Representing Transition Systems
by Logic Programs

Vladimir Lifschitz! and Hudson Turner?

! Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712, USA
vl@cs.utexas.edu
2 Department of Computer Science
University of Minnesota at Duluth
Duluth, MN 55812, USA

hudson@d.umn.edu

Abstract. This paper continues the line of research on representing
actions, on the automation of commonsense reasoning and on planning
that deals with causal theories and with action language C. We show here
that many of the ideas developed in that work can be formulated in terms
of logic programs under the answer set semantics, without mentioning
causal theories. The translations from C into logic programming that we
investigate serve as a basis for the use of systems for computing answer
sets to reason about action domains described in C and to generate plans
in such domains.

1 Introduction

This paper continues the line of research on representing actions, on the automa-
tion of commonsense reasoning and on planning described in [11], [7] and [12].
A large part of that work deals with a new nonmonotonic formalism— “causal
theories.” We show here that many of the ideas developed in those papers can
be formulated also in terms of logic programs under the answer set semantics [5]
without even mentioning causal theories.

Specifically, we investigate here translations from action language C into logic
programming. These translations serve as a basis for the use of systems for
computing answer sets, such as SMODELS [13]' and DLV [3]?, for planning in
action domains described in C, as proposed in [9].> In [2] SMODELS is used to
generate plans for action domains described in the language of STRIPS, which
is not as expressive as C.

One such translation can be obtained by composing the translation from C
into the language of causal theories defined in [7] with the translation from

! http://saturn.hut.fi/pub/smodels
2 http://www.dbai.tuwien.ac.at/proj/dlv
% See also http://www.cs.utexas.edu/users/esra/experiments/experiments.html .

causal theories into logic programs given by Proposition 6.1 from [10]. We call
this translation Ipn. Our basic translation Ip is similar (and equivalent) to lpn
but a little simpler, and our proof of the soundness of both translations is direct:
it does not refer to causal theories.

A modification of the “literal completion” procedure from [11] allows us to
describe answer sets for these translations by propositional formulas. This fact
provides an alternative explanation for some of the computational procedures
that ccarc? uses for temporal reasoning and planning. The new explanation
is entirely in terms of logic programming; it does not appeal to any specialized
logic of causal reasoning.

After a review of the syntax and semantics of C (Section 2) and of the con-
cept of an answer set (Section 3), we define the basic translation from C into
logic programming and state a theorem expressing its adequacy (Section 4). In
Section 5 we show that the result of the basic translation can be simplified if the
given domain description has a nontrivial “split mapping.” Literal completion is
discussed in Section 6. Proofs are postponed to Section 7.

2 Review of C

This review of action language C follows [7] and [6].

Consider a set o of propositional symbols partitioned into the fluent names /!
and the elementary action names 0. An action is an interpretation of o%¢t.
There are two kinds of propositions in C: static laws of the form

caused F if G (1)
and dynamic laws of the form
caused F if G after U | (2)

where F, G are formulas of signature of' and U is a formula of signature o.
In a proposition of either kind, the formula F' is called the head. An action
description is a set, of propositions.

Consider an action description D. A state is an interpretation of o' that
satisfies G D F' for every static law (1) in D. A transition is any triple (s, a, s’)
where s, s’ are states and a is an action; s is the initial state of the transition,
and s’ is its resulting state. A formula F is caused in a traunsition (s, a, s') if it is

(i) the head of a static law (1) from D such that s’ satisfies G, or
(ii) the head of a dynamic law (2) from D such that s’ satisfies G and s U a
satisfies U.

A transition (s,a,s') is causally explained by D if its resulting state s’ is the
only interpretation of o' that satisfies all formulas caused in this transition.

* http://www.cs.utexas.edu/users/mccain/cc .

The transition system described by an action description D is the directed
graph which has the states of D as nodes, and which includes an edge from s to
s' labeled a for every transition (s, a,s') that is causally explained by D.

Consider two examples. The first describes the action of opening a spring-
loaded door using the fluent name Closed and the elementary action name
OpenDoor. In the notation introduced in [6, Section 6], this action description

can be written as
default Closed |,
OpenDoor causes —Closed

3)

which is an abbreviation for®

caused Closed if Closed
caused —Closed if T after OpenDoor .

