A Monotonicity Theorem for
Extended Logic Programs

Hudson Turner

Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712, USA

hudson@cs.utexas.edu
Abstract

Because general and extended logic programs behave nonmonotonically, it
is in general difficult to predict how even minor changes to such programs
will affect their meanings. This paper shows that for a restricted class of
extended logic programs — those with signings — it is possible to state a
fairly general theorem comparing the entailments of programs. To this end,
we generalize (to the class of extended logic programs) the definition of a
signing, first formulated by Kunen for general programs, and establish a the-
orem characterizing a restricted monotonicity property for signed extended
programs. The theorem is formulated in terms of simple syntactic criteria
on pairs of programs. To demonstrate the usefulness of this result, we use
it to compare the strengths of two families of extended logic programs for
commonsense reasoning about action.

1 Introduction

We would like to be able to characterize the relative strengths of logic pro-
grams in terms of simple syntactic features of the programs.

In the case of pure Prolog programs (that is, programs without negation
as failure and without classical negation), this is not hard to do. For instance,
by adding rules to a pure program, we can only make the program stronger.
That is, given pure programs P and @, if P C), then clearly program @)
entails every ground atom entailed by program P.

In fact, we can easily say more about the relative entailments of pure
Prolog programs. Consider the following partial order on pure program
rules. Given pure rules r and »’, we say that r is subsumed by r’ — denoted
r < r’ — if and only if the heads of rules r and ' are identical and the body
of rule r’ is a subset of the body of rule r. Using this provisional definition
of < for rules, we can define a corresponding partial order on pure programs.
Given pure programs P and), we say that P is subsumed by ¢} — denoted
P <) — iff for every rule r in program P there is a rule r' in program @)
such that r < /. It isn’t hard to see that if P < (), then program () entails
every ground atom entailed by program P.

This fact is an especially simple version of the sort of monotonicity result
we're after. What we see is that when we add rules to a pure program, the
program becomes stronger. And also, when we subtract from the bodies of
rules in a pure program, the program becomes stronger.

Unfortunately, in the presence of negation as failure, things are no longer
so simple. Consider, for instance, the following pair of programs:

Program P is: Program () is:
a 4+ notb a ¢+ notb
b + notec b + notec
¢ ¢« d,note ¢ + d,note
d + notf d + notf
€ [

f o+

Program P entails exactly the atoms in {b,d, e}. Program () entails exactly
the atoms in {b,e, f}. So we add the rule f + to program P to get
program (), and yet program () is not stronger than program P. Of course
this is not surprising: we lose atom d because d “depends negatively” on f,
and we don’t lose atom b because b “depends positively” on f. The notion
of a signing, defined by Kunen in [8] for general programs, makes this idea
precise.

Let II be a general logic program (that is, a program that includes nega-
tion as failure but not classical negation). A signing for Il is a set S of
ground atoms such that, for any ground instance

Ag +— Ay, . Ap,not Apiq, ..., n0t A,
of any rule from II, either
A07A17"'7Am € S7Am+17"'7An ¢ S

or

A07A17"'7Amgstm+17"'7An€S-1

As we can see from the symmetry of this definition, it is natural to think
of a signed general program as having two sides or halves, which motivates
the following definition.

For a program Il with signing .5, let Ilg be the set of all rules whose
heads belong to .S, and let Ilz be the set of all rules whose heads belong to
the complement of S.

Returning to example programs P and () above, we can see that P and
@ have a common signing S = {a, ¢, d}; that is, S is a signing for both P

and). So we have

[« « notb
Ps=0Qs = ¢ + d,note

| d « not f

b t
P = ’ : not ¢

[b « note
Q§ = € <

L foe

The following fact is a special case of the main result of this paper: if
signed general programs P and () have a common signing S, and if P C Qs
and Qs C Ps, then P entails every ground atom in S that is entailed by @),
and Q) entails every ground atom in S that is entailed by P. We see that
this theorem is applicable to example programs P and () above.

Once we've extended in a natural way the definitions of the partial or-
derings < on rules and programs, we can state this fact a bit more generally.

As before, we intend that rule r will be subsumed by rule #’ if and only
if the heads of r and r’ are identical and the body of r’ is “a subset of” the
body of rule r. More precisely, given rules r and r’, we say that r < r’ iff
the following three conditions hold:

(i) the heads of rules r and r’ are identical,

(ii) the set of atoms preceded by not in the body of rule r’ is a subset of
the set of atoms preceded by not in the body of rule r,

(iii) the set of atoms not preceded by not in the body of rule r’ is a subset
of the set of atoms not preceded by not in the body of rule r.

Using this definition of < for rules, we define as before the corresponding
partial order on programs. Given programs P and (), we say that P < @)
iff for every rule r in program P there is a rule r’ in program) such that
r=<r.

