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Building Blocks for Digital Architectures

Arithmetic unit
- Bit-sliced datapath (adder, multiplier, shifter, comparator, etc.)

Memory
- RAM, ROM, Buffers, Shift registers

Control
- Finite state machine (PLA, random logic.)
- Counters

Interconnect
- Switches

- Arbiters

- Bus



Arithmetic building blocks

d Speed and power of arithmetic components often
dominates the overall system performance

 For each module, multiple topologies and ways of
design exists, with each of them has its own advantages

A global picture is of crucial importance. A designer
focus their attention on gates or transistors that have the
largest impact on their goal function. Non-critical
components can be developed routinely.

4 Typically two optimization process: logic optimization
(re-arrange Boolean equations so that a faster or small
circuit could be obtained) and circuit optimization
(manipulate circuit topology and transistor sizes to
optimize speed) )
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Bit-Sliced Design  “™™
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= = = Bit 1

= Bit 0

Data-In
Data-QOut

Tile identical processing elements

Since the same operation has to be performed on each
bit of a data word, the data path can consist of the
number of bit slices (equal to the word length), each
operating on a single bit — hence the term bit-sliced |



Adders




Full-Adder

Carry
o Co status

N

B C

delete
delete

Sum

propagate

propagate

propagate

Generate (G) = AB
Propagate (P) =A © B
Delete (D) = AB

propagate

generate

e e I e T e T e T O s T O v T Y o
el R =R = =

0 0 0
0 1 1
1 0 1
1 1 0
0 0 1
0 1 0
1 0 0
1 1 1

generate

G,D, ensures a carry bit will be generated or deleted at Co independent of Ci,
While P guarantees that Ci will propagate to Co.
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The Binary Adder

A B
v v
Cin—., Ful |
adder Cout
1
Sum
S=A®B @Ci

CO = AB+BCi+ACi
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The Ripple-Carry Adder

Ay By Ay By Ay B A3 B
R ] R R b
C/,O C0,0 Co,1 C0,2 C0,3
f> FA (—_C)> FA —> FA —> FA —>
A
) { v !
Sy Sy Sy S3

Worst case delay linear with the number of bits
t; = O(N)

tadder = (N'1)tcarry + tsum
Goal: Make the fastest possible carry path circuit
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Complimentary Static CMOS Full Adder

Vbp
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Complimentary Static CMOS Full Adder

O Large PMQOS stacks are present in both carry and sum
generation circuits

O Intrinsic load capacitance of Co signal is large and
consists of eight capacitance components

 There is one more inverter delay for carry and sum
(worse when the load capacitance is large)

[ Note that critical signal Ci closer to the output node




Express Sum and Carry as a function of
P,G,D

Define 3 new variable which ONLY depend on A, B
Generate (G) = AB
Propagate (P) =A © B
Delete (D) = AB
CG(G, P) =G+ PCi

S(G,P) = P®C,

Can also derive expressions for S and C, based on D and P

Note that we will be sometimes using an alternate definition for
Propagate (P) =A + B
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Transmission Gate XOR

F= (Z B+ Ae 1_3), 12 transisto rs for complement ary implementa tion

B
B
ol |m2 |
P 4
‘ F
| M1 ? M3/M4
B
B

When B=1, M1/M2 inverter, M3/M4 off, so F=AB
When B=0, M1/M2 off, M3/M4 transmission gate, so F=/1\3§



Transmission Gate Full Adder

b Vbp

T 4 E |
A {: }Z - _E‘_;LE:} CZPI —{tll'—S Sum Generation
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Vpp
0 . :} ]I ._{ :|_ C,Carry Generation
C,-<D } C; r C, H
4 - T
=<+ Setup P

Propagate (P) =A ©B

CO(G,P) = G+ PCL 14
itg2nd S(G,P) = PO,




Manchester Carry Chain

Fi Voo - _T’_ ¢O_d|: B

& [ 2 o
C E ,Co Go—||:

T o—

P, L ¢O_|I:

Generate (G) = AB
Propagate (P) =A © B
Delete =A B

C (G,P) = G+ PC.
0o A

Prevent floating Co S$(G,P) = PO,



Full-Adder

A| B | ¢ | 8 C, gﬁ;ﬁ

0 0 0 0 0 delete

0 0 1 1 0 delete

0 1 0 1 0 propagate
0 1 1 0 1 propagate
1 0 0 1 0 propagate
1 0 1 0 1 propagate
1 1 0 0 1 generate
1 1 1 1 1 generate
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Manchester Carry Chain
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Manchester Carry Chain

Stick Diagram

Propagate/Generate Row

GND

Inverter/Sum Row
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Manchester Carry Chain

1 Delay for the Manchester Carry Chain can be
modeled similar to a linearized RC network as in
transmission-gates

O This means the propagation delay is quadratic in the
number of bits N (but does not imply the delay will be
larger than the ripple carry adder)

O It might be necessary to insert signal buffering
iInverters.

