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Abstract— This paper presents a parameter domain pruning method.
Parameter domain pruning aims to identify parameter sub-domains that
are more likely to produce feasible and good design solutions. These
parameter sub-domains are found using the proposed Simplified Affine
Transforms (SAT) operators. Selected variable sub-domains can then be
used as input to exploration-based synthesis tools and help improve the
convergence of synthesis algorithm.

I. INTRODUCTION

Analog IP cores are essential building blocks for modern systems-
on-chip (SOC). Designing analog circuits is a difficult and cumber-
some task that requires extensive designer expertise. In fact, many
reports [1] suggest that designing analog circuits is the bottleneck
of SOC design, in spite of the much lesser size of the analog
part as compared to the digital modules. Analog synthesis tools are
necessary to boost design productivity, but also to enlarge the group
of designers that can tackle analog circuits. Hence, analog synthesis
tools should be fully automated, and require minuscule amounts of
designer knowledge as inputs.

Present analog synthesis methods fit into two categories: solv-
ing based approaches and exploration based techniques. In solving
based methods, the synthesis problem (including design requirements
and objectives) is expressed as a mathematical model, such as
posynomials [2], and then solved using a mathematical solver. For
instance, Hershenson et al [2] present a geometric programming
based technique for synthesis of OpAmp. Solving methods provide
optimal design parameter values, but they require a cumbersome,
manual process to build the model of a system. Extensive analog
knowledge is needed to create models. Also, design parameters are
limited to small ranges to ensure an optimal solution.

In contrast, exploration based synthesis involves less designer
effort, and is more flexible in tackling various types of applications. A
variety of traditional optimization techniques are used, like simulated
annealing [3] [4], genetic algorithms [5] and tabu search [6]. Explo-
ration based synthesis needs sampling of a large number of solution
points, thus it might be quite slow and experience convergence
difficulties. A solution to improve convergence is to use design
knowledge like limiting parameter values to small ranges.

As can be seen, both categories of analog synthesis tools needs to
have limited design parameter ranges as inputs as they are critical
for improving synthesis convergence because they narrow down the
solution space. From exploration point-of-view, the requirement is
equivalent to knowing a priori a good solution space region, which
is likely to contain feasible solutions and good solutions. However,
in general, it might be difficult to know these parameter ranges,
especially for new analog circuits and systems. A problem is that
these parameters ranges are not obtained automatically but rather
from accumulated designer’s experience.

In this paper, we present a parameter domain pruning method to
automatically identify parameter sub-domains that are more likely

+
- +

-

+
-

OTA 4

OTA 3

OTA 2

C 3

+
-

OTA 1

Vin

C 1

C 2

Fig. 1. Third order elliptic lowpass filter

to produce feasible and good solution points. The method splits
variable domains into intervals, and estimates the ranges for a certain
performance metric, which has an accurate closed form expression of
the design parameters. Intervals which lead to wide deviation from the
desired performance ranges are discarded, as they would require more
exploration effort than intervals with a more compact performance
range. Performance ranges are calculated using the proposed Simpli-
fied Affine Transforms (SAT) operators. Pruned parameter domains
are then given as inputs to the synthesis algorithm and, as experiments
show, they greatly improve the convergence of synthesis tools.

The paper is organized as six sections. Section II presents previous
work and our motivation. Section III presents the considered analog
synthesis flow. Section IV discusses the proposed SAT. Section V
gives some experiments. Finally, we present our conclusions.

II. PREVIOUS WORK

The convergence of heuristic exploration algorithms critically de-
pends on having reduced variable domains that contain good solution
points. In analog synthesis tools [2], parameter are limited in small
domains and these domains are then given as inputs without giving
information on how these parameter domains are obtained. In this
paper, we propose an Interval Arithmetic (IA) based technique to
automatically prune parameter domains.

Interval Arithmetic [14] has been used in various areas of circuit
and systems [7] [8] [10] [11] [12]. Traditionally, it is mainly used
for circuit tolerance analysis [7] [8]. Affine Arithmetic (AA) [15],
a further extension of IA, has been used for global optimization
of mathematical functions [9]. But it is limited to functions of two
variables, which is due to the heavy computation overhead of AA.
AA has also been used to size analog circuits [10], but current method
is limited to very small circuits, with only two design components
and one performance metric to be optimized. [11] used AA technique
to estimate the precision effects of floating point operations in DSP
applications. Recently, C. Grimm [12] proposed AA technique to
estimate the output of a circuit so that circuits with unexpected output
are discarded.