It follows from the main theorem of this paper that if signed general
programs P and () have a common signing S, and if Ps < Q5 and Qs < Ps,
then P entails every ground atom in S that is entailed by Q, and () entails
every ground atom in S that is entailed by P. Thus, given a general program
IT with signing S, we know that when we add rules to Ilz or subtract rules
from Ilg, program II becomes stronger in S. Furthermore, when we subtract
from the bodies of rules in [Iz or add to the bodies of rules in Ilg, II again
becomes stronger in S.

Our notion of entailment is based on the answer set semantics [5] (which,
in the absence of classical negation, is also known as the “stable model” se-
mantics [4]). Dung [2] has proved that, for signed general programs, answer

set semantics and well-founded semantics [11] yield the same (positive) en-
tailments.

In the next section, we define the notion of a signing for extended logic
programs, that is, programs using both negation as failure and classical
negation. This definition of a signing for extended programs extends Kunen’s
definition of a signing for general programs.

In fact, the particular example motivating this work involves classical
negation. In the paper “Representing Actions in Extended Logic Program-
ming”, Gelfond and Lifschitz [7] introduce a simple declarative language for
describing actions, called A; and they propose a modular translation from A
into the language of extended logic programming. Their work is presented
in part as an extension of work by Apt and Bezem [1] on representing prop-
erties of actions in general logic programs. We will be able to show that the
work of Gelfond and Lifschitz indeed extends the work of Apt and Bezem in
the following sense: the programs of Gelfond and Lifschitz always entail at
least as much about the properties of the actions described as do programs
comparable to those of Apt and Bezem.

In Section 2 of this paper, we generalize the definition of a signing and
state precisely the restricted monotonicity theorem for extended programs.
In Section 3, we use this result to compare the strengths of two families of
extended logic programs for commonsense reasoning about action. Section
4 of this paper presents a theorem concerning the relationship between the
answer set semantics and the well-founded semantics in the case of signed
general logic programs. This theorem facilitates the proof of the restricted
monotonicity theorem, and may be of independent interest as well. The final
section of this paper consists of proofs.

2 Programs and Signings

We begin with some standard definitions.

We use the symbol — to represent classical negation. We use the term
literal to refer to an atom possibly preceded by classical negation.

We restrict our attention to propositional programs, considering a rule
with variables as an abbreviation for all of the ground instances of the rule.
Therefore, from now on we will refer to ground atoms simply as atoms, and
ground literals simply as literals.

An extended rule is a rule of the form

Ly <« Ly,...;Ly,not L.y,,n0t L, (1)

where all L; (i = 0,...,n) are literals. An extended program is a set of
extended rules.
There are two important special cases:

A positive rule is a rule of the form

Lo Ly,....,L,

where all L; (i =0,...,m) are literals. A positive program is a set of positive
rules.

A general rule is a rule of the form
Ag +— Ay, . Ap,not Apiq, ..., n0t A,

where all A; (1 =0,...,n) are atoms. A general program is a set of general
rules.

Let II be an extended program. By atoms(Il) we denote the set of atoms
that occur in II (in either negated or non-negated form). By literals(lI) we
denote the set of literals occuring in II.

Given arule r asin (1), we define the following: head(r) = {Lo}, pos(r) =
{L1,..., Ly}, and neg(r) = {Lms1, ..., Ln}. We will refer to the expressions
not Lyi1,...,n0t L, as the negative subgoals of rule r.

A set B of literals is closed under the rules of positive program II if
Vr € I1. pos(r) C B = head(r) N B # 0.

A set B of literals is logically closed with respect to a program Il if either
B contains no complementary literals or B = literals(Il).

For a positive program II, a set B of literals is an answer set for 11 iff B
is a minimal set of literals closed under Il and logically closed w.r.t I1. We
denote by all the (unique) answer set for positive program II.

For an extended program Il and a set of literals X, the reduct operator
X s II* transforms program Il into the positive program I1* obtained from
IT by first deleting every rule r € II such that neg(r) N X # @, and then, for
each remaining rule r € II, deleting all the negative subgoals of r.

A set B of literals is an answer set for an extended program II iff B =
allB. An extended program II entails exactly those literals in literals(IT)
that are included in every answer set for II.

Now we introduce a few new definitions, including the definition of a
signing for extended programs. Then we will be able to state the main
theorem of this paper.

Definition. Given rules r and r/,
r <" iff head(r’) = head(r) and pos(r’) C pos(r) and neg(r’) C neg(r) .

Definition. Given logic programs P and @),
P <@ iff for each rule r € P there is a rule ' € @ such that r <.

Definition. A set S of atoms is a signing for an extended logic program II
if no atom in .S appears negated in literals(Il) and

Vrell. (head(r) Upos(r) C S Aneg(r) C 3)
v (head(r) Upos(r) C S Aneg(r) C S))

where S denotes the complement of S with respect to the set of all literals.