The transition system described by (3) has 2 states (Closed and Closed) and
4 causally explained transitions:

(Closed, OpenDoor, Closed
(Closed, OpenDoor, Closed
(Closed, OpenDoor, Closed
(Closed, OpenDoor, Closed

The first of these transitions shows that the door is spring-loaded: it closes by
itself when we do nothing (OpenDoor).

The other example describes the effect of putting an object in water. It
involves the fluent names InWater and Wet and the elementary action name
PutInWater. In abbreviated notation, its propositions are:

PutInWater causes InWater ,
caused Wet if InWater | (4)
inertial InWater, —InWater, Wet,—~ Wet .

(InWater is treated here as a direct effect of the action, and Wet is an indirect
effect.) Written out in full, (4) becomes:

caused InWater if T after PutlnWater |,
caused Wet if InWater |,

caused InWater if InWater after InWater ,
caused —InWater if —InWater after —InWater |
caused Wet if Wet after Wet ,

caused — Wet if = Wet after —Wet .

The corresponding transition system has 3 states

InWater Wet, InWater Wet, InWater Wet

® We assume that the language contains the 0-place connectives T (true) and L (false).

and 6 causally explained transitions:

(InWater Wet, PutlnWater, InWater Wet)
(InWater Wet, PutInWater, InWater Wet) ,
(InWater Wet, PutInWater, InWater Wet) |
()
()
()

InWater Wet, PutlnWater, InWater Wet
InWater Wet, PutlnWater, InWater Wet
InWater Wet, PutlnWater, InWater Wet

The translations defined in this note are applicable to an action description D
only if it satisfies the following condition: for all static laws (1) and dynamic
laws (2) in D,

(i) F is a literal or the symbol L,
(ii) G and U are conjunctions of literals (possibly empty, understood as T).

If this condition is satisfied, we will say that D is definite.® For instance, de-
scriptions (3) and (4) are definite.

We will identify an intepretation I of a signature with the set of literals of
that signature that are satisfied by I. If D is definite then the condition

s' is the only interpretation of o' that satisfies
all formulas caused in (s, a, s')

in the definition of a causally explained transition can be equivalently replaced
by
the set of formulas caused in (s,a,s') is s'.

3 Review of the Answer Set Semantics

The definitions below diverge from [5] in how they treat constraints and incon-
sistent sets of literals.

Consider a set of propositional symbols, called atoms. A literal is an expres-
sion of the form B or =B, where B is an atom. A rule element is an expression
of the form L or not L where L is a literal. The symbol = is called classical nega-
tion, and the symbol not is negation as failure. A rule is a pair Head <+ Body
where Head is a literal or the symbol L, and Body is a finite set of rule elements.
Thus a rule has the form

Head < Ly,..., Ly, not Lyyyq,...,not Ly, (5)

3

where n > m > 0; we drop { } around the elements of the body. A rule (5) is a
constraint if Head = L. A program is a set of rules.

The notion of an answer set is defined first for programs whose rules do not
contain negation as failure. Let IT be such a program, and let X be a consistent

6 Part (ii) of this definition is not essential: it can be dropped at the cost of making
the translations slightly more complicated.

set, of literals. We say that X is closed under II if, for every rule Head < Body
in II, Head € X whenever Body C X. (For a constraint, this condition means
that the body is not contained in X.) We say that X is an answer set for IT if
X is minimal among the sets closed under I1. It is clear that a program without
negation as failure can have at most one answer set.

To extend this definition to arbitrary programs, take any program I7, and
let X be a consistent set of literals. The reduct ITX of IT relative to X is the set
of rules

Head < Ly,...,L,,

for all rules (5) in II such that L. 1,...,L, ¢ X. Thus IIX is a program
without negation as failure. We say that X is an answer set for IT if X is an
answer set for ITX. (Note that, according to these definitions, all answer sets are
consistent.)

A set X of literals is complete if for every atom B, B € X or =B € X. The
use of the answer set semantics in this paper is similar to its use in [14] in that
we will be interested in complete answer sets only. It is clear that the incomplete
answer sets for any program can be eliminated by adding the constraints

+ not B,not =B (6)

for all atoms B.

