
A Monotonicity Theorem forExtended Logic ProgramsHudson TurnerDepartment of Computer SciencesUniversity of Texas at AustinAustin, TX 78712, USAhudson@cs.utexas.eduAbstractBecause general and extended logic programs behave nonmonotonically, itis in general di�cult to predict how even minor changes to such programswill a�ect their meanings. This paper shows that for a restricted class ofextended logic programs | those with signings | it is possible to state afairly general theorem comparing the entailments of programs. To this end,we generalize (to the class of extended logic programs) the de�nition of asigning, �rst formulated by Kunen for general programs, and establish a the-orem characterizing a restricted monotonicity property for signed extendedprograms. The theorem is formulated in terms of simple syntactic criteriaon pairs of programs. To demonstrate the usefulness of this result, we useit to compare the strengths of two families of extended logic programs forcommonsense reasoning about action.1 IntroductionWe would like to be able to characterize the relative strengths of logic pro-grams in terms of simple syntactic features of the programs.In the case of pure Prolog programs (that is, programs without negationas failure and without classical negation), this is not hard to do. For instance,by adding rules to a pure program, we can only make the program stronger.That is, given pure programs P and Q, if P � Q, then clearly program Qentails every ground atom entailed by program P .In fact, we can easily say more about the relative entailments of pureProlog programs. Consider the following partial order on pure programrules. Given pure rules r and r0, we say that r is subsumed by r0 | denotedr � r0 | if and only if the heads of rules r and r0 are identical and the bodyof rule r0 is a subset of the body of rule r. Using this provisional de�nitionof � for rules, we can de�ne a corresponding partial order on pure programs.Given pure programs P and Q, we say that P is subsumed by Q | denotedP � Q | i� for every rule r in program P there is a rule r0 in program Qsuch that r � r0. It isn't hard to see that if P � Q, then program Q entailsevery ground atom entailed by program P .

This fact is an especially simple version of the sort of monotonicity resultwe're after. What we see is that when we add rules to a pure program, theprogram becomes stronger. And also, when we subtract from the bodies ofrules in a pure program, the program becomes stronger.Unfortunately, in the presence of negation as failure, things are no longerso simple. Consider, for instance, the following pair of programs:Program P is:a not bb not cc d; not ed not fe Program Q is:a not bb not cc d; not ed not fe f Program P entails exactly the atoms in fb; d; eg. Program Q entails exactlythe atoms in fb; e; fg. So we add the rule f to program P to getprogram Q, and yet program Q is not stronger than program P . Of coursethis is not surprising: we lose atom d because d \depends negatively" on f ,and we don't lose atom b because b \depends positively" on f . The notionof a signing, de�ned by Kunen in [8] for general programs, makes this ideaprecise.Let � be a general logic program (that is, a program that includes nega-tion as failure but not classical negation). A signing for � is a set S ofground atoms such that, for any ground instanceA0 A1; : : : ; Am; not Am+1; : : : ; not Anof any rule from �, eitherA0; A1; : : : ; Am 2 S;Am+1; : : : ; An =2 Sor A0; A1; : : : ; Am =2 S;Am+1; : : : ; An 2 S: 1As we can see from the symmetry of this de�nition, it is natural to thinkof a signed general program as having two sides or halves, which motivatesthe following de�nition.For a program � with signing S, let �S be the set of all rules whoseheads belong to S, and let �S be the set of all rules whose heads belong tothe complement of S.Returning to example programs P and Q above, we can see that P andQ have a common signing S = fa; c; dg; that is, S is a signing for both P

and Q. So we have PS = QS = 264 a not bc d; not ed not fPS = " b not ce QS = 264 b not ce f The following fact is a special case of the main result of this paper: ifsigned general programs P and Q have a common signing S, and if PS � QSand QS � PS, then P entails every ground atom in S that is entailed by Q,and Q entails every ground atom in S that is entailed by P . We see thatthis theorem is applicable to example programs P and Q above.Once we've extended in a natural way the de�nitions of the partial or-derings � on rules and programs, we can state this fact a bit more generally.As before, we intend that rule r will be subsumed by rule r0 if and onlyif the heads of r and r0 are identical and the body of r0 is \a subset of" thebody of rule r. More precisely, given rules r and r0, we say that r � r0 i�the following three conditions hold:(i) the heads of rules r and r0 are identical,(ii) the set of atoms preceded by not in the body of rule r0 is a subset ofthe set of atoms preceded by not in the body of rule r,(iii) the set of atoms not preceded by not in the body of rule r0 is a subsetof the set of atoms not preceded by not in the body of rule r.Using this de�nition of � for rules, we de�ne as before the correspondingpartial order on programs. Given programs P and Q, we say that P � Qi� for every rule r in program P there is a rule r0 in program Q such thatr � r0.It follows from the main theorem of this paper that if signed generalprograms P and Q have a common signing S, and if PS � QS and QS � PS,then P entails every ground atom in S that is entailed by Q, and Q entailsevery ground atom in S that is entailed by P . Thus, given a general program� with signing S, we know that when we add rules to �S or subtract rulesfrom �S , program � becomes stronger in S. Furthermore, when we subtractfrom the bodies of rules in �S or add to the bodies of rules in �S , � againbecomes stronger in S.Our notion of entailment is based on the answer set semantics [5] (which,in the absence of classical negation, is also known as the \stable model" se-mantics [4]). Dung [2] has proved that, for signed general programs, answer