The following extended program P has a signing S = {b}:

a + notb,
b+ not a,
a4

Observe that {a, —a} is not a signing for program P, since —a is not an atom.
Neither is {a} a signing for P, since —a € literals(P). And in general, the
definition of a signing for extended programs is asymmetric in the following
sense: if a set .S of atoms is a signing for a program II that includes classical
negation, the set of atoms in S will not be a signing for II, because some
atom in S will appear negated in literals(I). For general programs though,
the definition is symmetric; that is, if S is a signing for a general program
I, then the set of atoms in S will also be a signing for II. For general
programs, this definition is equivalent to Kunen’s. Before we demonstrate
why this asymmetry is useful, we state formally the restricted monotonicity
theorem for extended programs:

Theorem 1 For extended logic programs P and @) with common signing S,
if Pz < Q% and Qs < Ps and literals(P) N S C literals(Q) N S,
then program () entails every literal in S that is entailed by program P.

Now, of course, when we wish to generalize the concept of a signing to
the class of extended programs, the first possibility we consider is simply
to employ Kunen’s definition, but applied now to literals instead of atoms.
Unfortunately, under this straightforward, symmetric generalization of the
definition, the restricted monotonicity property for signed programs does not
hold. The following pair of extended programs illustrates this shortcoming:

Program P is: Program () is:

a + not —b, a + not —b,

—a¢ ¢ not b, —a¢ ¢ not b,

b+ not a,not c, b+ nota,not c,

=b <+ not a, =b <+ nota,

¢ ¢ notb. c 4+« notb,
b+

Program P has a single answer set, {—a, —b, ¢}. Program () has a single an-
swer set, {a,b}. Clearly we’d be hard-pressed to identify monotonicity here.
Yet under the hypothetical, symmetric definition of a signing for extended
programs, the set S = {a,—a,c} would be a common signing for programs
P and @), in which case the monotonicity theorem would be falsified.

3 Restricted Monotonicity in Logic Programs for

Commonsense Reasoning About Action

In the paper “Representing Actions in Extended Logic Programming”, Gel-
fond and Lifschitz [7] introduce a simple declarative language for describing

actions, called A; and they propose a modular translation from A into the
language of extended logic programming. Their work is presented in part as
an extension of work by Apt and Bezem [1] (among others) on representing
properties of actions in general logic programs.

Given Theorem 1, we can easily show that the work of Gelfond and
Lifschitz indeed extends the work of Apt and Bezem in the following sense:
the programs of Gelfond and Lifschitz always entail at least as much about
the properties of the actions described as do programs comparable to those
of Apt and Bezem.

In the language A, a description of an action domain is a set D of propo-
sitions of two kinds: value-propositions — which specify the value of a fluent
in a particular situation; and effect-propositions — which describe the effect
of an action on a fluent.

We will briefly describe the syntax of A. As for the semantics of A, we
simply remark that they are based in a straightforward manner on deter-
ministic finite automata, and that the results of this semantics are generally
intuitive. (See [7] for the full story.)

Begin with two disjoint non-empty sets of symbols, called fluent names
and action names. A fluent expression is a fluent name possibly preceded
by —. A wvalue-proposition is an expression of the form F after A;;...; A,,,
where I is a fluent expression, and A,,..., A, (m > 0) are action names. If
m = 0, we write instead initially F. An effect-proposition is an expression
of the form A causes I’ if P,,...,P,, where A is an action name, and
each of F, P,,..., P, (n > 0) is a fluent expression. About this proposition
we say that it describes the effect of A on F, and that P,,..., P, are its
preconditions. If n = 0, we drop if and write simply A causes F.

Now, if we’re interested only in temporal projection problems, in which
the given value-propositions refer only to the initial situation, then we can
specify a very simple translation from domain descriptions D in the language
of A into extended logic programs Teorwaral? . And although of course the
work of Apt and Bezem was not presented as a translation from the language
A and did not use classical negation, the programs Topwaral) correspond
nicely to the general logic programs that Apt and Bezem proposed.

Thus, for each domain D there is an extended program mgorwaral) which
consists of a single rule for each value-proposition in D, a pair of rules
for each effect-proposition in D, and a standard pair of rules expressing
inertial properties. In specifying this translation, we rely on the following
convention: for any fluent name G and situation term ¢, Holds(—G, t) stands
for =Holds(G, t).

