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Abstract This paper presents our experience on high-level synthesis of Σ − ∆
analog to digital converters (ADC) from VHDL-AMS descriptions. The
proposed VHDL-AMS subset for synthesis is discussed. The subset has
the composition semantics, so that specifications offer enough insight
into the system structure for automated architecture generation and
optimization. A case study for the synthesis of a fourth order Σ − ∆
ADC is detailed. Compared to similar work, the method is more flexible
in tackling new designs, and more tolerant to layout parasitic.
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1. Introduction

Currently, there is a severe shortage of efficient high-level synthesis
tools for analog and mixed-signal systems. As a result, analog and
mixed-signal design continues to be a lengthy and error prone activity,
which requires cumbersome design experience and expertise. In a re-
cent paper [14], Gielen and Rutenbar offer an in-depth discussion about
present methodologies and tools for analog and mixed-signal synthe-
sis. They conclude that existing work mostly targets circuit sizing and
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layout generation, which are low level design activities. Circuit sizing
[16], [15], [23] assumes a known circuit topology, and finds the transistor
dimensions that optimize circuit performance, such as gain, bandwidth,
slew-rate, and power. Layout generation [3], [7], [17], [18] performs tran-
sistor placement and wire routing, while contemplating wire parasitic,
cross-talk, and substrate coupling. In contrast, analog system synthesis
uses high-level descriptions for producing alternate system architectures,
and identifying constraints for the architectural components, so that the
required system performance is met [9], [11].

High-level analog system synthesis includes four main tasks [9], [11]:
(1) specification, (2) architecture (system net-list) generation, (3) per-
formance model generation, and (4) constraint transformation. There is
general consensus regarding the need of developing description languages
for high-level analog synthesis. These languages should permit specifi-
cation of a large variety of systems (like filters, converters, PLL, oscilla-
tors etc), express both analog and digital functionality and constraints,
and provide sufficient insight for automated generation of alternative
architectures [12]. In fact, the last requirement implies identifying the
“minimum” amount of structural information that has to be present in
a specification, so that system architectures result through a systematic
process of mapping language constructs to implementation structures.

This paper presents our experience on automated synthesis of Σ −
∆ analog-to-digital converters (ADC) from VHDL-AMS specifications.
ADC circuits are critical for many wireless, multimedia and telecom-
munication applications. The paper summarizes the main characteris-
tics of a proposed VHDL-AMS subset, and then explains its usage for
high-level synthesis. VHDL-AMS [1], [6] is a standardized hardware de-
scription language that includes constructs for both analog and digital
functionality. Considering that extensive knowledge already exists on
using VHDL for behavioral digital synthesis, it is explicable to attempt
expanding VHDL-AMS to analog synthesis too. The presented VHDL-
AMS subset was already used for high-level synthesis of different kinds
of analog systems, like signal conditioning applications [8],[9] and filters
[11]. This paper shows that functionality descriptions having the com-
position semantics are useful for high-level analog synthesis. For this
semantics, the meaning of a system results by composing the meanings
of its building elements. Provided that each language construct can be
mapped to circuits, correct system architectures are generated by com-
posing the hardware structures for each instruction of the specification
[11], [12].

With analog synthesis, the goal is not merely to implement the desired
functionality within a given chip area, but also to keep minimal the per-
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formance degradation due to layout parasitic [7],[17],[18],[21],[22],[23].
Most of the analog system synthesis methodologies follow a top-down
design flow, in which layout generation follows system and circuit siz-
ing [2]. However, it is possible that the fixed circuit parameters do not
leave enough performance margins to accommodate the layout-induced
performance degradations. In this case, the final design would be incor-
rect. Typical examples include high-frequency filters that incorporate
capacitors of the same order of magnitude (tens/hundreds of fF) as the
interconnect parasitic [21, 22]. Parasitic capacitors become an integral
part of the signal processing performed by the passive elements. Costly
re-iterations through circuit sizing and layout generation are needed to
produce a constraint satisfying design. The solution is to combine the
parameter sizing process with the layout design step to improve design
quality and convergence of the CAD algorithms.