set semantics and well-founded semantics [11] yield the same (positive) en-tailments.In the next section, we de�ne the notion of a signing for extended logicprograms, that is, programs using both negation as failure and classicalnegation. This de�nition of a signing for extended programs extends Kunen'sde�nition of a signing for general programs.In fact, the particular example motivating this work involves classicalnegation. In the paper \Representing Actions in Extended Logic Program-ming", Gelfond and Lifschitz [7] introduce a simple declarative language fordescribing actions, called A; and they propose a modular translation from Ainto the language of extended logic programming. Their work is presentedin part as an extension of work by Apt and Bezem [1] on representing prop-erties of actions in general logic programs. We will be able to show that thework of Gelfond and Lifschitz indeed extends the work of Apt and Bezem inthe following sense: the programs of Gelfond and Lifschitz always entail atleast as much about the properties of the actions described as do programscomparable to those of Apt and Bezem.In Section 2 of this paper, we generalize the de�nition of a signing andstate precisely the restricted monotonicity theorem for extended programs.In Section 3, we use this result to compare the strengths of two families ofextended logic programs for commonsense reasoning about action. Section4 of this paper presents a theorem concerning the relationship between theanswer set semantics and the well-founded semantics in the case of signedgeneral logic programs. This theorem facilitates the proof of the restrictedmonotonicity theorem, and may be of independent interest as well. The �nalsection of this paper consists of proofs.2 Programs and SigningsWe begin with some standard de�nitions.We use the symbol : to represent classical negation. We use the termliteral to refer to an atom possibly preceded by classical negation.We restrict our attention to propositional programs, considering a rulewith variables as an abbreviation for all of the ground instances of the rule.Therefore, from now on we will refer to ground atoms simply as atoms, andground literals simply as literals.An extended rule is a rule of the formL0 L1; : : : ; Lm; not Lm+1; : : : ; not Ln (1)where all Li (i = 0; : : : ; n) are literals. An extended program is a set ofextended rules.There are two important special cases:A positive rule is a rule of the formL0 L1; : : : ; Lm

where all Li (i = 0; : : : ; m) are literals. A positive program is a set of positiverules.A general rule is a rule of the formA0 A1; : : : ; Am; not Am+1; : : : ; not Anwhere all Ai (i = 0; : : : ; n) are atoms. A general program is a set of generalrules.Let � be an extended program. By atoms(�) we denote the set of atomsthat occur in � (in either negated or non-negated form). By literals(�) wedenote the set of literals occuring in �.Given a rule r as in (1), we de�ne the following: head(r) = fL0g, pos(r) =fL1; : : : ; Lmg, and neg(r) = fLm+1; : : : ; Lng. We will refer to the expressionsnot Lm+1; : : : ; not Ln as the negative subgoals of rule r.A set B of literals is closed under the rules of positive program � if8r 2 � : pos(r) � B) head(r) \B 6= ;.A set B of literals is logically closed with respect to a program � if eitherB contains no complementary literals or B = literals(�).For a positive program �, a set B of literals is an answer set for � i� Bis a minimal set of literals closed under � and logically closed w.r.t �. Wedenote by �� the (unique) answer set for positive program �.For an extended program � and a set of literals X , the reduct operatorX 7! �X transforms program � into the positive program �X obtained from� by �rst deleting every rule r 2 � such that neg(r) \X 6= ;, and then, foreach remaining rule r 2 �, deleting all the negative subgoals of r.A set B of literals is an answer set for an extended program � i� B =��B . An extended program � entails exactly those literals in literals(�)that are included in every answer set for �.Now we introduce a few new de�nitions, including the de�nition of asigning for extended programs. Then we will be able to state the maintheorem of this paper.De�nition. Given rules r and r0,r � r0 i� head(r0) = head(r) and pos(r0) � pos(r) and neg(r0) � neg(r) :De�nition. Given logic programs P and Q,P � Q i� for each rule r 2 P there is a rule r0 2 Q such that r � r0 :De�nition. A set S of atoms is a signing for an extended logic program �if no atom in S appears negated in literals(�) and8r 2 � : �head(r) [pos(r) � S ^ neg(r) � S�_ �head(r) [pos(r) � S ^ neg(r) � S� ;where S denotes the complement of S with respect to the set of all literals.