4 Basic Translation

Let D be a definite action description. We will define, for every positive integer T,
a logic program Ip,(D) whose answer sets correspond to “histories” —paths of
length T in the transition system described by D.

The language of Ip,(D) has atoms of two kinds:

(i) fluent atoms—the fluent names of D followed by () where t = 0,...,T, and
(ii) action atoms—the action names of D followed by (¢) wheret =0,..., T —1.

Thus every literal in this language ends with (¢) for some natural number ¢. This
number will be called the time stamp of the literal.
Program Ip; (D) consists of the following rules:

(i) for every static law
caused F if Ly A--- A L,

in D, the rules

F(t) < not Li(t),...,not Ly(t) (7)

3

for all t = 0,...,T (we understand F(t) as L if F is L; L stands for the
literal complementary to L)

3

(ii) for every dynamic law
caused F if Ly A--- AL, after L,,;1 A---ANL,

in D, the rules

3 3

F(t+1)« not Li(t+1),..., 1ot Ly (t + 1), Lypg1(t),. .., La(t) (8)

forallt=0,...,T -1,
(iii) the rules
=B+ not B,
B < not -B

where B is a fluent atom with the time stamp 0 or an action atom.

For instance, the translation of (3) consists of all rules of the forms

Closed(t) + not —Closed(t) ,

=Closed(t + 1) + OpenDoor(t) ,

Closed(0) < not = Closed(0) , (9)
= Closed(0) < not Closed(0) ,

OpenDoor(t) < not —OpenDoor(t) ,

= OpenDoor(t) < not OpenDoor(t) .

The translation of (4) is

InWater(t + 1) < PutInWater(t) ,

Wet(t) < not ~InWater(t) ,

InWater(t + 1) < not ~InWater(t + 1), InWater(t) ,
—InWater(t + 1) « not InWater(t + 1), ~InWater(t) ,
Wet(t + 1) < not —~Wet(t + 1), Wet(t) ,

—Wet(t + 1) « not Wet(t + 1), Wet(t) ,
InWater(0) < not —InWater(0) ,

—InWater(0) < not InWater(0) ,

Wet(0) «+ not = Wet(0) ,

= Wet(0) « not Wet(0) ,

PutInWater(t) < not —PutInWater(t) ,

- PutInWater(t) < not PutInWater(t) .

(10)

Proposition 1. A complete set X of literals is an answer set for lp,(D) iff it
has the form

T—1
UJA{L®) : Lesyua}| U{L(T) : L€ sr}

for some path (sg,a9,51,...,87_1,a17_1,8T) in the transition system described
by D.

As discussed at the end of Section 3, the restriction to complete sets can
be dropped if we extend the program by constraints (6). In the case of lpy(D),
it is sufficient to add these constraints for the fluent atoms with nonzero time
stamps.

The case of T'= 1 deserves a special mention:

Corollary 1. A complete set X of literals is an answer set for lp, (D) iff it has
the form
{L(0) : Le sUa}U{L(1) : L €s'}

for some transition (s,a,s') causally explained by D.

5 Simplifying the Basic Translation

A split mapping for a definite action description D is a function A from fluent
literals” to ordinals such that, for every static law

caused F if Ly A---AL,,
and every dynamic law
caused F if Ly A--- AL, after L, 1 A---ANL,

in D such that F is not L,

If X is a split mapping for D, then we can sometimes eliminate some occur-
rences of negation as failure in the translation of static and dynamic laws: by
replacing not L;(t) (1 <i < m) with L;(¢) whenever A(F) > A(Ly).

Proposition 2. If A is a split mapping for a definite action description D,
then in rules (7) and (8) of lpgp(D) with fluent literal heads we can replace
any expressions of the form not L;(t) (1 < i < m) such that \(F) > \(L;)
with L;(t) without affecting the complete answer sets. Similarly, in rules (7) and
(8) of lpp (D) with head L we can replace any expressions of the form not L;(t)
(1 <i<m) with L;(t).

For instance, a split mapping for (4) can be defined by
A(InWater) = M(—~InWater) = 0, A(Wet) = A(—Wet) = 1.
It follows that the second rule

Wet(t) < not —InWater(t)

" A fluent literal is a literal containing a fluent name; an action literal is a literal
containing an action name. We apply this terminology both to the language of action
descriptions and to the language of their translations into logic programming.

in the translation (10) of (4) can be equivalently replaced by
Wet(t) < InWater(t) .

