

Digital Integrated Circuits
 A Design Perspective

Jan M. Rabaey
Anantha Chandrakasan Borivoje Nikolic

Arithmetic Circuits

A Generic Digital Processor

Arithmetic Circuits

Building Blocks for Digital Architectures

Arithmetic unit

- Bit-sliced datapath (adder, multiplier, shifter, comparator, etc.)

Memory

- RAM, ROM, Buffers, Shift registers

Control

- Finite state machine (PLA, random logic.)
- Counters

Interconnect

- Switches
- Arbiters
- Bus

Arithmetic building blocks

\square Speed and power of arithmetic components often dominates the overall system performance

F For each module, multiple topologies and ways of design exists, with each of them has its own advantages
\square A global picture is of crucial importance. A designer focus their attention on gates or transistors that have the largest impact on their goal function. Non-critical components can be developed routinely.

Typically two optimization process: logic optimization (re-arrange Boolean equations so that a faster or small circuit could be obtained) and circuit optimization (manipulate circuit topology and transistor sizes to optimize speed)

Bit-Sliced Design

Tile identical processing elements
Since the same operation has to be performed on each bit of a data word, the data path can consist of the number of bit slices (equal to the word length), each operating on a single bit - hence the term bit-sliced

Adders

Full-Adder

Generate (G) = AB
Propagate $(P)=A \oplus B$
Delete $(D)=\bar{A} \bar{B}$

\boldsymbol{A}	B	C_{i}	\boldsymbol{S}	$C_{\boldsymbol{o}}$	Carry status
0	0	0	0	0	delete
0	0	1	1	0	delete
0	1	0	1	0	propagate
0	1	1	0	1	propagate
1	0	0	1	0	propagate
1	0	1	0	1	propagate
1	1	0	0	1	generate
1	1	1	1	1	generate

G, D, ensures a carry bit will be generated or deleted at Co independent of Ci, While P guarantees that Ci will propagate to Co.
© Digital Integrated Circuits²nd
Arithmetic Circuits

The Binary Adder

$$
\begin{aligned}
\mathbf{S} & =\mathbf{A} \oplus \mathbf{B} \oplus \mathbf{C}_{\mathbf{i}} \\
& =\mathbf{A} \overline{\mathbf{B}} \overline{\mathbf{C}}_{\mathbf{i}}+\overline{\mathbf{A}} \mathbf{B} \overline{\mathbf{C}}_{\mathbf{i}}+\overline{\mathbf{A}} \overline{\mathbf{B}} \mathbf{C}_{\mathbf{i}}+\mathbf{A B C} \mathbf{C}_{j} \\
\mathbf{C}_{\mathbf{0}} & =\mathbf{A B}+\mathbf{B} \mathbf{C}_{\mathbf{i}}+\mathbf{A} \mathbf{C}_{\mathbf{i}}
\end{aligned}
$$

The Ripple-Carry Adder

Worst case delay linear with the number of bits

$$
\begin{aligned}
& t_{d}=\mathrm{O}(N) \\
& t_{\text {adder }}=(N-1) t_{\text {carry }}+t_{\text {sum }}
\end{aligned}
$$

Goal: Make the fastest possible carry path circuit

Complimentary Static CMOS Full Adder

Complimentary Static CMOS Full Adder

\square Large PMOS stacks are present in both carry and sum generation circuits

Intrinsic load capacitance of C_{o} signal is large and consists of eight capacitance components
\square There is one more inverter delay for carry and sum (worse when the load capacitance is large)
\square Note that critical signal C_{i} closer to the output node

Express Sum and Carry as a function of

P, G, D

Define 3 new variable which ONLY depend on A, B
Generate (G) = AB
Propagate $(P)=A \oplus B$
Delete $(D)=\bar{A} \bar{B}$

$$
\begin{aligned}
C_{o}(G, P) & =G+P C_{i} \\
S(G, P) & =P \oplus C_{i}
\end{aligned}
$$

Can also derive expressions for S and C_{o} based on D and P Note that we will be sometimes using an alternate definition for Propagate $(P)=A+B$