The following extended program P has a signing S = fbg:a not b;b not a;:a :Observe that fa;:ag is not a signing for program P , since :a is not an atom.Neither is fag a signing for P , since :a 2 literals(P). And in general, thede�nition of a signing for extended programs is asymmetric in the followingsense: if a set S of atoms is a signing for a program � that includes classicalnegation, the set of atoms in S will not be a signing for �, because someatom in S will appear negated in literals(�). For general programs though,the de�nition is symmetric; that is, if S is a signing for a general program�, then the set of atoms in S will also be a signing for �. For generalprograms, this de�nition is equivalent to Kunen's. Before we demonstratewhy this asymmetry is useful, we state formally the restricted monotonicitytheorem for extended programs:Theorem 1 For extended logic programs P and Q with common signing S,if PS � QS and QS � PS and literals(P) \ S � literals(Q) \ S,then program Q entails every literal in S that is entailed by program P .Now, of course, when we wish to generalize the concept of a signing tothe class of extended programs, the �rst possibility we consider is simplyto employ Kunen's de�nition, but applied now to literals instead of atoms.Unfortunately, under this straightforward, symmetric generalization of thede�nition, the restricted monotonicity property for signed programs does nothold. The following pair of extended programs illustrates this shortcoming:Program P is:a not :b;:a not b;b not a; not c;:b not a;c not b: Program Q is:a not :b;:a not b;b not a; not c;:b not a;c not b;b :Program P has a single answer set, f:a;:b; cg. Program Q has a single an-swer set, fa; bg. Clearly we'd be hard-pressed to identify monotonicity here.Yet under the hypothetical, symmetric de�nition of a signing for extendedprograms, the set S = fa;:a; cg would be a common signing for programsP and Q, in which case the monotonicity theorem would be falsi�ed.3 Restricted Monotonicity in Logic Programs forCommonsense Reasoning About ActionIn the paper \Representing Actions in Extended Logic Programming", Gel-fond and Lifschitz [7] introduce a simple declarative language for describing

actions, called A; and they propose a modular translation from A into thelanguage of extended logic programming. Their work is presented in part asan extension of work by Apt and Bezem [1] (among others) on representingproperties of actions in general logic programs.Given Theorem 1, we can easily show that the work of Gelfond andLifschitz indeed extends the work of Apt and Bezem in the following sense:the programs of Gelfond and Lifschitz always entail at least as much aboutthe properties of the actions described as do programs comparable to thoseof Apt and Bezem.In the language A, a description of an action domain is a set D of propo-sitions of two kinds: value-propositions | which specify the value of a uentin a particular situation; and e�ect-propositions | which describe the e�ectof an action on a uent.We will briey describe the syntax of A. As for the semantics of A, wesimply remark that they are based in a straightforward manner on deter-ministic �nite automata, and that the results of this semantics are generallyintuitive. (See [7] for the full story.)Begin with two disjoint non-empty sets of symbols, called uent namesand action names. A uent expression is a uent name possibly precededby :. A value-proposition is an expression of the form F after A1; : : : ;Am,where F is a uent expression, and A1; : : : ; Am (m � 0) are action names. Ifm = 0, we write instead initially F . An e�ect-proposition is an expressionof the form A causes F if P1; : : : ; Pn, where A is an action name, andeach of F; P1; : : : ; Pn (n � 0) is a uent expression. About this propositionwe say that it describes the e�ect of A on F , and that P1; : : : ; Pn are itspreconditions. If n = 0, we drop if and write simply A causes F .Now, if we're interested only in temporal projection problems, in whichthe given value-propositions refer only to the initial situation, then we canspecify a very simple translation from domain descriptions D in the languageof A into extended logic programs �forwardD . And although of course thework of Apt and Bezem was not presented as a translation from the languageA and did not use classical negation, the programs �forwardD correspondnicely to the general logic programs that Apt and Bezem proposed.Thus, for each domain D there is an extended program �forwardD whichconsists of a single rule for each value-proposition in D, a pair of rulesfor each e�ect-proposition in D, and a standard pair of rules expressinginertial properties. In specifying this translation, we rely on the followingconvention: for any uent name G and situation term t, Holds(:G ; t) standsfor :Holds(G ; t).A value-proposition of the form initially F is translated into the ruleHolds(F; S0) : (2)A value-proposition of the form F after A1; : : : ;Am is translated into therule Holds(F;Result(Am;Result(Am�1; : : : ;Result(A1; S0) : : :))) : (3)