A result analagous to Proposition 2, applied to an extension of causal the-
ories, appears as Theorem 5.15 in [15]. There the issue is when a formula
CF D C@E, read “G is caused whenever F' is caused” can be replaced by F D CG
without affecting the “causally explained interpretations.” The first of these
formulas corresponds to the treatment of static causal laws in the language B
from [6] and in the translation of static causal laws into logic programming
from [14].

6 Literal Completion

Programs Ip,(D) are “positive-order-consistent,” or “tight.” This concept is
defined in [4] for the special case of programs without classical negation; for tight
programs without classical negation, the answer set semantics is shown in that
paper to be equivalent to the completion semantics defined in [1]. According
to Proposition 3 below, complete answer sets for a finite tight program can
be characterized by the propositional formulas generated from the program by
“literal completion.” This process, similar to Clark’s completion, is defined in [11]
for causal theories, and here we show how this idea applies to tight programs.

A level mapping is a function from literals to ordinals. (For finite programs,
we can assume, without the loss of generality, that the values of a level mapping
are nonnegative integers.) A program [T is tight if there exists a level mapping
A such that, for every rule (5) in I that is not a constraint,

AML1), ..y AM(Lm) < A(Head) .

Note that this condition does not impose any restriction on the rule elements
that include negation as failure.

Consider a finite program II. If H is a literal or the symbol L, by Bodies(H)
we denote the set of the bodies of all rules in I whose head is H. For any finite
set Body of rule elements, the propositional formula pf(Body) is defined by the
equation

pf(La, ..., Ly, not Lypsq,...,not Ly)=Li AN ANLyANLpy1 A+~ ALy, .

The literal completion of II consists of the formulas

H= \V pf (Body)

Bodye Bodies(H)

for all H. (The range of values of H includes all literals of the underlying lan-
guage, even those that do not occur in I, and the symbol L.)

Proposition 3. For any finite tight program II and any complete set X of
literals, X is an answer set for II iff X is an interpretation satisfying the literal
completion of II.

Consider, for instance, the program

p < not —p ,

—p <4 not p ,

q < not —q , (11)
—q < not q ,

Téq .

This program has 4 answer sets:
{p,a;r}, {p,~a}, {=p.¢,r}s {=p, gl
two of them are complete. The literal completion for (11) consists of the formulas
P=p, pP="D

9=94, 79 =7q,
r=gq,r=.1.

This set of formulas is equivalent to ¢ A r. Consequently, it is satisfied by two
interpretations, {p, ¢,7} and {—p, ¢,r}. In accordance with Proposition 3, these
are the same as the complete answer sets for (11).

It is clear that Ipp(D) is tight: take A(L) to be the time stamp of L. Conse-
quently, the complete answer sets for this program can be characterized as the
models of its literal completion. This fact is important for two reasons.

First, it shows that one does not need a system for computing answer sets
to plan in a domain described in C; a propositional solver, such as sato [16],
will suffice. This is, in fact, how CCALC operates when the available actions are
described by a definite action description in C.

Second, this fact can be used to prove that some modifications of Ip,(D),
for finite D, are essentially equivalent to Ip, (D), in the sense that they have
the same complete answer sets as lp; (D). Consider, for instance, a program
obtained from Ip; (D) by replacing some of the rule elements L;(t) (m < i < n)
in the translations (8) of dynamic laws by not L;(t). The result is a finite tight
program with the same literal completion; Proposition 3 implies that it has the
same complete answer sets as Ip(D).

In particular, this replacement can be applied to every rule element in Ip..(D)
that does not contain negation as failure. We will denote the result by lpny(D).
For instance, if D is (3) then lpng (D) is

Closed(t) + not = Closed(t) ,

= Closed(t + 1) «+ not = OpenDoor(t) ,
Closed(0) < not —Closed(0) ,
—Closed(0) < not Closed(0) ,
OpenDoor(t) < not ~OpenDoor(t) ,
= OpenDoor(t) < not OpenDoor(t) .