In the context of analog synthesis, there are usually more design
variables and more performance metrics to be simultaneously op-
timized. Also, the performance metrics can not all be closed-form
expressions of design parameters. Considering these two factors, we
can not directly use IA for synthesis and optimization as in [10].
Instead, we propose to use IA-based techniques to first prune the
parameter domains, and then let the exploration algorithm to do
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Fig. 2. Analog synthesis methodology

synthesis on the identified parameter sub-domains, in which there
is a higher chance that good solutions exist. In the exploration phase,
we can then optimize all the performance metrics, including those
that do not have closed form expressions.

III. REVISED ANALOG SYNTHESIS FLOW

Figure 2 presents the considered analog synthesis flow. We will
target analog filter synthesis in this paper. Inputs to the flow are sys-
tem architectures and performance requirements in AC and transient
domains. Architectures are netlists of active circuits, such as OpAmp
and GmC, and passive elements, like resistors and capacitors. Syn-
thesis output is a set of performance satisfying system architectures
having all their resistors and capacitors sized.

The cost function for the synthesis problem is defined as:

Cost : D1 × D2 × ...Dn :→ CoDomain,
Cost = f(p1, p2, ..., pn) =∑

i
Fi(p1, p2, ..., pn) +

∑
j
Gj(p1, p2, ..., pn)

where functions Fi are continuous and differentiable. Functions Gj

do not have a closed-form expression, but instead, are described
by algorithms defined over the simulation data for the architecture.
Di = [mini, maxi] is the domain of variable pi expressing values
feasible for design. Symbols pi are the design parameters to be
searched during synthesis. For example, for the filter synthesis, one
tries to minimize the magnitude error with respect to the ideal
magnitude, minimize the phase nonlinearity etc. Magnitude response
can be accurately expressed with the transfer function. But for phase
nonlinearity, it is hard to find an accurate closed form expression.
Thus, it belong to a Gj function and can be accurately calculated
from simulation data.

The considered analog synthesis flow differs from traditional ex-
ploration based synthesis in that it prunes away unattractive parameter
domains before searching for good quality design points. Parameter
domain pruning eliminates parameter regions that largely violate
performance constraints, thus determine large cost function values.
These regions are unlikely to include feasible solutions or good
solutions. Hence, these regions decrease synthesis convergence by
“wasting” sampling steps over many unattractive points. Section IV
discusses the proposed SAT operators for parameter domain pruning.
After step 1, step 2 use exploration based algorithms to find global
optimal solutions in the identified parameter sub-domains.

IV. PARAMETER DOMAIN PRUNING USING SIMPLIFIED AFFINE

TRANSFORMATIONS

Parameter domain pruning starts by considering the feasibility
domain of each parameter. The feasibility domain indicates the value
range to which a parameter pertains for a certain technology. For
example, for third order elliptic filter shown in Figure 1, Gm values
of the GmC-s circuit are in the continuous range [1.0e− 6, 1.0e− 2]

and capacitor values are in the range [1.0e−15, 1.0e−11] [13]. Even
though feasibility domains are large, they must be fully analyzed to
find good quality design points. In the proposed method, Interval
Arithmetic [14] is used for parameter domain pruning. To improve
speed and precision, we developed a variant of Affine Transformation
called Simplified Affine Transformation (SAT).

The pruning step considers a simplified form of the cost func-
tion cost′. Cost′ includes only some of the Fi terms without
incorporating any of the Gj functions. The reason is that interval
arithmetic operators are applicable only to closed-form expressions
that are continuous and differentiable, and are difficult to be used
for performance parameters expressed algorithmically, like function
Gj . The terms in cost function Cost′ are found through symbolic
computations.

For example, one of the function Fi is to minimize the magnitude
error of the synthesized filter with respect to the ideal magnitude
response. Magnitude response can be found as a closed form expres-
sion of all the design parameters. Thus, we can compute the ranges of
the magnitude response for different combinations of intervals of the
design parameters. In particular, parameter ranges were selected such
that the co-domain of the cost function Cost′ was within a range
centered around the ideal magnitude response: for each frequency
point fi, the cost function co-domain had to pertain to the range
Mag(TFideal(fi)) × (1 − ε, 1 + ε), where Mag(TFideal(fi)) is
the ideal magnitude value at frequency fi and ε is a small positive
value. If such domains are found then exploration becomes easier,
as any parameter combination produces a magnitude response in the
neighborhood of the ideal magnitude. Performance violations due to
the magnitude response are thus avoided. This section presents the
SAT operators based on Interval Arithmetic for computing the co-
domain of Cost′.