An e�ect-proposition of the form A causes F if P1; : : : ; Pn is translated intotwo rules. The �rst of them isHolds(F;Result(A; s)) Holds(P1; s); : : : ;Holds(Pn; s): (4)The second rule isNoninertial(jF j; A; s) not Holds(P1; s); : : : ; not Holds(Pn; s); (5)where Holds(Pi; s) is the literal complementary to Holds(Pi; s), and wherejF j is the uent name corresponding to the uent expression F .Finally, the translation �forwardD includes two inertial rules:Holds(f;Result(a; s)) Holds(f; s); not Noninertial(f; a; s)::Holds(f;Result(a; s)) :Holds(f; s); not Noninertial(f; a; s): (6)Observe that all of the rules in �forwardD are apparently intended for rea-soning forward in time.Suppose instead that we wish to reason about domains in which thegiven value-propositions may refer to non-initial situations. Faced with suchdomains, we may wish to formulate additional rules intended for reasoningbackward in time. To this end, Gelfond and Lifschitz proposed their transla-tion from domain descriptions D into extended programs �D. Each program�D is a superset of the corresponding program �forwardD . So, in additionto the rules in �forwardD , we include the following backward reasoning rulesin program �D:For an e�ect-proposition of the form A causes F if P1; : : : ; Pn, we addfor each i, 1 � i � n, the credit assignment ruleHolds(Pi; s) Holds(F; s);Holds(F;Result(A; s)): 2 (7)and the blame assignment ruleHolds(Pi; s) Holds(F;Result(A; s));Holds(P1; s); : : : ;Holds(Pi�1; s);Holds(Pi+1; s); : : : ;Holds(Pn; s): (8)We also include in �D another pair of inertial rules:Holds(f; s) Holds(f;Result(a; s)); not Noninertial(f; a; s)::Holds(f; s) :Holds(f;Result(a; s)); not Noninertial(f; a; s): (9)On the one hand, it may seem intuitively clear that, for any domain descrip-tion D in the language of A, program �D should entail at least as manyHolds and :Holds literals as does program �forwardD . On the other hand,such an assertion needs a proof. And in fact, it is likely that this intuition isbased on experience with monotonic formalisms, which may be misleadinghere.

For us, the question about relative entailments of these two translationsfrom the language of A arose particularly in response to the following simpledomain description D: initially :FA causes F if GEven though this is a temporal projection problem, in which the given value-propositions refer only to the initial situation, it nevertheless happens thatthe additional rules in �D for reasoning backward in time still a�ect themeaning of the program. Thus, program �D has two answer sets, whileprogram �forwardD has just one answer set.The program �forwardD is::Holds(F; S0) :Holds(F;Result(A; s)) Holds(G; s):Noninertial(F;A; s) not :Holds(G; s):Holds(f;Result(a; s)) Holds(f; s); not Noninertial(f; a; s)::Holds(f;Result(a; s)) :Holds(f; s); not Noninertial(f; a; s):Program �forwardD has a single answer set consisting of :Holds(F; S0) andall ground instances of Noninertial(F;A; s).3By comparison, program �D is::Holds(F; S0) :Holds(F;Result(A; s)) Holds(G; s):Noninertial(F;A; s) not :Holds(G; s):Holds(G; s) :Holds(F; s); Holds(F;Result(A; s))::Holds(G; s) :Holds(F;Result(A; s)):Holds(f;Result(a; s)) Holds(f; s); not Noninertial(f; a; s)::Holds(f;Result(a; s)) :Holds(f; s); not Noninertial(f; a; s):Holds(f; s) Holds(f;Result(a; s)); not Noninertial(f; a; s)::Holds(f; s) :Holds(f;Result(a; s)); not Noninertial(f; a; s):Program �D has two answer sets. One consists of :Holds(F; S0) and allground instances of Noninertial(F;A; s). The other consists of all groundinstances of :Holds(F; s) and :Holds(G; s).4Despite the unanticipated result in this speci�c case, we have the follow-ing satisfactory general result comparing the entailments of the programs�D and �forwardD for arbitrary domains D:Proposition 1 Given any domain description D in the language of A, theextended logic program �D entails at least every Holds ground literal andevery :Holds ground literal entailed by the extended logic program �forwardD .