A value-proposition of the form initially £ is translated into the rule
Holds(F, Sy) + . (2)

A value-proposition of the form F after A;;...;A,, is translated into the
rule

Holds(F, Result(A,,, Result(A,,_1, ..., Result(A;, Sp)...))) + . (3)

An effect-proposition of the form A causes F'if P,,..., P, is translated into
two rules. The first of them is

Holds(F, Result(A, s)) < Holds(Py,s), ..., Holds(P,, s). (4)
The second rule is
Noninertial(|F|, A, s) < not Holds(P;,s),...,not Holds(F,,s), (5)

where Holds(F;, s) is the literal complementary to Holds(F;,s), and where
|F'| is the fluent name corresponding to the fluent expression F.
Finally, the translation mgorwardl) includes two inertial rules:

Holds(f, Result(a,s)) <« Holds(f,s),not Noninertial(f,a,s). (6)
—Holds(f, Result(a,s)) < —Holds(f,s),not Noninertial(f,a,s).

Observe that all of the rules in 7foprwaral? are apparently intended for rea-
soning forward in time.

Suppose instead that we wish to reason about domains in which the
given value-propositions may refer to non-initial situations. Faced with such
domains, we may wish to formulate additional rules intended for reasoning
backward in time. To this end, Gelfond and Lifschitz proposed their transla-
tion from domain descriptions D into extended programs 7 D. Each program
7D is a superset of the corresponding program mforwaral? . S0, in addition
to the rules in 7gorwaral) , We include the following backward reasoning rules
in program wD:

For an effect-proposition of the form A causes F if P,,..., P,, we add
for each 7, 1 < ¢ < n, the credit assignment rule

Holds(P;, s) < Holds(F, s), Holds(F, Result(A, s)).” (7)

and the blame assignment rule

Holds(P;, s) <— Holds(F, Result(A, s)), Holds(P;,s), ..., Holds(P;_1,s), (8)
Holds(Piy1,), ..., Holds(P,,s).

We also include in # D another pair of inertial rules:

Holds(f,s) <+ Holds(f, Result(a, s)),not Noninertial(f,a,s). ()
—Holds(f,s) <« —Holds(f, Result(a,s)),not Noninertial(f,a,s).

On the one hand, it may seem intuitively clear that, for any domain descrip-
tion D in the language of A, program =D should entail at least as many
Holds and — Holds literals as does program 7forwaraD . On the other hand,
such an assertion needs a proof. And in fact, it is likely that this intuition is
based on experience with monotonic formalisms, which may be misleading
here.

For us, the question about relative entailments of these two translations
from the language of A arose particularly in response to the following simple
domain description D:

initially —=F

A causes F if G
Even though this is a temporal projection problem, in which the given value-
propositions refer only to the initial situation, it nevertheless happens that
the additional rules in 7D for reasoning backward in time still affect the
meaning of the program. Thus, program 7D has two answer sets, while
program Tiorwardl) has just one answer set.

The program wgorwaral) is:

—Holds(F, S,
Holds(F, Result(A, s)

))

) Holds(G, s).
Noninertial(F, A, s)

)

)

not = Holds(G, s).
Holds(f, s),not Noninertial(f,a,s).
« = Holds(f,s),not Noninertial(f,a,s).

TT T

Holds(f, Result(a, s)
—Holds(f, Result(a, s)

Program 7iorwardl) has a single answer set consisting of = Holds(F, Sy) and
all ground instances of Noninertial(F, A, s).?
By comparison, program w D is:

—Holds(F, S, .
Holds(F, Result(A, s) Holds((, s).
Noninertial(F, A, s not = Holds(G, s).
Holds(G, s —Holds(F, s), Holds(F, Result(A, s)).

- Holds((G, s
Holds(f, Result(a,
—Holds(f, Result(a, s

(f
(f

—Holds(F, Result(A, s)).

Holds(f, s),not Noninertial(f,a,s).

—Holds(f, s),not Noninertial(f,a,s).

Holds(f, Result(a, s)), not Noninertial(f,a,s).
—Holds(f, Result(a, s)), not Noninertial(f, a, s).

s

)
)
)
)
)
)
)

, 8

—Holds(f

TTTTTTTTT

)
,5)
Program 7D has two answer sets. One consists of —Holds(F,Sy) and all
ground instances of Noninertial(F, A, s). The other consists of all ground
instances of ~Holds(F, s) and —Holds(G, s).*

Despite the unanticipated result in this specific case, we have the follow-
ing satisfactory general result comparing the entailments of the programs
7D and Torwara D for arbitrary domains D:

Proposition 1 Given any domain description D in the language of A, the
extended logic program wD entails at least every Holds ground literal and
every —Holds ground literal entailed by the extended logic program weorwardl -

Proof.
Let D be a domain description in the language of A.

Let S = {b:bis a Noninertial atom in literals(7D)}.
Clearly S is a common signing for extended programs 7fopward) and 7 D.

It is also clear that (7iorwardD)5 C (7 D)z and that (7D)s = (Frorwaral)s-
Therefore, we have (TforwardD)z = (7 D)z and (7D)s < (TforwardD)s.