The paper presents a constrained transformation method that in-
cludes, besides the traditional parameter exploration step, the tasks of
block floorplanning, and wire routing. As opposed to other layout-aware
synthesis methods [23], the proposed technique is not limited to one ap-
plication type, as floorplanning and global routing are integrated within
the system synthesis method. This allows early contemplation of lay-
out parasitic. Our constraint transformation technique is different from
similar work [13] because it includes the additional steps of parameter
classification, parameter domain pruning, and identification of param-
eter dependencies. These tasks improve the convergence of constraint
transformation, provided that large parameter domains must be sam-
pled with fine steps. Also, the method is more flexible because it does
not require a working design beforehand.

The proposed constraint transformation algorithm uses symbolic tiles
[19] for compact representation of the floorplan. Though this approach
has been used before [7], [17], [19], our representation is much simpler
and more compact, thus increases the efficiency of the design algorithms.
A smaller number of tiles offers the advantage of faster methods for
tile swapping and tile moving. Another difference is that our tiles are
soft (their sizes and aspect ratio can change). This is a consequence of
parameter optimization being part of the synthesis loop. For keeping the
complexity of tile managing methods low, complete knowledge about left,
right, top and bottom neighbors of each tile must be explicitly available.
We decided to store the neighborhood information as distinct O trees [20]
for each of the four directions. Other representations, such as sequence-
pairs [3] or B* trees [5], are not efficient for our problem as they do not
implicitly offer the neighborhood information.
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Section 2 discusses the proposed VHDL-AMS subset for synthesis.
Section 3 presents the layout-aware synthesis algorithm. Section 4 shows
synthesis results for a Σ−∆ ADC. Section 5 offers conclusions.

2. VHDL-AMS Subset for Synthesis

VHDL-AMS [1, 6] is a hardware description language (HDL) for sim-
ulation of mixed-domain systems. Currently, it is one of the few stan-
dardized mixed-domain HDL.

VHDL-AMS specifications are sets of differential and algebraic equa-
tions (DAE) involving continuous-time electrical quantities, like currents
and voltages. The system behavior is obtained by numerically solving the
DAE sets at time points decided by the simulation cycle of the language
[6]. VHDL-AMS specifications do not have the composition semantics,
thus they give limited insight into the system structure [12]. Unrestricted
VHDL-AMS programs offer poor support for producing architectures.
For example, a continuous-time filter specification might include DAE
for poles and zeros, phase margin, and quality factor. However, these
performance descriptions do not help automatically creating filter archi-
tectures through a systematic process of mapping language constructs
to circuits [11], [12]. This section presents restrictions that enforce the
composition semantics on VHDL-AMS programs.

Signal-flow graphs (SFG) formulate the system behavior as a composi-
tion of signal processing operators and signal flow paths. SFG operators
are simple linear functions, like addition, subtraction, integration, and
multiplication by a constant. Operators generate their outputs depend-
ing only on their inputs. There are no influences between connected
operators. In our experience [8], [9], [11], [12], SFG provide sufficient in-
sight for automatically producing alternative architectures for a system.
To impose the composition semantics on VHDL-AMS programs, we had
to identify language restrictions, so that VHDL-AMS constructs can be
represented as SFG structures.

The composition semantics requires that connected blocks do not in-
fluence each other, so that block outputs depend only on the block in-
puts. This assumption is widely used for high-level expression of systems,
like ADC, PLL, transmitter and receiver systems, to name a few. En-
forcing the composition semantics on circuit and transistor level designs
is unrealistic. Sections 3 and 4 explain that the analog synthesis flow
considers circuit loadings (input/output impedances) and non-idealities
(like finite gain and poles) for evaluating the functionality and perfor-
mance of an implementation. An implicit goal of synthesis is to minimize
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the mismatch between the behavior of the implementation and the be-
havior of the ideal system having the composition semantics.

