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Abstract

This paper explores mathematical relationships
between the “causal theories” formalism re-
cently introduced by the authors and several
other (well-known) formalisms. More specifi-
cally, it relates causal theories to default logic
and autoepistemic logic, and describes trans-
lations back and forth between causal theories
and classical propositional logic. It also relates
action representations in causal theories to two
previous causality-based proposals, due to Lin
and to the authors.

1 Introduction

Applications to reasoning about action have motivated
much of the work on nonmonotonic formalisms. This is
particularly true of the “causal theories” formalism dis-
cussed in this paper. This mathematically simple sys-
tem, based on causality, is introduced in a companion
paper [McCain and Turner, 1997] which emphasizes un-
derlying motivations and applications to commonsense
knowledge about actions. By contrast, the current, com-
plementary paper concentrates on mathematical issues.

Much work has been done on establishing connections
between different logical formalisms, and different ap-
proaches to representing actions in those formalisms.
The current paper continues this direction of research,
relating causal theories to two well-known nonmonotonic
formalisms — default logic and autoepistemic logic —
and to classical propositional logic. It also relates the
representation of commonsense knowledge about actions
in causal theories to two previous, closely related ap-
proaches [Lin, 1995; McCain and Turner, 1995].

The models of causal theories are interpretations, in
the sense of propositional logic. They assign a truth
value to every atom, and in this sense they are “com-
plete.” In contrast, default logic and autoepistemic
logic are characterized by “models” that are, in gen-
eral, roughly speaking, “incomplete.” We will show that
causal theories are mathematically equivalent to syntac-
tically restricted subsets of default logic and autoepis-
temic logic, in the special case when we consider only
“models” that are consistent and “complete.”

Causal theories can also be translated into classical
propositional logic. In one translation, applicable to a
syntactically restricted class of causal theories, the re-
sulting classical propositional theories are of comparable
size. In another, more generally applicable, translation
— obtained indirectly through a translation into second-
order propositional logic — the resulting theories are ex-
ponentially larger. (This translation assumes only that
the signature of the language and the causal theory it-
self are finite.) Conversely, there is a simple translation
of classical propositional theories into causal theories,
in which the resulting causal theories are of compara-
ble size. These complementary embeddings show that
the two formalisms are equivalent (when we restrict our
consideration to finite signatures and theories).

The approach to representing actions in causal the-
ories described in the companion paper [McCain and
Turner, 1997) is closely related to a proposal by Lin
[1995] which is based on a similar form of causal knowl-
edge. We establish a precise sense in which the two pro-
posals agree on the possible results of performing an ac-
tion in a given state. We consider this question also
in regard to the proposal in [McCain and Turner, 1995],
which is based on causal knowledge of a slightly different
form.

2 Preliminary Definitions
We begin with a language of propositional logic, which
includes the zero-ary logical connectives True and False.!
A literal is an atom or its negation. We will identify each
interpretation with the set of literals true in it.

We write inference rules as expressions of the form

¢

(G

where ¢ and 1 are formulas. We often find it convenient
to identify a formula ¢ with the inference rule

True

¢

Let R be a set of inference rules and I' a set of formulas.

We say I is closed under R if for all % e R ifgpel

! True and — False are tautologies in which no atoms occur.



then ¢ € T. By Cn(R) we denote the least logically
closed set of formulas that is closed under R. Notice
that Cn(T') = {¢ : T | ¢}. Notice also that the set of

formulas true in an interpretation I is Cn(I).

2.1 Default Logic

Default logic is due to Reiter [1980]. A default rule is an
expression of the form

o Bla"'aﬁn
v
where all of a, 81, .. ., Bn, v are formulas (n > 0). Let r be

such a default rule. By pre(r) we denote «, by just(r) we
denote the set { 51, ..., 80}, and by cons(r) we denote 7.

If pre(r) = True we often omit it, writing ~Zlae2ln

instead. Such rules are called prerequisite-free. If just(r)
is empty, we often find it convenient to identify r with
the inference rule £.