Finally, it is clear that literals(morwaralD) NS C literals(7 D) N S.

Thus, by Theorem 1, 7D entails at least every ground literal in S that is
entailed by Torwaral -
O

4 Answer Set and Well-Founded Semantics

We exploit in this paper the close relationship between the answer set se-
mantics for general logic programs [4] and the well-founded semantics for
general logic programs [11]. This section restates in a form convenient for
our purposes a number of previously-known results in the declarative seman-
tics of general logic programs. At the close of this section, we state a new
result for signed general programs.

In this section, 11 stands for any general logic program. Recall that a set
B of ground atoms is an answer set for Il iff B = olI®.

Let I'X = oIlI*. Observe that the answer sets of II can be characterized
as the fixpoints of I'. It is easy to see that I' is anti-monotone. Consequently,
['? is monotone. Because I'? is monotone, we know by the Knaster—Tarski
theorem [10] that [has a least fixpoint, Ifp(I'?), and a greatest fixpoint,
gfp(I?).

Let WE (IT) denote Ifp(I'*); and let WE(II) denote gfp(I'?). These
two sets — WF (II) and WF(Il) — capture essential information about
the well-founded semantics of a general program II. That is, under the
well-founded semantics, when a ground atom b is submitted as a query: the
answer is “yes” when b € WF (I1); “unknown” when b € WF(I1)\WF (I1);
and “no” when b ¢ WF+(1I).

For all answer sets X for II,
WE (IT) ¢ X ¢ WF (1),

because each fixpoint of I' is a fixpoint of I'2. This fact indicates that the
well-founded semantics can be seen as an approximation to the answer set
semantics, identifying lower and upper bounds on the answer sets for a gen-
eral program. As we will see in Theorem 2 and the remainder of this paper,
the relationship between the answer set semantics and the well-founded se-
mantics grows even closer in the case of signed programs.

Theorem 2 For a general program I1 with signing S, the following are
among the answer sets for 11:

(i) WF (I) U (WF(I)N S)
(ii) WF_(I) U (WF-(I1)N S) .

Theorem 2 is of particular interest because it gives a direct character-
ization, in terms of the well-founded semantics, of two (possibly identical)
answer sets for any signed general program. As we will see, this character-
ization facilitates the proof of Theorem 1. In fact, these are the two most
important answer sets of a signed general program II, in the sense that Il
entails exactly their intersection. So we see, as has been established pre-
viously in [2], that a signed general program II entails exactly the ground
atoms included in WF (II).?

Theorem 2 also provides an unusually direct proof of another previously
established result: a signed general logic program has at least one answer
set. A closely related proof of the existence of answer sets for signed general
programs is presented in [7]. There the authors define a monotone operator ¢
associated with each signed general program Il and show that every fixpoint
of ¢ corresponds to an answer set for II. In particular, it turns out that
Ifp(¢) corresponds to WF (1) U (WF+(1I) N 5), and gfp(¢) corresponds to
WF, (IT) U (WF+(IT1) N S). In [3], Fages establishes the existence of answer
sets for a much larger class of general logic programs. Fages shows that
order-consistent general programs have answer sets.”

Observe that a signed general program may have additional answer sets
that do not correspond, in the manner of Theorem 2, to any signing for the
program. For example, {a,d} is among the answer sets for the following
signed program:

a 4+ notb,
b <« not a,
¢ <+ not b,not d,
d 4+ notec.

5 Proofs

We begin with the proof of Theorem 2, which uses the following lemma:

Lemma 1 For a general program 11 with signing S,
(i) allX = all¥"¥ U allX"S

(i1) ol NS = alI¥"
(11i) oII* NS = allX"S .

Proof. Observe that II = [l U [lz. Thus, by the definition of the reduct
operator, we have I1* = (IIs U Tl5)* = T1¥ U TIZ.

By the definition of a signing, we know that Vr € Ils . neg(r) C S . So
I = 1Z"°. Likewise, I3 = I1Z"°. Also by the definition of a signing
we have Vr € Ilg . head(r) Upos(r) C S . So again by the definition of
the reduct operator, atoms(I13"*) C S, and clearly, oII3"® C S. Likewise,
atoms(IIF"*) C S, and oIIE"S C S.

Given these observations, it is easy to verify that all* = « (Hém§ U H%ms) =

all¥05 allZ™, with oIl N S = all¥™S and alIX NS = allZ"?,
a

Theorem 2 For a general program I1 with signing S, the following are
among the answer sets for 11:

(i) WF (I) U (WF(I)N S)
(ii) WF_(I) U (WF-(I1)N S) .

Proof. We give a proof for (i); (ii) follows by symmetry, because if S is a
signing for a general logic program II, then so is S.