(Program Ilpn (D) is, in fact, the alternative translation from C into logic pro-
gramming mentioned in the introduction.) Proposition 3 shows that Ip,.(D) and
Ipn(D) have the same complete answer sets, for finite D.

In the next section, we prove Proposition 3 on the basis of a similar result
applicable even when D is not finite. The same result plays a role in the proofs
of Propositions 1 and 2.

7 Proofs

We begin with definitions and a theorem from [8] concerning tight programs.
Take any program I, and consistent set X of literals. We say that X is closed
under II if, for every rule

Head < Ly,..., Ly, not Lyy1,...,n0t Ly, (12)

3

Head € X whenever Ly,..., Ly € X and Ly4q, ..., Ly, € X. We say that X is

supported by II if, for every L € X, there is a rule (12) in IT s.t. Head = L,
Li,....Ly € X and Lysr,..., Ly & X.

Proposition 4 ([4, 8]). For any tight program II, a consistent set X of literals
is an answer set for II iff X is closed under and supported by II.

Since Proposition 4 appears in [4] in a less general form, and in [8] without
proof, we include a proof at the end of this section.

7.1 Proof of Proposition 1

Proposition 1. A complete set X of literals is an answer set for lpy(D) iff it
has the form

T—1
UJA{L®) s Les,ua}| U{L(T) : L€ sr} (13)
t=0

for some path (so, a0, S1,--.,ST7—1,ar—1,ST) in the transition system described

by D.

To prove this fact, we will establish three lemmas about the modification
Ipny of the translation lp, defined in Section 6. Recall that, in the modified
translation, a dynamic law

caused F if Ly A--- AL, after L, 1 A---ANL,

is represented by the rules

F(t+1)+ not Li(t+1),..., not Ly, (t+ 1), not Lyy1(t), ..., not Ly(t)

instead of

F(t+1)« not Li(t+1),...,n0t L, (t + 1), Ly41(¢),...,Ly(t)

(t =0,...,T —1). The first lemma shows that programs Ip, (D) and Ipn,(D)
have the same complete answer sets. The third lemma differs from Proposition 1
only in that Ip,(D) in its statement is replaced by lpn,(D).

Lemma 1. Programs lp,(D) and lpn(D) have the same complete answer sets.

Proof. Both programs are tight. It is easy to verify that a complete, consistent
set, of literals is closed under one iff it is closed under the other. It is also easy to
verify that they have the same complete supported sets. So, by Proposition 4,
they have the same complete answer sets.

Lemma 2. If X has the form (13), for some states sg,s1,. .., sT—1,8T and

some interpretations ag,...,ar_1 of 0%, then for every fluent literal L and

t€{0,....,T — 1}, L(t + 1) + € lpnyp (D)X iff L is caused in (s;,a,5111)-

Proof. Assume that L(t + 1) < € Ipny(D)X. At least one of the following two
cases holds.

Case 1: D contains a static law

caused L if Ly A---A L,

such that Ly (¢ +1),..., Ly (t +1) ¢ X. Then Li(t+1),...,L,(t+1) € X, and

3

consequently Ly, ..., Ly, € si+1. It follows that L is caused in (s;, a, st41).

3

Case 2: D contains a dynamic law
caused L if Ly A...AN Ly, after L,,; 1 A...ANL,

such that

Li(t+1),..., Lt + 1), Lipya (), ..., Ln(t) ¢ X.

Then
Ll(t+ 1) 7Lm(t+ 1)7Lm+1(t)7-- . Ln(t) € X7

and consequently Lq,..., Ly, € s¢y1 and Lyy4q,..., L, € s¢. It follows that L is
caused in (s¢,a, S¢11).

A similar argument shows that if L(t + 1) < ¢ Ipn, (D)%, then L is not
caused in (s¢,a, S¢11).

Lemma 3. A complete set X of literals is an answer set for lpnp(D) iff it has
form (13) for some path {so,aog, $1,-..,87_1,ar_1,ST) In the transition system
described by D.