A default theory is a set of default rules. A default
theory is prerequisite-free if all of its rules are. Let D be
a default theory and let E be a set of formulas. By DF
we denote the following set of inference rules.

pre(r)
cons(r)
We say F is an extension of D if

E = Cn(D¥).

r € D and for all ﬁejust(r),—'ﬁgéE}

We say E is complete if there 1s an interpretation I such
that £ = Cn(I). We will be particularly interested in
complete extensions of prerequisite-free default theories.

2.2 Autoepistemic Logic

Autoepistemic (AE) logic is due to Moore [1985]. Syn-

tactically, it is a modal logic, with modal operator B.
We can take AE structures to be pairs (I, 5), where T

is an interpretation and S is a set of interpretations [Lif-

schitz and Schwarz, 1993]. We define the truth of a AE

formulain a AE structure (I,5) as follows.

(1, S)':p iff pel, pisan atom
(IS)Fos o (LS

5 Eane g (1) E 6 and (1.5) 0
(I,S) E B¢ iff foralll’ €S, (I',S) ¢

Let T be an autoepistemic theory. A set S of inter-
pretations is an AF model of T if

S={I:(I,S)=T}.

We say that S is complete if there is an interpretation /
such that S = {I}. We will be particularly interested in
complete AE models of autoepistemic theories.

3 Causal Theories

We begin with brief informal motivation. (For a more
adequate account of the intuitions underlying causal the-
ories, please see the companion paper.)

Intuitively, a “causally possible” world history is one
that conforms to the true causal laws, i.e., one in which
every fact that is caused (according to the true causal
laws) obtains. We strengthen this idea by assuming the
principle of unwversal causation, according to which ev-
ery fact that obtains is caused.? Thus, we can say that
a causally possible world history is one in which exactly
the facts that obtain are caused.

Now assume that D is a complete description of the
conditions under which facts are caused. In this case,
we can say that a causally possible world history is one
in which the facts that obtain are exactly those that are
caused according to D. This is the key to understanding
the formal definitions that follow. Notice that we make
two assumptions: the principle of universal causation
and the completeness of D.

3.1 Syntax

By a causal law we mean an expression of the form

¢ = (1)

where ¢ and ¢ are formulas of the underlying propo-
sitional language. By the antecedent and consequent
of (1), we mean the formulas ¢ and v, respectively. Note
that (1) is not the material conditional ¢ D .

The intended reading of (1) is: Necessarily, if ¢ then
the fact that ¢ 1s caused. Often, but not always, we write
(1) because we know something more, namely: The fact
that ¢ causes the fact that 1. The term “causal law” 1s
suggested by this practice.

By a causal theory we mean a set of causal laws.

3.2 Semantics

For every causal theory D and interpretation I, let

L= {4 : forsome ¢, ¢ = eDandl=¢}.

That is, D! is the set of consequents of all causal laws
in D whose antecedents are true in I. Intuitively then,
D' entails exactly the formulas that are caused to be
true in I according to D.

Main definition. Let D be a causal theory, and I be
an interpretation. We say that [ 1s causally explained
according to D if I is the unique model of D',

Intuitively, when D describes an action domain, the
causally explained interpretations according to D corre-
spond to the causally possible world histories.

We have the following alternative characterization. An
interpretation [ is causally explained according to D if
and only if for every formula ¢

IE¢ iff D'Eo.

Thus, intuitively, I is causally explained according to D
if and only if the formulas that are true in I are exactly

2This rather strong philosophical commitment is rewarded
by mathematical simplicity in the main definition of causal
theories. Moreover, in applications it is easily relaxed. (See
the companion paper.)



the formulas that are caused to be true in I according
to D. Notice that this condition can also be written as

Cn(l) = Cn(DI).

4 Causal Theories as Default Theories

We translate a causal theory D into a prerequisite-free
default theory d(D) as follows.

d(D):{%:(bil/}ED}

The following theorem shows that the causally explained
interpretations according to causal theory D correspond
to the complete extensions of default theory d(D).

Theorem 4.1 An interpretation I is causally explained
according to a causal theory D if and only if Cn(I) is an
extension of the default theory d(D).