Let A= WF(I)U(WF+(I) 1'S). Observe that ANS = WF, (I)NS and
ANS =WF(II)NS. We will show that A = I'A, which is to say that A is

an answer set for II.

Now, because WFr(II) a fixpoint of I'*, we know that I'(WF1 (1)) is also
a fixpoint of I'?. Therefore, by the anti-monotonicity of I', along with the
fact that WF (IT) and WE+(II) are the least and greatest fixpoints of I'?,
we can conclude that WF (II) = I' (WF 1 (II)).

By the definition of ', I' (WF (IT)) = aITWF~(D,
Thus, by Lemma 1(ii), we have I'(WF(II)) NS = aHXVFT(H)ng.
Combining these observations,
ANnS = WF (II)nS
= ['(WF+(Il))nS
O{HX«VFT(H)O?
= oll25,
By symmetric reasoning, we have AN S = aH%nS. Finally, by the definition
of I and Lemma 1(i), along with the foregoing observations,
A = alld" yallns
= (ANS)U(AnS)
= A.
O

Now we begin the proof of Theorem 1, which relies on the following restricted
monotonicity theorem for signed general programs:

Theorem 3 For general programs P and) with common signing S,

if P < Qg and Qg <X Ps, then WF (P)NS C WF (Q)NS.

Because the set of atoms in S will also be a common signing for general
programs P and (), we have:

Corollary 1 For general programs P and @ with common signing S,

if P < Q< and Qs = Ps, then WF (P)n'S Cc WF_(Q)N'S.
Our proof of Theorem 3 requires a number of lemmas.

Lemma 2 Let P and () be general programs. Let X andY be sets of atoms.
IfP<Q andY C X, then PX < QY.

Proof.

By the definition of < for programs, we have Vr € P .3 € @ .r <1’ .
Applying the definition of < for rules, this gives us

Vre P.3r' € Q. head(r’) = head(r) A pos(r’) C pos(r) A neg(r’') C neg(r).
In particular, given the set of atoms X, with P < @, what’s important in
comparing the reducts PX and Q% is the following observation:

Vre P.neg(r)NX =0= 3" €Q .neg(r')NX =0 A head(r’) = head(r)
A pos(r’) C pos(r) .

Therefore, we conclude that for any set of atoms X, P < Q = PX < Q*.
And since Y C X, we know by the anti-monotonicity of the reduct operator
that Q% C QY, which implies that QX < QY. Thus, because < is clearly
transitive, we have PX < QY.

O

Lemma 3 Let P and () be positive general programs.

If P <Q), then aP C o).

Proof. Obvious from the definitions, since positive general programs behave
monotonically. O

Now we introduce a useful pair of monotone operators:
Let IT be a general program with signing S
X

Let AUX = aﬂzng, and let A%X =w %H§

Lemma 4 The operators AY and A% are monotone.

Proof. By the monotonicity of o and the anti-monotonicity of the reduct
operator. O

Lemma 5 X is a fizpoint of I? iff X N S is a fizpoint of AY and X NS is
a fixpoint of A%.

Proof. By the definition of I', we have ' X = all*.

By Lemma 1(ii), X NS = oeﬂgmg, and by Lemma 1(iii), [X NS = aH%mS.

Again by the definition of I, X = oIl"X. And again by Lemma 1(i1),
12X NS = olllX™¥ and by Lemma 1(iii), I?X NS = aﬂgXF‘S.

oIIX NS
=

So to sum up, I?X NS = oll}¥"5 = all, = = AT(XNS).
Likewise, T2X N5 = allZX9 = of12™=" = AL(X 0 3).
Therefore we can conclude
MPX=X if IM*XnS=XnNnSandI?’XNnS=XnNS
iff AY(XNnS)=XnSand AH(XNS)=XNS.

O
Lemma 6
Ifp(AY) = WF.(IT) NS
Proof. By Lemma 4, the operators AY and A% are monotone, so by

the Knaster-Tarski theorem each has a least and greatest fixpoint. Since
WF, (IT) is a fixpoint of I'?, it follows by Lemma 5 that WF (II) N S
is a fixpoint of AY. It remains to show that for any fixpoint X of AL,
WF, (II)NS C X. Solet X C S be a fixpoint of A, and let Y C S be a
fixpoint of A%. By Lemma 5, X UY is a fixpoint of I'?. But by definition,
WEF (IT) is the least fixpoint of ', So WF (II) C X UY, and therefore
WE, (IhNnSc(XuY)nS=X. O

Lemma 7 Let P and () be general programs with common signing S
X

Let X be a set of atoms. Let AEX = aPsps ;let AGX = anQE'
If Ps < Qs and Qs < Ps, then AEX C AYX.