In [12], we presented a detailed justification of the VHDL-AMS sub-
set for synthesis. VHDL-AMS programs consist of entity declarations,
architecture bodies, package declarations, and package bodies. The pro-
posed VHDL-AMS subset for synthesis defines analog signals as free
quantities. The subset includes three language constructs: simple si-
multaneous statements, simultaneous if/case statements, and procedural
statements. Following restrictions define the composition semantics for
the constructs.

Simple simultaneous statements (SSS) express DAE sets. DAE have a
broader meaning than SFG, in the general case. We imposed following
three restrictions on SSS, so that their semantics can be described as a
unique SFG: (1) The left side of an SSS contains only one quantity, or
one derivative of a quantity. (2) In a DAE set, a quantity occurs only
once in the left side of an SSS. Under the two constraints, the behavior
of the left-side quantity is equivalent to the behavior of the output of the
SFG structure for the right side of the SSS. (3) The right side of an SSS
includes only linear operators such as addition, subtraction, integration,
and multiplication by a constant. This restriction is explained by the
need to realize these operators using the circuits currently present in our
circuit library [8]. The restriction can be loosened, if more circuits are
added to the library (for example, mixer circuits).

Simultaneous if/case statements (SIS) represent systems with multiple
modes of behavior. Digital signals control the activation of the modes. In
the context of linear systems, SIS describe variable amplification stages.
For example, in [8], the receiver module of the telephone set had a vari-
able gain controlled by a digital signal. We imposed two restrictions
for the statements in the SIS branches: (1) All left-side quantities of
the SSS in a branch must appear in the other branch, too. Otherwise,
the quantity will not have well-defined values for all conditions. Such
functionality is incorrect for continuous-time systems. (2) For a quantity
present in the left side of two SSS (one SSS for each branch), the opera-
tor patterns of the two SSS must be the same. Same operator patterns
for two SSS means that their right-side expressions refer to the same
quantities, and apply the same operators to the quantities. Different
constant values are allowed for the same patterns.

Procedural statements (PS) are useful for explicitly specifying SFG
structures. PS include instructions like assignments, if/case statements
and loop statements. Data dependencies among PS instructions define
the signal flow between the SFG blocks for the instructions. As op-
posed to HDL for digital circuits (like VHDL and Verilog), instruction
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sequences do not have a meaning for analog synthesis. The left side of an
assignment statement defines the output signal for the SFG correspond-
ing to the right side of the assignment. Assignment statements have the
same constraints as SSS, if/case statements must meet the same restric-
tions as SIS. We discussed in [8] the conditions under which for and loop
statements can be translated into semantically equivalent SFG struc-
tures. Loop instructions are useful for describing multi-channel systems,
like the dual tone multiple frequency decoder (DTMF). DTMF includes
a bank of eight filters and amplitude detectors to recognize the pres-
ence of a certain tone. The abstract specification of the DTMF uses one
for instruction that instantiates the generic filter architecture as part of
the loop body. Loop instructions are also useful to express structural
regularities of a system. Structural regularity helps setting up compact
performance models [10] and simplifying architecture generation [11].

3. High-Level Analog Synthesis

Figure 11.1 presents the proposed high-level analog synthesis flow.
Rhapsody is the corresponding software environment. Inputs to the
flow are VHDL-AMS descriptions of a system, AC and transient domain
performance requirements, and physical constraints like area and power
consumption. The synthesis output is the sized system architecture (in-
cluding sized resistors and capacitors, and bounds for op amps/GmC
gain, poles, and I/O impedances), the placement of the building blocks,
and the global routing of signal and power wires. Given the bounds for
the active circuits, op amp/GmC transistors can be sized using state-of-
the-art circuit synthesis tools. Following steps form the synthesis flow.