IA operators are defined for any two intervals I1 = (a1, b1) and
I2 = (a2, b2) as following [14]:

I1 + I2 = (a1 + a2, b1 + b2);
I1 − I2 = (a1 − b2, b1 − a2);

I1 × I2 =
(min{a1 a2, a1 b2, b1 a2, b1 b2}, max{a1 a2, a1 b2, b1 a2, b1 b2});

I1
I2

= (a1, b1) × ( 1
b2

, 1
a2

), if 0 �∈ (a2, b2).

Specific IA operations are also defined for square root, trigonometric
functions, and so on [14].

The main limitation of IA operators is their over-estimation of the
exact range bounds [15]. This is because of loosing dependencies
between sub-expressions, as IA operators consider each operation and
sub-expression as being totally independent. Accounting for range
over-estimation is important, if IA were to be used for pruning
unattractive variable ranges. Estimation accuracy can be improved by
using Affine Transformations [15]. Considering its superior precision
[7] [15], we decided to employ a variant of affine transformation for
parameter domain pruning.

Definition[15]: Affine Transformations (AT) express the range I =
(a, b) as I = cv + rad × ε, where cv = a+b

2
, rad = b−a

2
, and

ε ∈ (−1, 1). Value cv is called central value, value rad is the radius,
and symbol ε is the noise. Each range introduces a new noise symbol.
Following interval operators are defined for AT:

I1 + I2 = cv1 + cv2 + rad1 ε1 + rad2 ε2;
I1 − I2 = cv1 − cv2 + rad1 ε1 − rad2 ε2;

I1 × I2 = cv1 cv2 + rad2 cv1 ε1 + rad1 cv2 ε2 + rad1 rad2 ε3;
I1
I2

= cv1 cv′
2 + rad′

2 cv1 ε1 + rad1 cv′
2 ε2 + rad1 rad′

2 ε3,
where cv′

2 and rad′
2 are the central value and radius of the interval
( 1

b2
, 1

a2
), and 0 /∈ ( 1

b2
, 1

a2
).
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for ∀ subintervals I1 of parameter 1 do

for ∀ subintervals I2 of parameter 2 do
...

for ∀ subintervals Ik of parameter k do
(min,max) = evaluate the function for the current subintervals for parameter 1,...k;
if min < global min then
global min = min;

if max > global max then
global max = max;

end for
...
end for

end for
return (global min, global max);

Fig. 3. Interval evaluation using parameter domain splitting into subintervals

Affine operators always result in ranges expressed as a linear
combination of noise parameters εi ∈ (−1, 1). Hence, affine transfor-
mations are able to exploit first order dependencies between ranges
and sub-expression by performing a mixture of numeric and symbolic
computations. However, second and third order dependencies between
sub-expressions remain unexploited because of introducing new noise
symbols, such as ε3 = ε1 × ε2, for each multiplication and division
operation.

For example, lets consider the expressions E = x2 + y2 − 2xy
with x ∈ (3, 8) and y ∈ (1, 2). The exact co-domain for expression
E is (1, 49). IA overestimates the co-domain as (−22, 62). Applying
AT, variables x and y are expressed as x = 5.5 + 2.5× ε1, and y =
1.5+0.5×ε2. Then, the co-domain of the expression E is 16+20ε1−
4ε2 + 6.25ε3 + 0.25ε4 − 2.5ε5, εi ∈ (−1, 1). The estimated range
is E ∈ (−17, 49). For this example, AT improves the upper bound
of the range. The lower bound is largely overestimated, because of
neglecting second order dependencies between noise symbols.

Definition: Simplified Affine Transformation (SAT) neglects the
nonlinear term of an AT. SAT addition and subtraction are the
same as those for AT. SAT multiplication operator is I1 × I2 =
cv1 cv2+rad2 cv1 ε1+rad1 cv2 ε2. Division is calculated using SAT
multiplication operator. The relative error (RE) of SAT multiplication
is equal to rad1 rad2

cv1 cv2
.