Proof.Let D be a domain description in the language of A.Let S = fb : b is a Noninertial atom in literals(�D)g.Clearly S is a common signing for extended programs �forwardD and �D.It is also clear that (�forwardD)S � (�D)S and that (�D)S = (�forwardD)S .Therefore, we have (�forwardD)S � (�D)S and (�D)S � (�forwardD)S .Finally, it is clear that literals(�forwardD) \ S � literals(�D)\ S.Thus, by Theorem 1, �D entails at least every ground literal in S that isentailed by �forwardD .24 Answer Set and Well-Founded SemanticsWe exploit in this paper the close relationship between the answer set se-mantics for general logic programs [4] and the well-founded semantics forgeneral logic programs [11]. This section restates in a form convenient forour purposes a number of previously-known results in the declarative seman-tics of general logic programs. At the close of this section, we state a newresult for signed general programs.In this section, � stands for any general logic program. Recall that a setB of ground atoms is an answer set for � i� B = ��B .Let �X = ��X . Observe that the answer sets of � can be characterizedas the �xpoints of �. It is easy to see that � is anti-monotone. Consequently,�2 is monotone. Because �2 is monotone, we know by the Knaster{Tarskitheorem [10] that �2 has a least �xpoint, lfp(�2), and a greatest �xpoint,gfp(�2).Let WF?(�) denote lfp(�2); and let WF>(�) denote gfp(�2). Thesetwo sets | WF?(�) and WF>(�) | capture essential information aboutthe well-founded semantics of a general program �. That is, under thewell-founded semantics, when a ground atom b is submitted as a query: theanswer is \yes" when b 2WF?(�); \unknown" when b 2WF>(�)nWF?(�);and \no" when b =2WF>(�).For all answer sets X for �,WF?(�) � X �WF>(�);because each �xpoint of � is a �xpoint of �2. This fact indicates that thewell-founded semantics can be seen as an approximation to the answer setsemantics, identifying lower and upper bounds on the answer sets for a gen-eral program. As we will see in Theorem 2 and the remainder of this paper,the relationship between the answer set semantics and the well-founded se-mantics grows even closer in the case of signed programs.

Theorem 2 For a general program � with signing S, the following areamong the answer sets for �:(i) WF?(�) [(WF>(�) \ S)(ii) WF?(�) [(WF>(�) \ S) :Theorem 2 is of particular interest because it gives a direct character-ization, in terms of the well-founded semantics, of two (possibly identical)answer sets for any signed general program. As we will see, this character-ization facilitates the proof of Theorem 1. In fact, these are the two mostimportant answer sets of a signed general program �, in the sense that �entails exactly their intersection. So we see, as has been established pre-viously in [2], that a signed general program � entails exactly the groundatoms included in WF?(�).5Theorem 2 also provides an unusually direct proof of another previouslyestablished result: a signed general logic program has at least one answerset. A closely related proof of the existence of answer sets for signed generalprograms is presented in [7]. There the authors de�ne a monotone operator �associated with each signed general program � and show that every �xpointof � corresponds to an answer set for �. In particular, it turns out thatlfp(�) corresponds to WF?(�) [(WF>(�) \ S), and gfp(�) corresponds toWF?(�) [(WF>(�) \ S). In [3], Fages establishes the existence of answersets for a much larger class of general logic programs. Fages shows thatorder-consistent general programs have answer sets.6Observe that a signed general program may have additional answer setsthat do not correspond, in the manner of Theorem 2, to any signing for theprogram. For example, fa; dg is among the answer sets for the followingsigned program: a not b;b not a;c not b; not d;d not c:5 ProofsWe begin with the proof of Theorem 2, which uses the following lemma:Lemma 1 For a general program � with signing S,(i) ��X = ��X\SS [��X\SS(ii) ��X \ S = ��X\SS(iii) ��X \ S = ��X\SS :Proof. Observe that � = �S [�S . Thus, by the de�nition of the reductoperator, we have �X = (�S [�S)X = �XS [�XS .

By the de�nition of a signing, we know that 8r 2 �S : neg(r) � S . So�XS = �X\SS . Likewise, �XS = �X\SS . Also by the de�nition of a signingwe have 8r 2 �S : head(r) [pos(r) � S . So again by the de�nition ofthe reduct operator, atoms(�X\SS) � S, and clearly, ��X\SS � S. Likewise,atoms(�X\SS) � S, and ��X\SS � S.Given these observations, it is easy to verify that ��X = � ��X\SS [�X\SS � =��X\SS [��X\SS , with ��X \ S = ��X\SS and ��X \ S = ��X\SS .2Theorem 2 For a general program � with signing S, the following areamong the answer sets for �:(i) WF?(�) [(WF>(�) \ S)(ii) WF?(�) [(WF>(�) \ S) :Proof. We give a proof for (i); (ii) follows by symmetry, because if S is asigning for a general logic program �, then so is S.Let A = WF?(�)[�WF>(�) \ S�. Observe that A\S = WF?(�)\S andA\ S = WF>(�)\ S. We will show that A = �A, which is to say that A isan answer set for �.Now, because WF>(�) a �xpoint of �2, we know that � (WF>(�)) is alsoa �xpoint of �2. Therefore, by the anti-monotonicity of �, along with thefact that WF?(�) and WF>(�) are the least and greatest �xpoints of �2,we can conclude that WF?(�) = � (WF>(�)).By the de�nition of �, � (WF>(�)) = ��WF>(�).Thus, by Lemma 1(ii), we have �(WF>(�)) \ S = ��WF>(�)\SS .Combining these observations,A \ S = WF?(�) \ S= � (WF>(�)) \ S= ��WF>(�)\SS= ��A\SS :By symmetric reasoning, we have A\S = ��A\SS . Finally, by the de�nitionof � and Lemma 1(i), along with the foregoing observations,�A = ��A\SS [��A\SS= (A \ S) [(A \ S)= A:2Now we begin the proof of Theorem 1, which relies on the following restrictedmonotonicity theorem for signed general programs:

Theorem 3 For general programs P and Q with common signing S,if PS � QS and QS � PS, then WF?(P) \ S �WF?(Q) \ S.Because the set of atoms in S will also be a common signing for generalprograms P and Q, we have:Corollary 1 For general programs P and Q with common signing S,if PS � QS and QS � PS, then WF?(P) \ S �WF?(Q) \ S.Our proof of Theorem 3 requires a number of lemmas.Lemma 2 Let P and Q be general programs. Let X and Y be sets of atoms.If P � Q and Y � X, then PX � QY .Proof.By the de�nition of � for programs, we have 8r 2 P : 9r0 2 Q : r � r0 .Applying the de�nition of � for rules, this gives us8r 2 P : 9r0 2 Q : head(r0) = head(r) ^ pos(r0) � pos(r) ^ neg(r0) � neg(r):In particular, given the set of atoms X , with P � Q, what's important incomparing the reducts PX and QX is the following observation:8r 2 P : neg(r)\X = ;) 9r0 2 Q : neg(r0) \X = ; ^ head(r0) = head(r)^ pos(r0) � pos(r) :Therefore, we conclude that for any set of atoms X , P � Q) PX � QX :And since Y � X , we know by the anti-monotonicity of the reduct operatorthat QX � QY , which implies that QX � QY . Thus, because � is clearlytransitive, we have PX � QY .2Lemma 3 Let P and Q be positive general programs.If P � Q, then �P � �Q.Proof. Obvious from the de�nitions, since positive general programs behavemonotonically. 2Now we introduce a useful pair of monotone operators:Let � be a general program with signing S.Let ��SX = ����XSS , and let ��SX = ����XSS .Lemma 4 The operators ��S and ��S are monotone.Proof. By the monotonicity of � and the anti-monotonicity of the reductoperator. 2

Lemma 5 X is a �xpoint of �2 i� X \ S is a �xpoint of ��S and X \ S isa �xpoint of ��S .Proof. By the de�nition of �, we have �X = ��X .By Lemma 1(ii), �X \S = ��X\SS , and by Lemma 1(iii), �X \S = ��X\SS .Again by the de�nition of �, �2X = ���X . And again by Lemma 1(ii),�2X \ S = ���X\SS , and by Lemma 1(iii), �2X \ S = ���X\SS .So to sum up, �2X \ S = ���X\SS = ����X\SSS = ��S (X \ S).Likewise, �2X \ S = ���X\SS = ����X\SSS = ��S (X \ S).Therefore we can conclude�2X = X i� �2X \ S = X \ S and �2X \ S = X \ Si� ��S (X \ S) = X \ S and ��S (X \ S) = X \ S:2Lemma 6 lfp(��S) = WF?(�) \ SProof. By Lemma 4, the operators ��S and ��S are monotone, so bythe Knaster-Tarski theorem each has a least and greatest �xpoint. SinceWF?(�) is a �xpoint of �2, it follows by Lemma 5 that WF?(�) \ Sis a �xpoint of ��S . It remains to show that for any �xpoint X of ��S ,WF?(�) \ S � X . So let X � S be a �xpoint of ��S , and let Y � S be a�xpoint of ��S . By Lemma 5, X [Y is a �xpoint of �2. But by de�nition,WF?(�) is the least �xpoint of �2. So WF?(�) � X [Y , and thereforeWF?(�) \ S � (X [Y) \ S = X . 2Lemma 7 Let P and Q be general programs with common signing S.Let X be a set of atoms. Let �PSX = �P�PXSS ; let �QSX = �Q�QXSS .If PS � QS and QS � PS, then �PSX � �QSX.Proof. By Lemma 2, since QS � PS , we know that QXS � PXS . So byLemma 3 we have �QXS � �PXS . Again by Lemma 2, since PS � QS and�QXS � �PXS , we can conclude that P�PXSS � Q�QXSS . And once more byLemma 3, we have �P�PXSS � �Q�QXSS ; that is to say, �PSX � �QSX .2Now we're ready to prove Theorem 3.Proof. (of Theorem 3)Let P and Q be general programs with joint signing S, such that PS � QSand QS � PS . We wish to show that WF?(P) \ S �WF?(Q) \ S.