Architecture generation: Architectures are netlists of active circuits,
i.e. op amps and GmC, and passive elements, such as resistors and
capacitors. Two architecture generation algorithms are currently avail-
able. The first approach [8, 9] uses a static library of patterns that relate
VHDL-AMS language instructions to analog circuits. A pattern match-
ing algorithm produces alternative architectures by composing together
the mapped instructions. The second technique [11] is based on the
fact that linear signal processing operators can employ either currents
or voltages. This observation makes architecture generation similar to
a bi-partitioning problem [11]. A set of conversion rules link processing
operators and signal types to corresponding active circuits and devices.

Generation of behavioral performance models: Symbolic models ex-
press the system outputs as functions of inputs and design parameters
[10]. The used method generates very compact symbolic expressions by
using the structural regularities of a system architecture. The derivatives
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Figure 11.1. Analog synthesis methodology

of state-variables were replaced by their finite differences using integra-
tion rules, such as Backward Euler integration. The main reason for
behavioral modeling is the long time necessary for SPICE simulations.
Section 4 presents several ADC simulations using behavioral models.

Parameter classification: Parameters are classified depending on their
effect on the system performance. Then, during exploration, dominant
parameters are sampled more often. This improves the quality of syn-
thesis because more samples are analyzed for the important parameters.
For example, the parameters of the first integrator of a second-order
Σ−∆ ADC have a higher influence on SNR and DR than those of the
second integrator [4].

Parameter domain pruning: This step eliminates space regions that
are unlikely to result in good solutions. In our experience, the conver-
gence of synthesis is poor because design parameters belong to large
domains. These large domains must be sampled with fine steps. The
synthesis convergence is significantly better, if less promising domains
are eliminated. We use interval calculus for domain pruning [21].

Identification of parameter dependencies: This step automatically finds
dependencies among parameters. For example, the gm and capacitor val-
ues of a filter are related to the system performance attributes, like the
3dB point, quality factor, and resonance angular frequency. The solution
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space will include many infeasible points, if parameter dependencies are
not considered. This obviously affects the synthesis convergence.

Parasitic extraction, simulation and analysis: For each solution visited
during exploration, the behavioral models are merged with the extracted
layout parasitic to create layout-aware performance models. Models are
simulated in the AC and transient domains. After analysis, the obtained
attributes guide exploration (as part of the cost function).

Constraint transformation through combined parameter exploration,
block floorplanning and global routing: Constraint transformation in-
cludes (1) finding the block parameters (i.e. circuit gains, poles, input
and output impedances), (2) block floorplanning (including finding the
aspect ratios and placements of blocks), and (3) wire routing. The com-
bined system parameter exploration and layout generation allows accu-
rate evaluation of layout parasitic. This results in layout awareness of
the synthesis methodology [21, 22]. Simulated annealing or tabu search
algorithms can be used for the combined exploration step.

The remaining part of this section details the data structures and
methods used for system floorplanning.

3.1 Tile Representation

A tile [19] based representation is adopted for our layout. Figure
11.2 depicts the tile representation. It represents both active blocks and
channels. The active part of the tile is the actual component, and the
channel part is the portion of the channels surrounding the active region.
The widths of the channel part are denoted by ∆i, i=1,4. A layout is
a collection of tiles. As compared to the tile definition in [19], the used
definition reduces the number of tiles for a layout as it decreases the
number of tiles needed to express empty spaces.

As shown in Figure 11.3, tiles can be of three types: (1) active tiles,
(2) empty tiles, and (3) margin tiles. The active tile is a tile, which
represents an electrical component, such as a resistor, a capacitor, an
op-amp etc. A tile, which does not represent an electrical component,
is called an empty tile. The tiles at the four borders of the layout are
called margin tiles.

A tile is defined by its four corner-points. Figure 11.2 shows corner-
points as gray bubbles. A corner-point is the pair (x, y) ∈ R2, 0 < x <
wmax, 0 < y < hmax. T is the set of all tiles. A corner-point belongs to at
least one tile. The set of all corner-points is denoted by CP . A joint of a
tile is a corner-point, which meets an adjoining tile at a point other than
its corner-point. A joint is the pair (x, y) ∈ CP, (x, y) ⊆ T & ∃t ∈ T for
which (x,y) is not a member but one of its corner-points has its x- or y
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Figure 11.2. Tile definition and tile relations

coordinate equal to x or y. The left part of Figure 11.2 illustrates joints
as black bubbles.