As compared to AT, SAT operators have the advantages of shorter
evaluation time and improved precision. For AT, the total number
of noise symbols is equal to the number of variables plus the
number of multiplication and division operations. In contrast, SAT
operators introduce a number of noise symbols equal to the number
of parameters. Less noise symbols decrease the required evaluation
time. Second, as the previous example shows, second and higher order
dependencies can be significant for AT. The effect of dependencies
can be diminished by splitting variable ranges into multiple subinter-
vals [14]. This is infeasible for AT, as its computational complexity
is already too large. As SAT requires much lesser noise symbols,
domain splitting can be applied to mitigate the effects of second and
higher order dependencies.

We argue that the accuracy of SAT multiplication and division
can be improved by intelligently splitting the variable domains into
multiple segments. The evaluation error converges to zero, as the
number of variable domain segments increases [14]. Table 1 shows
the ranges computed for expression E = x2 + y2 − 2x y, with x ∈
(3, 8) and y ∈ (1, 2). The exact co-domain for E is (1, 49). Columns
3 and 4 indicate the number of segments used to split the range
for variables x and y. Column 2 presents the number of subinterval
combinations (equal to the product of columns 3 and 4). Columns
5 and 6 show the left and right limits for the interval ranges for
expression E. The table shows that using more subintervals improves
the accuracy of the result. For example, using 1,000,000 subintervals
(row 6) offers a very accurate result, within 2% of the exact range.

# nr segm. # nr segm. # nr segm. left limit right limit
for var. x for var. y

1 4 2 2 -8.5 51
2 25 5 5 -2.62 49.98
3 100 10 10 -0.78 49.52
4 400 20 20 0.11 49.26
5 10,000 100 100 0.82 49.05
6 1,000,000 1,000 1,000 0.98 49.00
7 40 20 2 -0.76 48.6
8 25,000 500 50 0.92 48.97
9 40 2 20 -8.1 51.15

10 25,000 50 500 0.69 49.14

TABLE I
Experimental results for different multiplication sequences

Rows 7-10 motivate that a very good accuracy can result, if splitting
is intelligently performed on the intervals. For 25,000 subinterval
combinations (row 8) the final accuracy is still within 8%. Finally,
with a small number of combination (40 subinterval pairs in row 7),
the estimated range for E is significantly improved as compared to
the range estimated through AT, which is the range (-17, 49) in this
case. Femia et al [7] explain that, in general, the number and lengths
of the splitting segments are correlated to the nonlinearity of the
function. They show that finding the minimum number of splitting
segments for a certain range accuracy is a hard problem, and suggest
a genetic algorithm (GA) to solve it. This solution is not applicable to
analog synthesis because of its computational complexity. Instead, we
propose a constructive technique for deciding the number of segments
a range has to be divided into, so that large ranges should be split
into more subintervals than shorter ranges.

The range of parameter i has to be divided into ni equal subin-
tervals (either in linear scale or log scale). The challenge is to
intelligently split the variable ranges knowing that the complexity
of the range evaluation algorithm in Figure 3 increases according to
O(

∏#variables
nr segi), the number of variables and nr segi - the

number of segments for dividing the domain of variable i. Assuming
that the total number of segments is given (depending on how much
complexity can be afforded), this number has to be distributed to
variable domains, such that the resulting accuracy is maximized. For
a product term, the number of segments is distributed proportionally
to the domain width: nr seg i = total nr segments∑

∀variables
var domain lengths

×domain length of vari. Note that range splitting does not affect
the number of noise symbols: the total number of noise symbols
remains equal to the number of variables. After splitting, the original
interval II = (ai, bi) = cvi + radiεi is rewritten as

⋃ni

k=1
Subik,

where Subik = (ai + (k − 1) (biai)
ni

, aI + k (bI ai)
ni

) = cvI,k +

radI,niεi. cvI,k = aI + (k − 0.5) (bI ai)
ni

, and radI,ni = (bI ai)
2 ni

.

V. EXPERIMENT

The experimental setup used two examples: a third-order ellip-
tic filters and a fifth-order elliptic lowpass filter. Both IA-based
pruning and the exploration algorithm had been coded in C/C++.
The effectiveness of the parameter domain pruning was studied by
analyzing synthesis convergence, quantity and quality of solutions,
and corresponding execution time.

