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Propagation Delay
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CMOS Inverter Propagation Delay
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MOS transistor model for simulation
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Computing the Capacitances
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Consider each capacitor individually is almost impossible for 

manual analysis. What capacitors count in CL?
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Computing the Capacitances
 NMOS and PMOS transistor are either in cutoff or

saturation mode during at least the first half (50%) of the 

output transient.

 So, the only contributions to Cgd are the overlap 

capacitance, since channel capacitance occurs between 

either Gate-Body for transistors in cutoff region or Gate-

Source for transistors in saturation region.
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The Miller Effect
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“A capacitor experiencing identical but opposite voltage swings 
at both its terminals can be replaced by a capacitor to ground, 
whose value is two times the original value.”

The lumped capacitor model requires the floating Cgd1

capacitor be replaced by a capacitor to GND using Miller 

effect.
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The Miller Effect
 Consider the situation that an impedance is connected 

between input and output of an amplifier

 The same current flows from (out) the top input terminal if an
impedance is connected across the input terminals

 The same current flows to (in) the top output terminal if an
impedance is connected across the output terminal

 This is know as Miller Effect

 Two important notes to apply Miller Effect:
 There should be a common terminal for input and output

 The gain in the Miller Effect is the gain after connecting feedback
impedance

MillerinZ ,

MilleroutZ ,

fZ

Graphs from Prentice Hall
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Computing the Capacitances

The capacitance between drain and bulk, Cdb1 and Cdb2, are due to the reverse-biased pn-

junction. 

Such a capacitor is, unfortunately, quite nonlinear and depends heavily on the applied voltage. 

In Chapter 3 we replaced the nonlinear capacitor by a linear one with the same change in 

charge for the voltage range of interest. A multiplication factor, Keq, is introduced to relate the 

linearized capacitor to the value of the junction capacitance under zero-bias conditions 

(usually in the range of 0.6 to 0.9).
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Junction Capacitance
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Linearizing the Junction Capacitance

Replace non-linear capacitance by
large-signal equivalent linear capacitance

which displaces equal charge 
over voltage swing of interest
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Junction Capacitance Ls (from Ch. 3)
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Computation of all capacitors

Cdb will be slightly different 

in L-to-H and H-to-L, why? 

(the pn junction reverse bias 

voltage range)

Intrinsic

extrinsic
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Cgd directly couples the steep input change before the circuit can even start 

to react to the changes at input (potential forward bias the pn junction)
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Low-to-High and High-to-Low delay

 It is desired to have identical propagation 

delays for both rising and falling inputs.

Equal delay requires equal equivalent on-

resistance, thus equal current IDAST

(neglecting the channel length modulation)

This demands almost the same 

requirements for a Vm at VDD/2. Why?
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This is exactly the formerly defined parameter r (last lecture)

Requirements for equal delay
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Design for delay performance

 Keep capacitances small

• careful layout, e.g. to keep drain 

diffusion as small as possible

 Increase transistor sizes

• watch out for self-loading! When 

intrinsic capacitance starts to 

dominate the extrinsic ones

 Increase VDD (????)
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Delay as a function of VDD

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

V
DD

(V)

t p
(n

o
rm

a
liz

e
d
)

Recall a range 

of low voltage 

is able to give 

even better 

voltage transfer 

characteristic

For fixed (W/L)



© Digital Integrated Circuits2nd Inverter

2 4 6 8 10 12 14
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8
x 10

-11

S

t p
(s

e
c
)

Device Sizing

(for fixed load and VDD)

Self-loading effect:
Intrinsic capacitances
dominate

W/L



© Digital Integrated Circuits2nd Inverter

1 1.5 2 2.5 3 3.5 4 4.5 5
3

3.5

4

4.5

5
x 10

-11

b

t p
(s

e
c
)

NMOS/PMOS ratio

tpLH tpHL

tp b= Wp/Wn

Widening PMOS improves the L-H delay by increasing the charge current, 

but it also degrades the H-L by giving a larger parasitic capacitance. 