The relative positions of the neighboring tiles is defined by neigh-
borhood relationships. Four neighborhood relations exist for each tile,
as shown in Figure 11.2. The existence of a left neighborhood relation
is identified by the constraints (1) |y1, y1 + h1 + ∆1

1 + ∆1
3| intersects

|y2, y2 + h2 + ∆2
1 + ∆2

3| and (2) x1 + w1 + ∆1
2 + ∆1 + 4 = x. ∆i

j cor-
responds to the channel j of tile i. Similarly relationships are defined
for the other neighborhoods. The width of the ∆-s is determined during
the routing phase by the number of nets which are to be routed through
the empty spaces of the channel parts. These relationships are stored
as distinct O trees [20] for each of the directions. This helps immediate
retrieval of the tile neighbors.

Tile based moves

Domino Move: In the domino effect, to accommodate an expansion
in a tile in the layout, its neighbors will have to be moved to avoid over-
lapping. This movement of tiles, called domino effect, moves towards
the edges of the layout stopping either when the move is completely
absorbed by the empty tiles, or at the border. The domino move func-
tion, which implements this phenomenon, is an important function in
floorplanning as all other routines will rely on this function.

Figure 11.3 shows an example of a domino move. Tile 7 is to be
expanded towards the left. When this tile expands, it overlaps with tiles
4 and 5 which are on its left, as shown in Figure 11.3(c). To avoid the
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Figure 11.3. Layout and domino move

situation of overlap in the layout, the tiles 4 and 5 are moved to the left
by an amount equal to that by which the tile 7 was expanded. These
tiles overlap with tiles 1, 2 and 3 (see Figure 11.3(d)). These tiles are
moved to the left to avoid overlaps. As the tiles are on the edge of the
layout, the chip size is increased so that the tiles are not in overlap with
the margin tiles (Figure 11.3(e)). The domino move has a worst case
complexity linear with the total number of tiles. Hence, having a reduced
number of tiles in the representation helps preserving a low execution
time for the domino move step.

Swap tile function: Given two tiles as an input, this function swaps
the two tiles. The dimensions of the tiles are changed to those of each
other (the domino move function will be called here). The neighbor lists
of the tiles are then interchanged. The coordinates of the tiles are now
changed to the coordinates of each other. The swapped tiles are then
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resized to their original dimensions. A similar method is used for the
move tile step.

Resize tile Function: This function moves a tile in the desired di-
rection with the specified amount to be moved. This involves a change
in the coordinates of the tile. This function is important for searching
the circuit parameters of a design, such as the values for resistors and
capacitors of a filter.

Compaction: As the tiles are moved around and their dimensions
varied, there is a danger that the size of the chip may exceed the specified
dimensions. To avoid this, compaction of the circuit is done routinely
during the iterative design process. The compaction module involves
deleting as many unnecessary empty tiles as possible. This procedure
would ensure that the circuit dimensions are within limits.

4. Case Study

The case study presents a synthesis experiment for a fourth order
Σ − ∆ ADC [4]. The goal was to maximize the signal to noise ratio
(SNR) and dynamic range (DR) of the ADC.

Figure 11.4 presents the VHDL-AMS specification of the ADC modu-
lator. The architecture body describes the ADC signal flow. It instanti-
ates four times the same stage, as shown by instructions i1-i4 in the code.
This similarity in the specification helped performance model generation,
because the symbolic code for a stage was reused four times. Each ADC
stage has the same signal processing, but involves different symbolic con-
stants g1, g1 prime, g2, g2 prime, g3, g3 prime, g4, and g4 prime. The
numeric values for the symbolic constants were found during constraint
transformation. The SFG specification of a stage (starting from state-
ment ”ARCHITECTURE sfg of stage IS”) includes SSS. The quantizer
block is described as a process statement sensitive to ABOVE events on
the continuous quantity s5.