Proof. It is easy to verify that for any interpretation 1
Cn (DT) = Cn (d(D) D)

which is sufficient to establish the theorem. O

5 Causal Theories as Autoepistemic
Theories

We translate a causal theory D into an autoepistemic
theory ae(D) as follows.

ae(D)={B¢D¢ : ¢ >y €D}

The following theorem shows that the causally explained
interpretations according to causal theory D correspond
to the complete AE models of AE theory ae(D).

Theorem 5.1 An interpretation I is causally explained
according to a causal theory D if and only if {I} is an
AE model of the autoepistemic theory ae(D).

Proof. Notice that for any nonmodal formulas ¢ and

' AIN)EBoDV iff IE¢orl Ev.
It follows that

(I' AI}) £ ae(D) iff I' = D!,

So{I}={I: (I',{I}) E ae(D) } if and only if I is the
unique model of DT. a

6 Causal Theories as Classical Theories

We specify two translations of causal theories into theo-
ries of classical propositional logic. The first translation,
applicable to a syntactically restricted class of causal the-
ories, 1s an elaboration of the Clark completion method
[Clark, 1978]. The second, due to Vladimir Lifschitz
[1997], is obtained indirectly by means of a translation
into second-order propositional logic. We also specify
a translation of classical propositional logic into causal
theories.

6.1 Literal Completion

Let D be a causal theory in which () the consequent
of every causal law is a literal, and (i) every literal is
the consequent of finitely many causal laws. By the lit-
eral completion of D we mean the classical propositional
theory obtained as follows: For each literal L in the lan-
guage of D, include the formula

L=(¢1V---Vay)

where ¢1, ..., ¢, are the antecedents of the causal laws
with consequent .. We call this formula the character-
istic formula of L.

Theorem 6.1 Let D be a causal theory that satisfies
conditions (1) and (ii) above. The causally explained in-
terpretations according to D are precisely the models of
its literal completion.

Proof. Due to the first restriction on the form of D, we
know that 7 is causally explained according to D if and
only if 7 = DY. Assume I = D!. Then for every L € I

e there is a causal law ¢ = Lin D s.t. I | ¢, and
e there is no causal law ¢ = L in D s.t. [ |= 6.

(We write L to denote the literal complementary to L.)
It follows that for every L € I

o [ satisfies the characteristic formula of L, and
o I satisfies the characteristic formula of L.

Hence I is a model of the literal completion of D.
Proof in the other direction is similar. a

6.2 Via Second-Order Propositional Logic

Let D be a finite causal theory whose underlying
language has a finite signature {Pi,..., P,}.  Let
{p1,...,pn} be a corresponding set of propositional vari-
ables. For each causal law ¢ = ¢ € D, let ¢(¢ = o)
stand for the formula of second-order propositional logic
obtained by replacing = by D and also replacing each
occurrence of each atom F; in ¥ by the corresponding
propositional variable p;. The translation ¢(D) of causal
theory D is the following sentence of second-order propo-
sitional logic.

/\piEPi

I<i<n

)

p=>yeD

Theorem 6.2 [Lifschitz, 1997] Let D be a finite causal
theory whose underlying language has a finite signature.
The causally explained interpretations according to D
are precisely the models of the second-order propositional
sentence ¢(D).

Vpla"'apn

The propositional variables in the sentence ¢(D) can
be eliminated, at the cost of an exponential increase in
length, as follows. For each interpretation I, let p(D, I)
be the sentence of propositional logic obtained from

ANRECERD)

p=>veD

I
=
=

|
o



by replacing each occurrence of each propositional vari-
able p; by Trueif I = P; and by False otherwise.

Corollary 6.2.1 Let D be a finite causal theory whose
underlying language has a finite signature. The causally
explained interpretations according to D are precisely the
models of the propositional sentence

Ap(D, ).

Although the corollary follows from Theorem 6.2, the
following observations help explain independently why it
holds. For any interpretation I, I |= p(D,I) iff I = D*.
Moreover, for any I’ # I, I | p(D,I') iff I' [£ D'
Hence I = A, p(D, I) iff I is the unique model of D’.