Considering average is more meaningful!!

(Average)

Lp=Ln
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Delay Definitions
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Impact of Rise Time on Delay
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Custom design 

process:

An inverter design 

example 
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1. Schematic design
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2. Layout design
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Step 1: define Nwell (for PMOS)



© Digital Integrated Circuits2nd Inverter

Step 2: define pselect (for PMOS location)
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Step 3: define active region (for PMOS)
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Step 4: define poly (gate for PMOS)
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Step 5: define contacts (for PMOS)
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Step 6: define Vdd and connect source (of PMOS) to it
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Step 7: make at least one Nwell contact
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Step 8: create NMOS (repeat similar steps before 

except you do not need make Nwell)
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step9: make input and output connections
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2. DRC (Design Rule Check)
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Correct error if there is any
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After correction
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3. LVS (Layout versus Schematic)
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4. Extract Layout parasitics and post-layout simulation
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CMOS Inverter
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Two Inverters

Connect in Metal

Layout preference:

Share power and ground

Abut cells

V
DD



© Digital Integrated Circuits2nd Inverter

Impact of Process Variations (DFM)
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Inverter Sizing

for delay
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Inverter with Load

Load

Delay

Cint CL

Delay = kRW(Cint + CL) = kRWCint + kRWCL

= Delay (Internal) + Delay (Load)

= kRW Cint(1+ CL /Cint)

3W

W

W means the size is increased by a factor of W with 

respect to the minimum size
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Delay as function of size

• Intrinsic delay is fixed and independent of sizeW

• Making W large yields better performance gain, eliminating the 

impact of external load and reducing the delay to intrinsic only. But 

smaller gain at penalty of silicon area if W is too large!

))/(1(0 unitLpp WCCtt 

RW = Runit / W ; Cint = W Cunit

tp0 = 0.69RunitCunit

Delay = kRW Cint(1+ CL /Cint)

= Delay (Internal) + Delay (Load)
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Delay Formula

 

   /1/1

~

0int ftCCCkRt

CCRDelay

pintLWp

LintW





Cint =  Cgin with   1 for modern technology
(see page199 in book or Slid 14 for an example)

Cgin : input gate capacitance

CL = f Cgin - effective fanout

This formula maps the intrinsic capacitor and load 

capacitor as functions of a common capacitor, 

which is the gate capacitance of the minimum-size 

inverter
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Single inverter versus inverter chain

 Gate sizing for an isolated gate is 

not really meaningful. Realistic chips 

always have a long chain of gates.

 So, a more relevant and realistic 

problem is to determine the optimal 

sizing for a chain of gates.
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Inverter Chain

CL

If CL is given:

- How many stages are needed to minimize the delay?

- How to size the inverters?

In Out
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Apply to Inverter Chain (fixed N stages)
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In Out
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Optimal Tapering for Given N

 Delay equation has N - 1 unknowns, Cgin,2 – Cgin,N

 Minimize the delay, find N - 1 partial derivatives equated to 0

 Result: Cgin,j+1/Cgin,j = Cgin,j /Cgin,j-1

 Size of each stage is the geometric mean of two neighbors

- each stage has the same effective fanout

- each stage has the same delay

1,1,,  jginjginjgin CCC
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Optimum Delay for fixed N stages
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Example

CL= 8 C1

In Out

C1
1 f f2

283 f

CL/C1 has to be evenly distributed across N = 3 stages:
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Optimum Number of Stages

For a given load CL and given input capacitance Cin

Find optimal sizing f
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Optimum Effective Fanout f
Optimum f  for given process defined by 

 ff  1exp fopt = 3.6 for =1
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Impact of introducing buffers

 /10
N

pp FNtt  fopt = 4
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Buffer Design
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Intel Itanium Microprocessor
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