A rich set of attributes states designer knowledge based constraints.
These constraints helped pruning some infeasible solution regions dur-
ing constraint transformation. According to [4], to keep the SNR loss
negligible, the ADC stage bandwidth must be higher than the sampling
frequency fs, for this example fs = 160kHz. The bandwidth of a signal
is defined using tool-specific annotations. Another constraint states that
the input signal should be within the range [−0.45×delta, 0.45×delta],
where delta = VDD-GND. This condition prevents modulator overload-
ing [4]. In our example, the range domain of [-0.2V, 0.2V] for quantity
s5 corresponds to this need. The next constraint requires that the gain
of a stage is smaller than the gain of the next stage, as the distortions in-
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-- ATTRIBUTE bandwidth: real;
-- bandwidth = FREQUENCY.((QUANT'voltage -
-- QUANT'voltage(DC) < 3dB) at 1);

ENTITY stage IS

PORT (
GENERIC (g1, g2: real;)

QUANTITY o: OUT real;)
QUANTITY vin, vo: IN real;

END ENTITY;

 REPORT "CONSTRAINT" SEVERITY WARNING;
ASSERT (s'bandwidth > 160kHz) 

ARCHITECTURE sfg OF stage IS

BEGIN
QUANTITY s: real;

s == g1 * vin - g2 * vo;
o == s'integ;

END ARCHITECTURE;

SIGNAL c: bit;
VARIABLE delta: real := VDD - GND;

CONFIGURATION sd_adc OF adc IS
FOR sfg 
FOR i1: stage USE CONFIGURATION

WORK.stage;
END FOR;

WORK.stage;
END FOR;

END FOR;
END sd_adc;

FOR i2: stage USE CONFIGURATION

ASSERT (vin'max>-0.45*delta AND vin'max<0.45*delta) 
 REPORT "CONSTRAINT" SEVERITY WARNING;

IF (s5'ABOVE(VDD/2) = TRUE) THEN
c <= '1';
ELSE
c <= '0';

END IF;
END PROCESS;

i3: stage GENERIC MAP(g1 => g3, g2 => g3_prime)

i4: stage GENERIC MAP(g1 => g4, g2 => g4_prime)

i2: stage GENERIC MAP(g1 => g2, g2 => g2_prime)

i1: stage GENERIC MAP(g1 => g1, g2 => g1_prime)
PORT MAP (vin => vin, vo => vout, o => s3);

PORT MAP (vin => s3, vo => vout, o => s4);

PORT MAP (vin => s4, vo => vout, o => s6);

PORT MAP (vin => s6, vo => vout, o => s5);
IF (c == '1') USE

vout == VDD;

ELSE
vout == GND;

END USE;

 REPORT "CONSTRAINT" SEVERITY WARNING;
ASSERT (s5'deriv > 176e3 * delta) 

 REPORT "CONSTRAINT" SEVERITY WARNING;
ASSERT (s3'deriv > 176e3 * delta) 

 REPORT "CONSTRAINT" SEVERITY WARNING;
ASSERT (vin'min>-0.45*delta AND vin'min<0.45*delta) 

ENTITY adc IS
TYPE lim_out IS range GND TO VDD;
GENERIC (g1,g2,g1_prime,g2_prime,

         g3,g4,g3_prime,g4_prime:real;)

END COMPONENT;

PORT (
QUANTITY vin: IN real;
-- IS voltage

-- IS voltage ) 
QUANTITY vout: OUT lim_out;

ARCHITECTURE sfg OF adc IS
COMPONENT stage IS
GENERIC (g1, g2: real;)

PORT (
QUANTITY vin, vo: IN real;
QUANTITY o: OUT lim_out;)

END ENTITY;

QUANTITY s3: real range -0.2V TO 0.2V;