Transmission Gate XOR

$F=(\bar{A} \bullet B+A \bullet \bar{B}), 12$ transisto rs for complement ary implementa tion

When $B=1, M 1 / M 2$ inverter, $M 3 / M 4$ off, so $F=\bar{A} B$
When $B=0, M 1 / M 2$ off, $M 3 / M 4$ transmission gate, so $F=A \bar{B}$

Transmission Gate Full Adder

Setup

Propagate $(P)=A \oplus B$
© Digital Integrated Circuits ${ }^{2 n d}$

$$
\begin{aligned}
C_{o}(G, P) & =G+P C_{i} \\
S(G, P) & =P \oplus C_{i}
\end{aligned}
$$

Manchester Carry Chain

Full-Adder

\boldsymbol{A}	B	$C_{\boldsymbol{i}}$	\boldsymbol{S}	$C_{\boldsymbol{o}}$	Carry status
0	0	0	0	0	delete
0	0	1	1	0	delete
0	1	0	1	0	propagate
0	1	1	0	1	propagate
1	0	0	1	0	propagate
1	0	1	0	1	propagate
1	1	0	0	1	generate
1	1	1	1	1	generate

Manchester Carry Chain

© Digital Integrated Circuits ${ }^{2 n d}$
Arithmetic Circuits

Manchester Carry Chain

Stick Diagram

Propagate/Generate Row

Arithmetic Circuits

Manchester Carry Chain

\square Delay for the Manchester Carry Chain can be modeled similar to a linearized RC network as in transmission-gates

This means the propagation delay is quadratic in the number of bits N (but does not imply the delay will be larger than the ripple carry adder)
\square It might be necessary to insert signal buffering inverters.
\square Still a ripple carry adder, typically only good for small word length (<8/16 bits)

We need faster adders for computer and multimedia applications with word length 32-128 bits

Carry-Bypass Adder

Also called Carry-Skip

Idea: If (P 0 and P 1 and P 2 and $\mathrm{P} 3=1$) then $\mathrm{C}_{\mathrm{o} 3}=\mathrm{C}_{0}$, else "delete" or "generate"

Break the bit-slice organization

Carry-Bypass Adder (cont.)

M bits

$$
t_{\text {adder }}=t_{\text {setup }}+M t_{\text {carry }}+(N / M-1) t_{\text {bypass }}+(M-1) t_{\text {carry }}+t_{\text {sum }} \quad \text { (worst case) }
$$

$T_{\text {setup: }}$ overhead time to create G, P, D signals

Carry Ripple versus Carry Bypass (both still linear)

Arithmetic Circuits

Carry-Select Adder

Carry Select Adder: Critical Path

Linear Carry Select

Bit 0-3
Bit 4-7
Bit 8-11
Bit 12-15

Arithmetic Circuits

Square Root Carry Select

Bit 0-1
Bit 2-4
Bit 5-8
Bit 9-13
Bit 14-19

Adder Delays - Comparison

LookAhead - Basic Idea

Look-Ahead: Topology

Expanding Lookahead equations:

$$
\mathrm{C}_{\mathrm{o}, \mathrm{k}}=\mathrm{G}_{\mathrm{k}}+\mathrm{P}_{\mathrm{k}}\left(\mathrm{G}_{\mathrm{k}-1}+\mathrm{P}_{\mathrm{k}-1} \mathrm{C}_{\mathrm{o}, \mathrm{k}-2}\right)
$$

All the way:

$$
\mathrm{C}_{\mathrm{o}, \mathrm{k}}=\mathrm{G}_{\mathrm{k}}+\mathrm{P}_{\mathrm{k}}\left(\mathrm{G}_{\mathrm{k}-1}+\mathrm{P}_{\mathrm{k}-1}\left(\ldots+\mathrm{P}_{1}\left(\mathrm{G}_{0}+\mathrm{P}_{0} \mathrm{C}_{\mathrm{i}, 0}\right)\right)\right)
$$