Proof. Left-to-right: Assume that X is a complete answer set for Ipn,(D).
Clearly X has the form (13), for some interpretations sg, s1,...,87_1, s7 of %
and ag, . ..,ar_; of 0%, Since X is closed under Ipn,(D)¥, we know that for
every rule (7) obtained from a static causal law caused F if Li A -+ A L, if
Li(t),...,Lu(t) ¢ X, then F(t) € X. Hence, for all t € {0,...,T}, s; satisfies
LiAN---NL,, DF,for every static causal law caused F if L; A---A L,,. That
is, each s; is a state. It remains to show that for each ¢t € {0,...,T — 1}, the set
of formulas caused in (s, a, s¢11) is S¢11. This follows easily from Lemma 2.
Right-to-left: Assume that (sg,ao,S1,...,87_1,a1r_1,87) is a path in the
transition system described by D, and let X be the associated complete set

of literals of form (13). We complete the proof by showing that L(t) € X iff
L(t) «+ € lpnyp(D)*. Consider three cases.

Case 1: L(t) is an action literal. The claim is trivial in this case, since in lpn (D)
such literals appear in the heads only of rules obtained in clause (iii) of the
translation.

Case 2: L(t) is a fluent literal, and ¢ = 0. It is clear that if L(0) € X, then
L(0) «+ € Ipny (D)X, because of the rules obtained in clause (iii) of the trans-
lation. Assume L(0) ¢ X. Then, with regard to the rule L(0) < not L(0) ob-
tained by clause (iii) of the translation, notice that L(0) € X. All other rules
in lpn;(D) with L(0) in the head have the form L(0) < not L,(0), ..., not L,,(0)
for some static causal law caused L if Ly A--- A L,,, and since sg is a state to
which L does not belong, we can conclude that at least one of Li,...,L,, be-
longs to sq. Hence, at least one of Lq(0), ..., L,,(0) belongs to X. Consequently,
L(0) < ¢ Ipny(D)™.

Case 3: L(t) is a fluent literal, and t # 0. The claim in this case follows from
Lemma 2.

7.2 Proof of Proposition 2

Proposition 2. If A is a split mapping for a definite action description D,
then in rules (7) and (8) of lpy (D) with fluent literal heads we can replace
any expressions of the form not L;(t) (1 < i < m) such that \(F) > \(L;)
with L;(t) without affecting the complete answer sets. Similarly, in rules (7) and
(8) of lpp (D) with head L we can replace any expressions of the form not L;(t)
(1 <i<m) with L;(t).

Proof. Let A be the split mapping for D, and let IT be the program obtained
from Ip, (D) by replacing some rule elements not L;(t) with L;(t). It is easy to
verify that the same complete, consistent sets of literals are closed under and
supported by the two programs. As previously observed, Ip, (D) is tight, so we
can conclude by Proposition 4 that the two programs have the same complete
answer sets, if we can show that IT is tight also. We do this by constructing a
suitable level mapping A*.
Take

a = sup {A(L) : L is a fluent literal} .

For all fluent literals L and t € {0,..., T}, let
ML) = (a+1) - t+ (L) .

For all action literals L and ¢ € {0,...,T — 1}, we define *(L(t)) = 0.
First observe that for any fluent literals L, L', and any ¢ € {0,...,T — 1},

AT(L(H) < A" (L'(t+1))

since

(a+1)-t+AL)<(a+1)-t+(a+1)
=(a+1)-t+(a+1)-1
=(a+1) - (t+1)
<(a+1)-(t+1)+ XL

(The first step uses the fact that A(L) < a + 1, along with the right monotonicity
of ordinal addition. The third step uses the fact that ordinal multiplication
distributes from the left over addition.) Hence, level mapping A* establishes
that Ipp (D) itself is tight. It remains to show that the allowed replacements of
rule elements preserve tightness.

Consider any rule in Ip,(D) with a fluent literal head L(¢) in which a rule
element not L;(t) has been replaced with L;(¢) in IT. In this case, we know that
AL;) < ML), and we complete the proof by observing that, consequently,

A(Li(t) = (a+1) -t + A(Li) < (a+1) -t + A(L) = A*(L(t))

(again by the right monotonicity of ordinal addition).

7.3 Proof of Proposition 3

Proposition 3. For any finite tight program II and any complete set X of
literals, X is an answer set for II iff X is an interpretation satisfying the literal
completion of II.

Proof. Assume X is a complete answer set for IT. Since IT is tight, we know by
Proposition 4 that X is closed under and supported by II. Let H be any literal
or L. We must show that X satisfies

H= \/ pf (Body) .