Let �PSX = �P�PXSS ; and let �QSX = �Q�QXSS . By Lemma 4, �PS and �QS aremonotone.By Lemma 6, lfp(�PS) = WF?(P) \ S and lfp(�QS) = WF?(Q) \ S.By the Knaster-Tarski theorem, the least �xpoint of a monotone operator isalso the least pre-�xpoint of that operator, which coincides with the inter-section of all pre-�xpoints of the operator. Therefore,WF?(P) \ S = \�PSX�XX and WF?(Q) \ S = \�QSX�XX :Thus, in order to demonstrate that WF?(P) \ S � WF?(Q) \ S, it issu�cient to demonstrate that each pre-�xpoint of �QS is also a pre-�xpointof �PS . That is, we must show that �QSX � X) �PSX � X . So, assumethat �QSX � X . By Lemma 7 we can conclude that �PSX � �QSX . Itfollows that �PSX � X .2Before we go on to prove Theorem 1, we must introduce a few more de�-nitions and observations relating extended logic programs to their generalcounterparts.We say that a set B of literals is consistent if B doesn't contain a comple-mentary pair of literals. An extended logic program � is consistent if � hasan answer set B that is consistent.Given a set B of literals, we de�ne a corresponding set of atomsB+ = fb : b is a non-negated atom in Bg [fb0 : b is a negated atom in Bg :The intention here is that the b0 atoms will be new to the language. So weuse the prime symbol to create new atoms. Given a set B of atoms, wede�ne a corresponding set of literals B� = fb : b 2 Bg [f:b : b0 2 Bg :We say that a set of atoms B+ contains a bad pair if there is a b 2 B suchthat both b,b0 2 B+. Note that B+ contains a bad pair if and only if B isinconsistent.Given an extended logic program �, we de�ne the corresponding generalprogram �+ as the program that results from replacing each literal in �with its corresponding atom in (literals(�))+.For an extended program �, let LB(�) denote (WF?(�+))�; and let UB(�)denote (WF>(�+))�.Finally, note that if S is a signing for extended program �, then S is also asigning for �+.Proposition 2 Let � be an extended program.(i) Program � is consistent i� �+ has an answer set that contains no badpairs.

(ii) If � is consistent, then B is an answer set for � i� B+ is an answerset for �+ and B+ contains no bad pairs.(iii) If � is not consistent, then literals(�) is the only possible answer setfor �.Proof. Immediate by the de�nitions and Proposition 2 of [6]. 2Lemma 8 Let � be an extended program with signing S.Program � is consistent i� LB(�) \S is consistent.Proof. Let A+ be the set WF?(�+)[(WF>(�+)\S). Note that A+ \S =WF?(�+) \ S and that A \ S = LB(�) \ S. By Theorem 2, we know thatA+ is among the answer sets for �+. It is well-known that for all answer setsX of �+, WF?(�+) � X �WF>(�+); and therefore A+ \ S � X \ S. Weknow by the de�nition of a signing for extended programs that for any badpair fb; b0g � atoms(�+), fb; b0g � S. So we can conclude that �+ has ananswer set that contains no bad pairs i� A+\S contains no bad pairs. Thatis to say, �+ has an answer set that contains no bad pairs i� LB(�) \ S isconsistent. By Proposition 2(i), � is consistent i� �+ has an answer set thatcontains no bad pairs. Therefore, � is consistent i� LB(�)\S is consistent.2Lemma 9 Let � be a consistent extended program with signing S.Program � entails exactly those literals in S that are included in LB(�).Proof. Again, let A+ be the set WF?(�+) [(WF>(�+) \ S). Note thatA = LB(�)[(UB(�)\S) and that A\S = LB(�)\S. In the proof of Lemma8 we showed that A+ contains no bad pairs. Therefore, by Proposition 2(ii),A is among the answer sets for �. It is easy to show that for all answer setsX of �, LB(�) � X ; so A\S � X \S. Thus � entails exactly those literalsin S that are included in LB(�) \ S.2Lemma 10 If � is an inconsistent extended program, then program � en-tails exactly all the literals included in literals(�).Proof. By Proposition 2(iii) and the de�nition of entailment for extendedprograms. 2Finally we're ready to prove Theorem 1.Theorem 1 For extended programs P and Q with common signing S,if PS � QS and QS � PS and literals(P) \ S � literals(Q) \ S,then Q entails every literal in S that is entailed by P .