Proof. By Lemma 2, since Qg = Pg, we know that QX < PX. So by

Lemma 3 we have er%(C oePSf. Again by Lemma 2, since Ps < () and

a P aQX
an C oePSi(7 we can conclude that Py © =< QSQS. And once more by

aPX aQX
Lemma 3, we have Py ° C erSQS ; that is to say, ALX C AYX.
O

Now we’re ready to prove Theorem 3.

Proof. (of Theorem 3)
Let P and @) be general programs with joint signing S, such that Py < Q¢
and Qz < Ps. We wish to show that WF (P)n.S C WF (Q)NS.

apPX aQX
Let AEX = aPg 5 ; and let AYX = aQ F. By Lemma 4, AE and AY are
monotone.

By Lemma 6, Ifp(Af) = WF_(P) NS and Ifp(AY) = WF (Q)N S.

By the Knaster-Tarski theorem, the least fixpoint of a monotone operator is
also the least pre-fixpoint of that operator, which coincides with the inter-
section of all pre-fixpoints of the operator. Therefore,

WE (P)nS= (] X and WF (QNS= [) X.

ATXCX A9XCX

Thus, in order to demonstrate that WF, (P) NS C WF._(Q) NS, it is
sufficient to demonstrate that each pre-fixpoint of A§ is also a pre-fixpoint
of AE. That is, we must show that AZX C X = ALX C X. So, assume
that AYX C X. By Lemma 7 we can conclude that AEX C AYX. Tt
follows that AEX C X.

a

Before we go on to prove Theorem 1, we must introduce a few more defi-
nitions and observations relating extended logic programs to their general
counterparts.

We say that a set B of literals is consistent if B doesn’t contain a comple-
mentary pair of literals. An extended logic program Il is consistentif 11 has
an answer set B that is consistent.

Given a set B of literals, we define a corresponding set of atoms

Bt = {b:bis a non-negated atom in B} U {b': b is a negated atom in B} .
The intention here is that the b’ atoms will be new to the language. So we
use the prime symbol to create new atoms. Given a set B of atoms, we
define a corresponding set of literals B~ ={b:b€ B} U{=b:b € B}.

We say that a set of atoms BT contains a bad pair if there is a b € B such
that both b,0’ € B*. Note that BT contains a bad pair if and only if B is
inconsistent.

Given an extended logic program II, we define the corresponding general
program IIT as the program that results from replacing each literal in II

with its corresponding atom in (literals(IT))".

For an extended program I, let LB(II) denote (WF | (1I7))"; and let UB(1I)
denote (WF(IT1)) .

Finally, note that if S is a signing for extended program II, then S is also a
signing for 11T,

Proposition 2 Let Il be an extended program.

(i) Program 11 is consistent iff IIT has an answer set that contains no bad
pairs.

(ii) If 11 is consistent, then B is an answer set for 11 iff BT is an answer
set for 11T and B™ contains no bad pairs.

(iii) If 11 is not consistent, then literals(1l) is the only possible answer set

for 11.

Proof. Immediate by the definitions and Proposition 2 of [6]. O

Lemma 8 Let Il be an extended program with signing S.
Program 11 is consistent iff LB(I1) NS is consistent.

Proof. Let AT be the set WF_ (IT*) U (WF+(IIT)NS). Note that A* NS =
WF, (IT*) N S and that AN S = LB(I1) N S. By Theorem 2, we know that
At is among the answer sets for I1*. It is well-known that for all answer sets
X of I+, WF (II*) C X C WF(IT*); and therefore AT NS C X NS. We
know by the definition of a signing for extended programs that for any bad
pair {b,b'} C atoms(IIt), {b,4'} C S. So we can conclude that II* has an
answer set that contains no bad pairs iff At N.S contains no bad pairs. That
is to say, II* has an answer set that contains no bad pairs iff LB(IT) N S is
consistent. By Proposition 2(i), IT is consistent iff TI* has an answer set that
contains no bad pairs. Therefore, I is consistent iff LB(IT) NS is consistent.
O

Lemma 9 Let Il be a consistent extended program with signing S.
Program 11 entails exactly those literals in S that are included in LB(11).

Proof. Again, let AT be the set WF (IIT) U (WF1(II*) N S). Note that
A = LB(I)U(UB(IT)NS) and that ANS = LB(I1)NS. In the proof of Lemma
8 we showed that At contains no bad pairs. Therefore, by Proposition 2(ii),
A is among the answer sets for I1. It is easy to show that for all answer sets
X of I, LB(IT) € X;s0 ANS C XNS. Thus II entails exactly those literals
in S that are included in LB(II) N S.

O

Lemma 10 If Il is an inconsistent extended program, then program 11 en-
tails exactly all the literals included in literals(1l).

Proof. By Proposition 2(iii) and the definition of entailment for extended
programs. O

Finally we’re ready to prove Theorem 1.