6.3 Classical Theories as Causal Theories

There i1s an extremely simple embedding of classical
propositional theories in causal theories. (We omit the
easy proof.) Given a classical propositional theory T', let
ct(T) denote the following causal theory.

{True=¢ : ¢ eTYU{L =L : L isaliteral}

Theorem 6.3 Let I' be a classical propositional theory.
The models of I are precisely the causally explained in-
terpretations according to the causal theory ct(T).

7 Comparisons with Previous Causal
Approaches to Representing Actions

In the representations of commonsense knowledge about
actions proposed in [Lin, 1995] and [McCain and Turner,
1995], the central difficulty is understood to be the defini-
tion of “possible next states” — the states that can pos-
sibly result from performing an action in a given state.
The causal theories for representing actions described in
the companion paper [McCain and Turner, 1997] reflect
a somewhat different view of things. But for the purpose
of comparison, we focus here on the question of defining
possible next states.

Also for the purpose of comparison, we present a sim-
plified account of Lin’s proposal. Most notably, we sup-
press the role of the situation calculus, and do not con-
sider non-propositional fluent and action symbols.

Begin with a nonempty set of fluent atoms. The flu-
ent language 1s the language of propositional logic whose
atoms are the fluent atoms. A fluent formula (literal) is
a formula (literal) in the fluent language. A state is an
interpretation of the fluent language.?

We will compare three definitions of possible next
states, each based on the following three parameters.

e An nitial state S in which the action is performed.

e An explicit effect E: a set of formulas caused to be
true as a direct effect of the action.”

*Intuitively, some interpretations may not correspond to
possible states, but we ignore this complication.

“We ignore the possibility that the explicit effect depends
on the state in which an action is performed.

e Background knowledge C': a set of causal laws char-
acterizing the causal relationships between fluents.

This comparison framework is modeled after the defini-
tions in [McCain and Turner, 1995].

7.1 Possible Next States: Causal Theories

For initial state S, explicit effect E, and background
knowledge C'|, let 11 (S, E, C') be the set consisting of all
states that are causally explained by the causal theory

{L=>L:LeStu{True=>¢: 9 E}UC.
Notice that for any state S’ we have
(L=L:Les} =5ns .

Intuitively, S N S” consists of precisely the fluent literals

that persist when moving from S to S’. So this compo-

nent of the causal theory says that whenever the truth

of a fluent literal persists, it is (“trivially”) caused.
Notice also that for any state S’

{True = ¢ : ¢ € B} = E.

So the second component of the causal theory simply
says that the explicit effect is caused.

We see that S’ € I1(S, £, C) if and only if S’ is the
unique model of (SNS)UE U C5'. This condition can
be broken into two parts, as follows.

Lemma 7.1 For any wnitial state S, explicit effect E,
and background knowledge C, a state S’ belongs
to TI1 (S, B, C) if and only if

e ' =EEUCY and
e S'\SCCn((SNSYUEUCY).
7.2 Possible Next States: Lin’s Approach

We describe a simplification of the proposal from [Lin,
1995] that is adequate for defining possible next states.

We will employ circumscription on a first-order theory
in a many-sorted language with two sorts, fluent and
value. We construct this language on the basis of our
(propositional) fluent language. We need to assume that
the fluent language has a finite signature {Fy,..., F,}.
The fluent atoms F1, ..., F,, serve, in the first-order lan-
guage, as the object constants of sort fluent. The object
constants of sort value are T and L. We include axioms
expressing domain closure and unique names assump-
tions for both sorts, as follows, where f is a variable of
sort fluent and v is a variable of sort value.

Vi(f=FV---Vf=F,) (2)
/\1gz'<7'§n Py # F; (3)
Yo(o=TZv=1) (4)

The first-order language also includes two predicates —
Holds and Caused — whose arities and sorts are clear in
light of the following two additional axioms, which say



that a fluent is true whenever it 1s caused to be true, and
false whenever it is caused to be false.