O Still a ripple carry adder, typically only good for small
word length (<8/16 bits)

O We need faster adders for computer and multimedia
applications with word length 32-128 bits
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Carry-Bypass Adder

P, Go Pi G P, G, P, G, Also called
P S S S S S Carry-Skip
Ci,O Co,O Co,l Co,Z C0,3
— FA 5| FA 5] FA |5 FA |
P, G P, G P, G
b P i [ BP=P_P,P,P,

vy 3 vy 3 vy 3
Ci,() C0,0 C0,1 C0,2
— FA FA |—] FA |—| FA |—»

|ldea: If (PO and P1 and P2 and P3 = 1)
then Cy3 = Cy, else “delete” or “generate”

Multiplexer

Break the bit-slice organization




Carry-Bypass Adder (cont.)

Bit 0-3 Bit 4—7 Bit 8—11 Bit 12-15
Setup l tsetup Setup f Setup Setup
bypass
U RN U RN U RN U RN
Carry | _ Carry N _ Carry | . Carry ~
‘ propagation propagation propagation propagation
> e > >
\/ - \/ e \/ e \/ e
Sum Sum Sum tsuml Sum
M bits
tadder = Lsetup + Mtcarry + (N/M'1 )tbypass + (M'1 )tcarry + tsum (WOfSt CaSe)

Tsewp: Overhead time to create G, P, D signals
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Carry Ripple versus Carry Bypass
(both still linear)

tp

4.8 N




Carry-Select Adder

Setup

P,G

"0 —>»  "0" Carry Propagation

~
"1"  —| "1" Carry Propagation
Co. -1 , Multiplexer - » Cox+3

Carry Vector

Sum Generation
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Carry Select Adder: Critical Path

Bit 0-3 Bit 4—7 Bit 8—11 Bit 12—-15
Setup Setup Setup Setup
0= 0-Carry 0= 0-Carry 0 = 0-Carry 0= 0-Carry
~Z N2 ~Z ~Z
1> 1-Carry 1> 1-Carry 1= 1-Carry 1 1-Carry
Lo < & < 4 < 4
—> Multiplexer ——> Multiplexer ——> Multiplexer ——>{ Multiplexer
Cio 4 L Co3 4 L Co,7 4 L Co,11 4 L
Sum Generation Sum Generation Sum Generation Sum Generation
So-3 S4-7 Sg_11 S12-15
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Linear Carry Select

Bit 0-3 Bit 4-7 Bit 8-11 Bit 12-15
Setup Setup Setup Setup
1
4o | [ [
—»  "0" Carry —p|  "0" Carry —» "0" Carry —» "0" Carry
”" 0" "0" "0" "0"
EAl AL 4 {8
) "1" Carry N "1" Carry . "1" Carry ) "1" Carry
"1" "1" "1" "1"
sLeg , 1%, 1eL , 5]
) () )

A\ 4

Multiplexer Multiplexer +—»

A\ 4

Multiplexer

A 4

——  Multiplexer

! I I 1L

Sum Generation Sum Generation Sum Generation Sum Generation

tadder = tsetup +M tcarly " (N/ M )tmux = tsum 25



Square Root Carry Select

Bit 0-1

Setup

JL (D

HO" Carry

"1" Carry

3) @(3) iL

—P

Multiplexen

Bit 2-4

Setup

<

vﬁh’

"0" Carry

!

nﬁ’

"1" Carry

“)

L7

A 4

Ci,O

<

Sum Generatii)n

S01

Multiplexer

Bit 5-8
Setup
g "0" Carry
. ]Tb " 1 " Carry
)
»  Multiplexer

<

Sum Generatio+

S14

Bit 9-13

Setup

L

"0" Carry

<L

"1" Carry

L]

(7)

(6)

|

Sum Generation

S5-8

Multiplexer

<L

Sum Generation

S9-13

Laad = tsetup ™ Mlcarey™ 2N s Lsum

Bit 14-19

117
¥ Mux

AL( 8)

Sum

S14-19 “)
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Adder Delays - Comparison

50 I I | I |
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t, (in unit delays)

10 Square root select
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LookAhead - Basic Idea

Ao, By A4, By An-1, By

Cox = f(ALBLC 1) =G +PCo
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Look-Ahead: Topology