Theorem 1 For extended programs P and) with common signing S,
if Pz < Q% and Qs < Ps and literals(P) N S C literals(Q) N S,
then Q) entails every literal in S that is entailed by P.

Proof.

Clearly, Pt and Q% are general programs with common signing S. Also, it
is easy to see that Pz < Qz = PSi' < Qg and that Qs < Ps = QF < PF. So
by Corollary 1, WF | (P*)NS ¢ WF_(Q*)NS. Therefore, by the definition
of LB, we have LB(P) NS C LB(Q)N S.

Consider two cases:
Case 1: Program () is consistent.

Because () is a consistent extended program with signing S, we know by
Lemma 8 that LB(Q) NS is consistent. Since LB(P)N S C LB(Q)N S,
we know that LB(P) N S is also consistent. Therefore, again by Lemma
8, program P is consistent. By Lemma 9, because programs P and () are
consistent, program P entails exactly those literals in S that are included
in LB(P) NS, and program @ entails exactly those literals in S that are
included in LB(Q)NS. So the theorem is proved for the case when program
(2 is consistent.

Note that for this case we needn’t require that literals(P) NS be a subset of
literals(@Q) N S.

Case 2: Program () is not consistent.

In this case, by Lemma 10, program () entails exactly all the literals included
in literals(Q). So () entails exactly all the literals in S that are in literals(Q)N
S. By the definition of entailment for extended programs, we know that
program P can entail at most every literal in literals(P), so P can entail
at most those literals in S that are included in literals(P) N'S. And since
literals(P) NS C literals(Q) N S, the theorem is proved for the case when
program () is not consistent.

O

Notes

1. This is slightly different from the original definition in [8].

2. In [7], the soundness of # D is proved with respect to the semantics of A for
consistent domain descriptions D without similar effect-propositions, where
two effect-propositions are similar if they differ only in their preconditions.
The restriction to domains without similar effect-propositions maintains the
soundness of the credit assignment rules (7).

3. For convenience of exposition, we’ve implicitly assumed a sorted language
for TorwardD ; and by “all ground instances” we mean all ground instances
of the appropriate sorts in the language of TeorwardD -

4. That is, all ground instances of the appropriate sorts in the language of
wD.

5. Dung [2] proved this for a larger class of general programs — the bottom-
stratified € top-strict programs — which subsumes the signed general pro-
grams.

6. The class of order-consistent programs was first defined by Sato in [9],
where it is shown that such programs have a consistent completion. Fages’
proof in [3] relies crucially on Sato’s result in completion semantics. [2]
includes a similar, somewhat less general, result.

Acknowledgments

My profound thanks to Vladimir Lifschitz for fundamentally enabling this
work. Thanks to Norman McCain for careful reading and comments on a
draft of this paper. Thanks also to one of the anonymous referees for several
useful, specific criticisms and questions. This work was partially supported
by National Science Foundation under grant IRI-9101078.

References

[1] Krzysztof Apt and Marc Bezem. Acyclic programs. In David Warren
and Peter Szeredi, editors, Logic Programming: Proc. of the Seventh
Int’l Conf., pages 617-633, 1990.

[2] Phan Minh Dung. On the relations between stable and well-founded
semantics of logic programs. Theoretical Computer Science, 105:7-25,
1992.

[3] Frangois Fages. Consistency of Clark’s completion and existence of
stable models. Technical report, Ecole Normale Supérieure, 1990. To
appear in Methods of Logic in Computer Science.

[4] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for
logic programming. In Robert Kowalski and Kenneth Bowen, editors,
Logic Programming: Proc. of the Fifth Int’l Conf. and Symp., pages
1070-1080, 1988.

[5] Michael Gelfond and Vladimir Lifschitz. Logic programs with classical
negation. In David Warren and Peter Szeredi, editors, Logic Program-
ming: Proc. of the Seventh Int’l Conf., pages 579-597, 1990.

[6] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases. New Generation Computing, 9:365—
385, 1991.

[7] Michael Gelfond and Vladimir Lifschitz. Representing actions in ex-
tended logic programming. In Krzysztof Apt, editor, Proc. Joint Int’l
Conf. and Symp. on Logic Programming, pages 559-573, 1992.

[8] Kenneth Kunen. Signed data dependencies in logic programs. Journal
of Logic Programming, 7(3):231-245, 1989.

[9] Taisuke Sato. Completed logic programs and their consistency. Journal
of Logic Programming, 9:33-44, 1990.

[10] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applica-
tions. Pacific Journal of Mathematics, 5:285-309, 1955.

[11] Allen Van Gelder, Kenneth Ross, and John Schlipf. The well-founded
semantics for general logic programs. Journal of ACM, pages 221-230,
1990.