A. Third-order elliptic lowpass filter

The first synthesis experiment addressed the third-order elliptic
lowpass filter shown in Figure 1 [13]. The goal was to find the
capacitor values and transconductance parameters, so that the filter
has a 3db bandwidth of 12Mhz and the magnitude error with respect
to the ideal magnitude response is minimized. Used feasibility ranges
were [1.0e − 15, 1.0e − 11] for capacitors and [1.0e − 6, 1.0e − 2]
for transconductance gains.
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Best Iteration # Total # of Execution
cost for best cost points with cost < 200 time (hrs)

SA 524 6,190 0 6.3
SAT + SA 5.77 3,640 14 8.2

TABLE II
Comparison of the synthesis strategies
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Fig. 4. Fifth-order elliptic lowpass filter architecture

We first run a synthesis experiment using Simulated Annealing
(SA) algorithm with random starting point. The sampling step was
fixed so that fifty samples were selected from each range (in a log
scale). The best solution had a large cost value (524.1). The design
point roughly met the bandwidth constraint (11.2Mhz), but failed
to minimize the magnitude error to an acceptable range. So, it was
considered that the solution did not represent a good quality design.

To observe the importance of the parameter pruning step based on
interval arithmetic (Step 1 of the synthesis flow), we run simulated
annealing for the pruned parameter domains. The cost of the best
solution found drops significantly to 5.77. The reason is that SAT
effectively narrowed down the variable ranges, so that the resolution
of design points was better than before. We used magnitude response
for parameter domain pruning. For example, after pruning, the value
range for capacitor C2 became (1.0e−14, 1.0e−11), and the range
for transconductor Gm2 was (0.000353, 0.005).

Table II compares the two different synthesis strategies. To study
synthesis quality, we counted the number of found solutions with
cost value less than 200 (representing good design points). Column
4 shows the number of good design solutions found in the parameter
sub-domains. Column 2 shows the cost of the best solution identified
during synthesis, and Column 3 indicates the iteration count at
which the best solution was found. It can been seen that SAT-
based parameter domain pruning followed by SA has much better
convergence that SA only for the large parameter domains. Finally,
Column 5 presents the synthesis time in hours. Compared to the
case of SA only, SAT-based pruning followed by SA introduce a
reasonable time overhead due to the computation time spent on
pruning.

B. Fifth-order elliptic lowpass filter

The last experiment addressed a fifth-order elliptic lowpass filter
used as a channel select lowpass filter in a Bluetooth receiver [16]
[17]. The filter architecture is shown in Figure 4. Eighteen design
variables were identified for this filter, nine for the capacitors with
two matched pairs and eleven for the transconductor gains. Following
the specifications, the goal was to synthesize the filter, so that it has
the cutoff frequency of 400kHz, and notches at 1MHz and 3MHz to
suppress adjacent channels, while maximizing image rejection and
minimizing quality factor.

Table III presents synthesis results for SA and SAT followed by
SA. Using the same feasibility ranges for design parameters as before,
the best design synthesized with SA had a cost value of 1044.84,
which does not represent a constraint satisfying design. In contrast,
SAT and SA found a design point of cost 9.97. This point represents a
filter with cutoff frequency of 400KHz, notches at 1MHz and 3MHz,
image rejection of 85db, and quality factor of 1.26. In this experiment,
we also used only magnitude response to prune parameter domains.
In the exploration phase, all the related performance metrics are

Best Iteration # Total # of Execution
cost for best cost points with cost < 200 time (hrs)

SA 1044 27,900 0 6.6
SAT + SA 9.97 6,922 9 11.2

TABLE III
Comparison of the synthesis strategies

considered and evaluated from simulation data. Compared to SA only,
IA and SAT increase the execution time by 1.7 times. In general, with
the increase of the number of design variables, the time overhead for
IA-based parameter domain pruning increases dramatically.

VI. CONCLUSION

This paper describes a novel method for parameter domain pruning
and its use for analog synthesis of filters. The goal is to identify
parameter sub-domains that are more likely contain feasible and
good design solutions without requiring knowing these parameter
sub-domains as inputs. Instead, these parameter sub-domains has
been automatically identified using the proposed Simplified Affine
Transforms (SAT) operators. Then, pruned variable sub-domains
are searched using exploration based algorithms. Experiments have
shown that SAT followed by simulated annealing algorithm has a
much better convergence than simulated annealing alone. Future
works attempt to further improve the efficiency parameter domain
pruning based on SAT, and extend the methodology to large circuits
and systems with many design variables.
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