Expanding Lookahead equations:

Cox = Gt P(Gy_ +P G 0)

All the way:

Cok = G TP(Gy_ +P (... ¥ P1(Gy +P;C )
Cio
Po
P4
P,
Ps

<
'_l [*1_r*1g

T T T T
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—
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Look-Ahead Adder: Logarithmic adder
ARt e e

A, A, As A, As Ag A,

As L
As IE_ t,~ logy(N)




Carry Look-Ahead Trees

Co=Got+PoC
Ci=G+P:(Co
C=GtP:C
Cs=GstPsCe
Co=Got+PoChn
Ci=G+P:Co =G+ GoP1+ PiPoCn =Gi0HP10Co

(G1:0=G1+P1GO P1:0=P1Po)

C=Got P.Ci =Gt GiPoA GoP2Pit PP PoCrn =G24+ P21Co
(G2:1=G2+P2G+ P2:.1=P2P1)

Cs=Gst+ P:Cy =Gt GePst GiPs Pt GoPsP2Pi+ P PP PoCi,
=G32+P32C1=Ga2+P32(G1:0+P1:0Co)=(Ga2+P3:2Gi:0) + P3:2P1:0Co

Can continue building the tree hierarchically.

Gs2=(G3+PsG2) and Ps2=P:P: are called dot products. .



e ——2ul
=2z
I o T st i i T ol i s i
A

(A, By |O
(A, B) |0
(A, B,) |0
(A,, By) | O
(A, B)| O
(A, B)| O
(A, By)| O
(A, B)| O

(Ag, Bg) O

(Aq, By) O

(A, B,y O
(A By O
(A, B, O
(A5 Byy) O
(A, By, O
(A5 Bys) O

16-bit radix-2 Kogge-Stone tree (radix 2 means that the tree is

Binary: it combines two dot product or carry words at a time at
Each level of hierarchy)

32
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s O O
.v_‘m ’

30\

50 \\N NN
Do NN

e\l NN
e NN
NN
RN
O\ RN
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BAN NN
BN\

RN

Am_‘Q .m_‘mv

AﬁQ .S.mv

16-bit radix-4 Kogge-Stone Tree
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Sparse Trees

OOJOJOJOJ 0)0)0
) o o
— —

—_— —_— —_— —_— —_— —_— —_ —_ —_— —_— — — — — — —
n

N P N .

16-bit radix-2 sparse tree with sparseness of 2
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Tree Adders

S,
S
S
S
S
S
S,
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Brent-Kung Tree
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Intel Itanium Microprocessor

. —»

§ — § a g64

-~ —> = p CARRYGEN —p»

A g VN

——P> —P
nodel " 5 o | sum sumb
E E — >0 >o— to Cache
v >

% = > ©

S | : S > SUMGEN |

— — + LU

(@) o b sl

<

LU : Logical
Unit

1000um

Itanium has 6 integer execution units like this
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Bit-Sliced Design

Control

Bit 3
': o~ . N
'-*? = . . % Bit 2 5
8 Z 2 3 = |::> %
= E:> g = = £ | Bit1l =
................... 2 | < | @ | =5 =

= | Bit0

Tile identical processing elements
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Bit-Sliced Datapath

From register files / Cache / Bypass

To register files / Cache

J L
| T
= N = . Multiplexers — _~"_ Ll
: Shifter : : :
| Adder stage 1 o
| — 111
e o Wiring c v L1
k1 3 Adder stage2 | S o
] & o) o T
| @ w o |1
| @ G Wiring Z |1
| -
! BE
2, B
§: Adder stage 3 :%:%:%
: Sum Select : : :

L

The adder is
implemented
as a radix-4
Carry Look-
Ahead adder,
the red lines
are forwarding
the results of
different stages
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Multipliers




The Binary Multiplication

) M-+N-1 K
L-XxY- vy 7,2
k-0

M- 1 .
[ D Xi2l
i-0

M-1

2
i-0

N-1 .
3 YjZJJ
-0

N-1 i
D XinZ }
j-0

with

M -1 .
X- v X2
i-0
N-1 .
~ i
Y - .Z Yj2
i=0 41



The Binary Multiplication

1701010 Multiplicand
X 10 1 1

Multiplier
101010
101010
00 0O0OOO O " Partial products
+ 101010

111001110 Result




The Array Multiplier (4 by 4)
ng ng xq% xog Y

2*1
v&g ﬁ&é Vmé fﬁg Z Half

adder

‘I'I
>
A
-
>
A
-
>
A
I
>

FA

A
A

l— FA FA |< HA carry

z, Yz, Yz, Yz, Yz,

sum
The carryout of the last adder for Yi is forwarded to Yi+1
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The MxN Array Multiplier