Vf(Caused(f, T) D Holds(f)) (5)
Vf(Caused(f, L) D —Holds(f)) (6)

Given a fluent formula ¢, Holds(¢) stands for the for-
mula obtained by replacing every occurrence of every flu-
ent atom F'in ¢ by Holds(F'). For every fluent atom F,
Caused(F) stands for Caused(F,T), and Caused(—F)
stands for Caused(F,1).

We need to assume that the explicit effect £ is a finite
set of literals. We also need to assume that the back-
ground knowledge C' is finite, and that the consequents
of all causal laws in C' are literals. Let th(E,C) be the
first-order theory obtained by adding to axioms (2)—(6)
the translations of £ and C', specified as follows.

o Translate every fluent literal L in F as Caused(L).

e Translate every causal law ¢ = L in C as

Holds(¢) D Caused(L) .

The complete translation th(S, £, C') is obtained by cir-
cumscribing Caused, with Holds fixed, in th(E,C'), and
adding the appropriate frame axioms to the result, as
follows. For each fluent atom F', if F' € S| include the
axiom

- Holds(F) = Caused(F, 1) (7)
otherwise include the axiom
Holds(F') = Caused(F, T). (8)

Let TI5(S, E, C) denote the set of all states S* for which
there is a model M of th(S, E, C') such that

M [ /\ Holds(L).

LesS’

Theorem 7.1 Assume that the fluent language has a
finite signature. Given an wnitial state S, a finite ex-
plicit effect B/ consisting solely of literals, and finite back-
ground knowledge C' such that all causal laws in C' have
literal consequents, T2(S, E,C) =111 (S, E,C).
Proof. Axioms (2)—(4) guarantee that every model of
th(E, C') is isomorphic to a Herbrand model. Therefore
we can restrict our attention to Herbrand interpretations
and otherwise forget axioms (2)—(4) in what follows.
Given a state S and a set X of fluent literals, let
M (S’, X) denote the Herbrand interpretation that sat-
isfies the following conditions, for all fluent atoms F'.

o M(S',X) |E Holds(F) iff Fels

o M(S'X) | Caused(F, T) iff FeX

o M(S',X) | Caused(F, L) iff -FeX
Every Herbrand interpretation can be expressed in this
manner. Notice that M (S’ X) satisfies axioms (5) and
(6) iff X C 5. Tt is easy to verify that M (S, X) satis-
fies the translations of E and C iff EUCS’ C X. Since

the circumscriptive policy effectively minimizes X, for a
fixed S, it is clear from the previous observations that

every Herbrand model of th(S, E, () can be written in
the form M (S, E U C’SI), where " E EU C5'. More-
over, one easily checks that M (S, F'U C’SI) satisfies the
axioms of forms (7) and (8) iff Y\ S C EU C5'. Thus,
by Lemma 7.1, we have established that M (S’, EU C’SI)
is a model of th(S, E,C) iff S' € T} (S, E,C). Finally,
observe that M(S", EUCS) = ArLes Holds(L). O

7.3 Possible Next States: Inference Rules

The definition of possible next states from [McCain and
Turner, 1995] uses a set R of inference rules — not a
set C' of causal laws — to represent background knowl-
edge of the causal relations between fluents. In that
paper, S’ is a possible next state if and only if

Cn(S")y = Cn((SNS)UFEUR).

This is similar to the condition defining possible next
states in Section 7.1, which can be written as

Cn(S') = Cn((SNSYUEUCT).
¢

Intuitively, an inference rule 4 in R expresses that in

every state in which ¢ is caused to be true, ¢ is caused to
be true. The corresponding causal law ¢ = ¥ expresses
something stronger — in every state in which ¢ is true,
1 1s caused to be true.

Let S be an initial state, and £ an explicit effect. Let
C' be background knowledge (in the form of causal laws).
Take

¢

R(C):{E:(bid)e(]}

and let TI3(S, E, C') be the set of states S’ such that
Cn(S")y = Cn((SNS"YUEUR(C)) .