Proof.Clearly, P+ and Q+ are general programs with common signing S. Also, itis easy to see that PS � QS) P+S � Q+S and that QS � PS) Q+S � P+S . Soby Corollary 1, WF?(P+)\S �WF?(Q+)\S. Therefore, by the de�nitionof LB, we have LB(P) \ S � LB(Q) \ S.Consider two cases:Case 1: Program Q is consistent.Because Q is a consistent extended program with signing S, we know byLemma 8 that LB(Q) \ S is consistent. Since LB(P) \ S � LB(Q) \ S,we know that LB(P) \ S is also consistent. Therefore, again by Lemma8, program P is consistent. By Lemma 9, because programs P and Q areconsistent, program P entails exactly those literals in S that are includedin LB(P) \ S, and program Q entails exactly those literals in S that areincluded in LB(Q)\S. So the theorem is proved for the case when programQ is consistent.Note that for this case we needn't require that literals(P)\S be a subset ofliterals(Q) \ S.Case 2: Program Q is not consistent.In this case, by Lemma 10, program Q entails exactly all the literals includedin literals(Q). SoQ entails exactly all the literals in S that are in literals(Q)\S. By the de�nition of entailment for extended programs, we know thatprogram P can entail at most every literal in literals(P), so P can entailat most those literals in S that are included in literals(P) \ S. And sinceliterals(P) \ S � literals(Q) \ S, the theorem is proved for the case whenprogram Q is not consistent.2Notes1. This is slightly di�erent from the original de�nition in [8].2. In [7], the soundness of �D is proved with respect to the semantics ofA forconsistent domain descriptions D without similar e�ect-propositions, wheretwo e�ect-propositions are similar if they di�er only in their preconditions.The restriction to domains without similar e�ect-propositions maintains thesoundness of the credit assignment rules (7).3. For convenience of exposition, we've implicitly assumed a sorted languagefor �forwardD ; and by \all ground instances" we mean all ground instancesof the appropriate sorts in the language of �forwardD .4. That is, all ground instances of the appropriate sorts in the language of�D.

5. Dung [2] proved this for a larger class of general programs | the bottom-strati�ed & top-strict programs | which subsumes the signed general pro-grams.6. The class of order-consistent programs was �rst de�ned by Sato in [9],where it is shown that such programs have a consistent completion. Fages'proof in [3] relies crucially on Sato's result in completion semantics. [2]includes a similar, somewhat less general, result.AcknowledgmentsMy profound thanks to Vladimir Lifschitz for fundamentally enabling thiswork. Thanks to Norman McCain for careful reading and comments on adraft of this paper. Thanks also to one of the anonymous referees for severaluseful, speci�c criticisms and questions. This work was partially supportedby National Science Foundation under grant IRI-9101078.References[1] Krzysztof Apt and Marc Bezem. Acyclic programs. In David Warrenand Peter Szeredi, editors, Logic Programming: Proc. of the SeventhInt'l Conf., pages 617{633, 1990.[2] Phan Minh Dung. On the relations between stable and well-foundedsemantics of logic programs. Theoretical Computer Science, 105:7{25,1992.[3] Fran�cois Fages. Consistency of Clark's completion and existence ofstable models. Technical report, Ecole Normale Sup�erieure, 1990. Toappear in Methods of Logic in Computer Science.[4] Michael Gelfond and Vladimir Lifschitz. The stable model semantics forlogic programming. In Robert Kowalski and Kenneth Bowen, editors,Logic Programming: Proc. of the Fifth Int'l Conf. and Symp., pages1070{1080, 1988.[5] Michael Gelfond and Vladimir Lifschitz. Logic programs with classicalnegation. In David Warren and Peter Szeredi, editors, Logic Program-ming: Proc. of the Seventh Int'l Conf., pages 579{597, 1990.[6] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic pro-grams and disjunctive databases. New Generation Computing, 9:365{385, 1991.

[7] Michael Gelfond and Vladimir Lifschitz. Representing actions in ex-tended logic programming. In Krzysztof Apt, editor, Proc. Joint Int'lConf. and Symp. on Logic Programming, pages 559{573, 1992.[8] Kenneth Kunen. Signed data dependencies in logic programs. Journalof Logic Programming, 7(3):231{245, 1989.[9] Taisuke Sato. Completed logic programs and their consistency. Journalof Logic Programming, 9:33{44, 1990.[10] Alfred Tarski. A lattice-theoretical �xpoint theorem and its applica-tions. Paci�c Journal of Mathematics, 5:285{309, 1955.[11] Allen Van Gelder, Kenneth Ross, and John Schlipf. The well-foundedsemantics for general logic programs. Journal of ACM, pages 221{230,1990.