— Critical Path
I Iy

HA FA lnd FA . HA

FA R | FA j[&——— FA |t HA| Critical Path 1

< P R—

: e Cr1t1CAl Path 2
v l j l l _ <+— (ritical Path 1 & 2
FA (| TS IE A Crovnnnnnd e A L frovennnng




Ca rr Y'Sa ve M u I tip I i er g:nz%z)enecfgﬁiigtobtained

| Y A A | by noticing that the

HA HA multiplication results does
not change when the output
v [ +d
FA
f : ‘./
FA

carry bits are passed

diagonally downwards

instead of to the right.
O But need extra adders
(vector merging adders) that
can use fast carry look
.................................................... i ahead adders (since results

Vector Merging Adder ,
come at the same time)

Lgaie= IV -1t cany HIV-DL g, 4 merge} O Critical path is uniquely
defined
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Multiplier Floorplan

X, X

HA Multiplier Cell
Zy
P
FA Multiplier Cell
Z, Vector Merging Cell

X and Y signals are broadcasted
7, through the complete array.

()




Wallace-Tree Multiplier

Partial products First stage
6 5 4 3 2 1 0 6 5 4 3 2 1 0 Bitposition
© o o o © 0 0o o o o o
© o0 o o © o0 o
© o o o S o
© o o o S
(a) (b)
Second stage Final adder
6 5 4 3 2 1 0 6 5 4 3 2 1 0
o @) o o o o
J 6L

FA HA

(c) (d)
Save the number of full adders

Increase the complexity of routing
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Wallace-Tree Multiplier

X3¥2 X2¥2 X3¥1X1Y2 XaYoX1¥1 XoVo XoVq
Partial products X3Y3  PXoV3 {(15/3 }XOJ@ XoyyXoy2 paYo XoYo
First stage HA HA
'y ‘/2 H//*l%/?/ Yy
Second stage FA FA FA HA
————————— - —l/‘_ 7 ‘_?;;2_‘_ .‘_;:‘;)‘__‘. —— =" A= = |
Final adder W o Lole Lo o | o o | lo_ _9,’
Z7 Zg E Zy Z3 Z; 1z
Can use carry Look-Ahead adder for the last stage
48



Wallace-Tree Multiplier




Booth encoding

U Multiply by 01111110 gives 8 partial products, but two
are all zero. Add these zero is waste of time.

Q Instead, multiply by 100000010, where 1 stands for -1.
Then you need to only add (actually subtract) partial
products, which improves speed

4 This kind of transformation is called booth encoding. It
reduces the number of partial product to at most half of
the original multiplier width.

U The encoding logic is easily incorporated in the overall
multiplier design.
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e Optimization Goals Different Vs Binary Adder

 Once Again: Identify Critical Path

e Other possible techniques
- Logarithmic versus Linear (Wallace Tree Mult)
- Data encoding (Booth)
- Pipelining

FIRST GLIMPSE AT SYSTEM LEVEL OPTIMIZATION

This is also why algorithmic invention has significant
meaning to VLSI design. .
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Shifters




The Binary Shifter

Right nop Left




The Barrel Shifter

" Column: maximum shift

A, F B
he ho o0 o > !
N Sh1 EI EI mif- rT
b e g TR b > >
A, = - - 5 - !Q_ ——— : Data Wire
. I" 'a I_| F I" ".I_E' > B, w2 Control Wire
| N Sh3 'T - T !:l'
Word length r'-i;'i .-ITIJ '-'_gl_"' ']Tfll > 0

Sh0 Shi Sh2 Sh3

Area Dominated by Wiring
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4x4 barrel shifter

 Coder/decoder required to set shift bits

 Signal pass through one gate independent of shift
amount (parasitic capacitance may change the picture)




Logarithmic Shifter

Sh4 Sh4

Sh2 Sh2

Sh1 Sh1

d

is require

No separate coder/decoder

56
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0-7 bit Logarithmic Shifter

Aj
Out3
Ay
Out2
A
Outl
A0
Good for large shift amount (note that cascade pass Out0
transistor slow down the gate and generate weak signals,
buffers may be needed) -



Building Blocks for Digital Architectures

Arithmetic unit
- Bit-sliced datapath (adder, multiplier, shifter, comparator)

(comparator, divider, sin, cos etc)




