties of Sallen-Key Filters:

1. Simplicity of the design
2. Non-Inverting Amplifier (positive Gain)
3. Replication of elements

Limitations of Sallen-Key Filters:

1. The Gain and Q are related
2. Q must be $>1 / 2$, since A must be >1

Other Active Filters

Band Pass 1:

Band Pass 2:

Band Pass 3:

Band Reject 1:

Other Active Filters

Properties \& Design Hints

- These amplifiers are "inverting amplifiers" (negative gain)
- BPF1 is restricted to $Q>1 / 2$.
- BPF2 can have a $Q<1 / 2$ if $C_{1} \neq C_{2}$.
- Both gain and Q can be controlled with the circuit elements.
- BRF1 does not have a true zero on the imaginary axis unless $\frac{R_{3}}{R_{1} R_{4}}=\frac{2}{R_{2}}$.
- A design may not require a true null, but a notch. The zero can be adjusted to control the "dip" in the response.
- Typical design: Specify the gain, Q, and resonant frequency, and then solve for the circuit elements.
o Requires some assumptions for the values of R 's and C's (problem is under-determined). Choose R to be large ($>1 \mathrm{k}$) when possible. Possibly choose relationships (such as $C_{1}=k \times C_{2}$).
o Equations for remaining elements can be nonlinear.
o Not all values of Q, A_{v}, and ω_{o} are necessarily possible.
o Gain may not be as important as Q and resonant frequency if the amplifier is one stage of a system design.