Look-Ahead Adder: Logarithmic adder

$$
t_{p} \sim N
$$

$t_{p} \sim \log _{2}(N)$

Arithmetic Circuits

Carry Look-Ahead Trees

$$
\begin{aligned}
& C_{0}=G_{0}+P_{0} C_{\text {in }} \\
& C_{1}=G_{1}+P_{1} C_{0} \\
& C_{2}=G_{2}+P_{2} C_{1} \\
& C_{3}=G_{3}+P_{3} C_{2} \\
& C_{0}=G_{0}+P_{0} C_{\text {in }} \\
& C_{1}=G_{1}+P_{1} C_{0}=G_{1}+G_{0} P_{1}+P_{1} P_{0} C_{\text {in }}=\mathrm{G}_{1: 0}+\mathrm{P}_{1: 0} \mathrm{C}_{0} \\
& \qquad \quad\left(\mathrm{G}_{1: 0}=\mathrm{G}_{1}+\mathrm{P}_{1} \mathrm{G}_{0} \quad \mathrm{P}_{1: 0}=\mathrm{P}_{1} \mathrm{P}_{0}\right) \\
& \qquad \begin{array}{r}
\text { an }
\end{array} \\
& C_{2}=G_{2}+P_{2} C_{1}=G_{2}+G_{1} P_{2}+G_{0} P_{2} P_{1}+P_{2} P_{1} P_{0} C_{\text {in }}=\mathrm{G}_{2: 1}+\mathrm{P}_{2: 1} \mathrm{C}_{0} \\
& \quad\left(\mathrm{G}_{2: 1}=\mathrm{G}_{2}+\mathrm{P}_{2} \mathrm{G}_{1} \quad \mathrm{P}_{2: 1}=\mathrm{P}_{2} \mathrm{P}_{1}\right) \\
& C_{3}=G_{3}+P_{3} C_{2}=G_{3}+G_{2} P_{3}+G_{1} P_{3} P_{2}+G_{0} P_{3} P_{2} P_{1}+P_{3} P_{2} P_{1} P_{0} C_{\text {in }} \\
& =\mathrm{G}_{3: 2}+\mathrm{P}_{3: 2} \mathrm{C}_{1}=\mathrm{G}_{3: 2}+\mathrm{P}_{3: 2}\left(\mathrm{G}_{1: 0}+\mathrm{P}_{1: 0} \mathrm{C}_{0}\right)=\left(\mathrm{G}_{3: 2}+\mathrm{P}_{3: 2} \mathrm{G}_{1: 0}\right)+\mathrm{P}_{3: 2} \mathrm{P}_{1: 0} \mathrm{C}_{0}
\end{aligned}
$$

Can continue building the tree hierarchically.
$G_{3: 2}=\left(G_{3}+P_{3} G_{2}\right)$ and $P_{3: 2}=P_{3} P_{2}$ are called dot products.

Tree Adders

16-bit radix-2 Kogge-Stone tree (radix 2 means that the tree is Binary: it combines two dot product or carry words at a time at Each level of hierarchy)

Tree Adders

16-bit radix-4 Kogge-Stone Tree

Arithmetic Circuits

Sparse Trees

16-bit radix-2 sparse tree with sparseness of 2

Arithmetic Circuits

Tree Adders

Brent-Kung Tree

Arithmetic Circuits

Intel Itanium Microprocessor

Itanium has 6 integer execution units like this

Bit-Sliced Design

Control

Tile identical processing elements

Bit-Sliced Datapath

From register files / Cache / Bypass

15
To register files / Cache

The adder is implemented as a radix-4 Carry LookAhead adder, the red lines are forwarding the results of different stages