We will say that FUC'is stratified if there is a mapping
from the set of fluent atoms to the ordinals such that

e for every formula ¢ that belongs to F or is the con-
sequent of a causal law in C, all atoms that occur
in ¢ are mapped to the same ordinal, and

o for every causal law ¢ = ¢ in C, every atom that
occurs in ¥ is mapped to a greater ordinal than
every atom that occurs in ¢.

The following theorem shows that substituting infer-
ence rules for causal laws in background knowledge can
only eliminate possible next states. Moreover, if the ex-
plicit effect and background knowledge are stratified, the
substitution does not change the possible next states.

Theorem 7.2 For any initial state S, explicit effect |
and background knowledge C, Tl3(S, E,C) is a subset
of I (S, E,C). Moreover, if EUC is stratified, then
I3(S, E,C) =11,(S, E,C).

Due to space constraints, we do not present a proof

of this theorem. We outline a proof for the first claim,

as follows. Let X = Cn((SNS)UEUR(C)) and Y =
Cn((SUS’)UEUC’SI). Assume Cn(S’) = X. Show that



X is closed under C'°". It follows that ¥ C X. Show
that Y is closed under R(C). Tt follows that X C Y. So
X =Y and thus Cn(S") =Y. We describe the elements
of a proof for the second claim, as follows. Theorem 4.1
shows that S’ belongs to II(S, £, C) iff Cn(S’) is an

extension of the default theory

L o
{T.LeS}UEU{?.(bszC}.

On the other hand, a theorem in [Przymusinski and
Turner, 1997] shows that S’ belongs to I3(S, B, C) iff
Cn(S") is an extension of the default theory

{%:LeS}UEUR(C).
The Splitting Sequence Theorem from [Turner, 1996] can
be used to show that these two default theories have the
same complete extensions when E U C' is stratified.
Theorem 7.2 shows that several results established
in [McCain and Tuarner, 1995] for I3(S, E,C) hold
for TI,(S, E,C) as well.  Thus, causal laws of the
forms True = ¢ and ¢ = False can be understood to
correspond to “ramification constraints” and “qualifi-
cation constraints” (respectively) in the sense of Lin
and Reiter [1994]. In fact, given background knowl-
edge C' expressed as causal laws of the form True = v,
and the corresponding set B = {¢ : True = ¢ € C'} of
state constraints, the possible next states according to
I, (S, E, C') are precisely those obtained using the state
constraints B under Winslett’s classic definition [1988].

8 Concluding Remarks

We have established embeddings of causal theories in de-
fault logic and autoepistemic logic. Thus, causal theories
can be understood as a mathematically simple specializa-
tion of these highly expressive nonmonotonic formalisms.
We have also specified translations back and forth be-
tween causal theories and classical propositional logic.
Thus, these formalisms are equivalent (assuming finite
signatures and theories as in Theorem 6.2), although
the size explosion in the general translation of causal
theories into propositional logic supports the claim that
causal theories provide a more convenient representation
of causal knowledge of the kind that concerns us.

These mathematical relationships show that computa-
tional methods developed for these standard formalisms
are applicable as well to causal theories.> For instance,
this means that under certain restrictions on the action
domain — guaranteeing a complete specification of the
initial state of the world accompanied by a complete ab-
sence of nondeterminism — it is possible to do satisfia-
bility planning, in the sense of Kautz and Selman [1992],
on the basis of action descriptions in causal theories.

We have demonstrated that action representations
in causal theories are closely related to two previous

5One easily modifies the translations to obtain only the
complete extensions and AE models.

causal approaches, due to Lin and to the authors.
We showed that, in Lin’s proposal, sentences of the
form Holds(¢) D Caused(L) correspond in straightfor-
ward fashion to causal laws ¢ = L. We also showed
that causal laws are closely related to the inference rules
used previously by the authors. We note that the def-
inition of stratification introduced in Section 7 can be
extended to the causal theories for representing actions
described in the companion paper, in order to investigate
in that more general setting the relationship between the
following two closely related forms of causal knowledge.

e In every world in which ¢ is true, ¢ is caused.
e In every world in which ¢ is caused, ¥ 1s caused.
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