BEGIN

BEGIN

QUANTITY s4, s5, s6: real;

PROCESS (s5'ABOVE(VDD/2)) IS

END ARCHITECTURE;

ASSERT (g1 < g2 AND g2 < g3 AND g3 < g4) 
 REPORT "CONSTRAINT" SEVERITY WARNING;

ASSERT (s4'deriv > 176e3 * delta) 
 REPORT "CONSTRAINT" SEVERITY WARNING;

ASSERT (s6'deriv > 176e3 * delta) 
 REPORT "CONSTRAINT" SEVERITY WARNING;

Figure 11.4. VHDL-AMS specification for a fourth-order Σ−∆ ADC

troduced by early stages are more important than those of latter stages.
The next four constraints (the assert statements involving quantities
s3′deriv, s4′deriv, s6′deriv, and s5′deriv) refer to the slew-rate of the
integrators, SR > 1.1 delta

Ts
[4]. Finally, the limited output swing of the

first integrator imposes a range constraint for signal s3.
Note that the specification does not include any circuit-level details,

such as opamp finite gain, finite bandwidth, output swings, and mis-
matches. These constraints are important for the implementation of
the modulator [4]. However, they represent physical details, and thus,
should not be present in the high-level specification.

Using the algorithm discussed in [9], four different architectures were
contemplated for each ADC stage. Figure 11.5(a) shows the selected
implementation. The system-level performance evaluation module iden-
tified a sequence of four series configurations for the stages. Symbolic
models for series configurations were selected from the library to re-
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late the input voltages and currents to the currents and voltages at the
quantizer input [10]. The time-domain model for V out(t) = f(V in) was
completed by using the symbolic expressions that relate the voltages
and currents at the ports of one stage. Based on the small signal mod-
els for transconductor and opamp circuits, each stage was modeled as a
six terminal block, as shown in Figure 11.5(b). Time-domain symbolic
relationships between Iin, V in, Iout, V out, I1, V 1, I2, V 2 were calcu-
lated by solving Kirchhoff’s current and voltage laws, and replacing the
derivatives of the voltage drops on the capacitors with finite differences
(according to Backward Euler Integration rule).

Constraint transformation and component synthesis explored about
30,000 solution points in three days. For a sin wave signal of 625kHz at
the input of the Σ − ∆ modulator, the maximum DR and the output
spectrum are plotted at the bottom of Figure 11.5. The maximum SNR
is 64db, and DR is about 70db. The design quality is similar to that
of the modulator reported in [13]. However, the proposed method is
more flexible than that in [13], because it does not assume a working
design beforehand. Also, we were successful in synthesizing a higher-
order converter, which is more challenging to design. The figure also
shows the importance of using detailed circuit models for synthesis, such
as models that include poles and zeros rather than ideal models. The
two plots with dotted lines correspond to simulations, which used circuit
macromodels with one or two poles. In the first case, the circuit still
worked as an ADC, but the SNR went down by about 13dB and the DR
by about 12dB respectively due to the poles. In the last case, the poles
prevented the ADC from a correct functioning.

5. Conclusion

This paper presents our experience on high-level synthesis of Σ −∆
ADC from VHDL-AMS descriptions. We showed that functional de-
scriptions having the composition semantics offer sufficient insight into
the system structure for automatically creating alternative architectures.
Then, different mappings of VHDL-AMS descriptions to library circuits
can be contemplated during synthesis, as the best architecture depends
on the targeted performance. The paper also discusses the high-level
analog synthesis methodology, and details the layout-aware constraint
transformation step. Constraint transformation executes combined pa-
rameter exploration, block floorplanning, and global wire routing. The
technique was successfully applied to high-level synthesis of a fourth-
order continuous-time Σ − ∆ ADC. Compared to similar work, the
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methodology is more flexible (due to its capability of accepting VHDL-
AMS specifications), and more tolerant in tackling layout parasitic.
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Figure 11.5. ADC architecture, stage model, and SNR and DR plots
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