Itanium Integer Datapath

Multipliers

The Binary Multiplication

$$
\begin{aligned}
\mathbf{Z} & =\ddot{\mathbf{X}}_{\times} \mathbf{Y}=\sum_{\mathbf{k}=\mathbf{0}}^{\sum_{\mathbf{N}}+\mathbf{N}} \mathbf{Z}_{\mathbf{k}} \mathbf{2}^{\mathbf{k}} \\
& =\left(\sum_{\mathbf{i}=\mathbf{0}}^{\mathbf{M}_{-}} \mathbf{X}_{\mathbf{i}} \mathbf{i}^{\mathbf{i}}\left(\mathbf{N}_{\mathbf{N}-\mathbf{1}}^{\sum_{\mathbf{j}=\mathbf{0}}} \mathbf{Y}_{\mathbf{j}} \mathbf{2}^{\mathbf{j}}\right)\right. \\
& =\sum_{\mathbf{i}=\mathbf{0}}\left(\sum_{\mathbf{j}=\mathbf{0}} \mathbf{X}_{\mathbf{i}} \mathbf{Y}_{\mathbf{j}} \mathbf{2}^{\mathbf{i}+\mathbf{j}}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& \mathbf{X}=\sum_{\substack{\mathbf{i}=\mathbf{0}}}^{\mathbf{M - 1}} \mathbf{X}_{\mathbf{i}} \mathbf{2}^{\mathbf{i}} \\
& \mathbf{Y}=\sum_{\mathbf{j}=\mathbf{1}} \mathbf{Y}_{\mathbf{j}} \mathbf{2}^{\mathbf{j}}
\end{aligned}
$$

The Binary Multiplication

The Array Multiplier (4 by 4)

The carryout of the last adder for Y_{i} is forwarded to Y_{i+1}

The MxN Array Multiplier - Critical Path

Carry-Save Multiplier

$$
\left.t_{m^{\prime}}{ }^{=\langle N-1\rangle} \boldsymbol{t}_{\text {carry }}{ }^{+\langle N-1\rangle t_{\text {and }}} \boldsymbol{t}_{\text {merge }}\right]
$$

\square A more efficient
realization can be obtained by noticing that the multiplication results does not change when the output carry bits are passed diagonally downwards instead of to the right.
\square But need extra adders (vector merging adders) that can use fast carry look ahead adders (since results come at the same time)

- Critical path is uniquely defined

Multiplier Floorplan

\square HA Multiplier Cell

FA Multiplier Cell

Vector Merging Cell
X and Y signals are broadcasted through the complete array.
(\longrightarrow)

Wallace-Tree Multiplier

Save the number of full adders
Increase the complexity of routing

Wallace-Tree Multiplier

Can use carry Look-Ahead adder for the last stage

Wallace-Tree Multiplier

Arithmetic Circuits

Booth encoding

- Multiply by 01111110 gives 8 partial products, but two are all zero. Add these zero is waste of time.

Instead, multiply by $1000000 \overline{1} 0$, where $\overline{1}$ stands for -1 . Then you need to only add (actually subtract) partial products, which improves speed

This kind of transformation is called booth encoding. It reduces the number of partial product to at most half of the original multiplier width.

The encoding logic is easily incorporated in the overall multiplier design.

Multipliers -Summary

- Optimization Goals Different Vs Binary Adder
- Once Again: Identify Critical Path
- Other possible techniques
- Logarithmic versus Linear (Wallace Tree Mult)
- Data encoding (Booth)
- Pipelining

FIRST GLIMPSE AT SYSTEM LEVEL OPTIMIZATION
This is also why algorithmic invention has significant meaning to VLSI design.
© Digital Integrated Circuits ${ }^{2 n d}$

Shifters

The Binary Shifter

The Barrel Shifter

Column: maximum shift

Arithmetic Circuits

4×4 barrel shifter

\square Coder/decoder required to set shift bits
\square Signal pass through one gate independent of shift amount (parasitic capacitance may change the picture)

Logarithmic Shifter

No separate coder/decoder is required

Arithmetic Circuits

0-7 bit Logarithmic Shifter

Good for large shift amount (note that cascade pass transistor slow down the gate and generate weak signals, buffers may be needed)
© Digital Integrated Circuits ${ }^{2 n d}$

Building Blocks for Digital Architectures

Arithmetic unit

- Bit-sliced datapath (adder, multiplier, shifter, comparator)
(comparator, divider, sin, cos etc)