Body€e Bodies(H)

Case 1: H € X. Since X is supported by II, there is at least one rule
H<+ Ly,...,Ly,n0t Lyy1,...,n0t Ly

in IT such that Lq,...,L;, € X and L, 41, ..., L, ¢ X. It follows that X satisfies
the corresponding element of Bodies(H).

Case 2: H ¢ X. Since X is closed under I1, we know that for every rule
H<+ Ly,...,Ly,n0t Lyyq,...,n0t Ly

in IT either {L1,...,Lyp} € X or {Lyy1,..., Lyt N X #£ 0. Tt follows that X
satisfies no element of Bodies(H).
Proof in the other direction is similar.

It may be worth noting that Proposition 3 holds even when I7 is not finite,
as long as there are finitely many rules in II with any given head (so that the
literal completion can be defined). Moreover, even this restriction can be dropped
in the case of constraints (rules with head 1), if we modify the definition of
literal completion slightly, so that H ranges only over literals, and we add to
the resulting propositional theory the formula —pf(Body) for each constraint

1 <« Body in II.

7.4 Proof of Proposition 4

Proposition 4. For any tight program II, a consistent set X of literals is an
answer set for Il iff X is closed under and supported by II.

Lemma 4. For any tight program II without negation as failure, and consistent
set X of literals, if X is closed under and supported by II, then X is an answer
set for II.

Proof. We need to show that X is minimal among sets closed under IT. Suppose
otherwise; let Y be a proper subset of X that is also closed under IT. Let A be a
level mapping establishing that IT is tight. Choose a literal L € X \ Y such that
A(L) is minimal. Since X is supported by II, there is a rule

L+ Li,...,Ly,

in Pi such that Ly,...,L,, € X. Since IT is tight, A(L1),...,A(Ly) < A(L).
Hence, by choice of L, we can conclude that Lq,...,L,, € Y, which shows that
Y is not closed under II, contrary to the choice of Y.

Proof of Proposition 4: The left-to-right direction is straightforward, and does
not rely on tightness. For the other direction, assume X is closed under and
supported by II. It follows that X is closed under and supported by IIX. Since
II is tight, so is IIX. Hence, by Lemma 4, X is an answer set for IIX, and,
consequently, an answer set for II.

Acknowledgements

Thanks to Esra Erdem for comments on a draft of this note. Some of these results
were presented by the first author in his seminar on planning at the University
of Texas in the Spring semester of 1999, and he is grateful to the participants
of the seminar for interesting discussion. His work was partially supported by
National Science Foundation under grant IRI-9732744. The second author is par-
tially supported by University of Minnesota Grant-in-Aid of Research, Artistry
& Scholarship #17831.

References

10.

11.

12.

13.

14.

15.

16.

. Keith Clark. Negation as failure. In Herve Gallaire and Jack Minker, editors, Logic

and Data Bases, pages 293—-322. Plenum Press, New York, 1978.

Yannis Dimopoulos, Bernhard Nebel, and Jana Koehler. Encoding planning prob-
lems in non-monotonic logic programs. In Proc. European Conf. on Planning 1997,
pages 169-181, 1997.

Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco Scar-
cello. The KR system DLv: Progress report, comparisons and benchmarks. In
Anthony Cohn, Lenhart Schubert, and Stuart Shapiro, editors, Proc. Sizth Int’l
Conf. on Principles of Knowledge Representation and Reasoning, pages 406 417,
1998.

Francois Fages. Consistency of Clark’s completion and existence of stable models.
Journal of Methods of Logic in Computer Science, 1:51 60, 1994.

Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and
disjunctive databases. New Generation Computing, 9:365 385, 1991.

Michael Gelfond and Vladimir Lifschitz. Action languages. Electronic Transactions
on Al 3, 1998. Available at http://www.ep.liu.se/ea/cis/1998/016/.

Enrico Giunchiglia and Vladimir Lifschitz. An action language based on causal
explanation: Preliminary report. In Proc. AAAI-98, pages 623 630, 1998.
Vladimir Lifschitz. Foundations of logic programming. In Principles of Knowledge
Representation, pages 69 127. CSLI Publications, 1996.

Vladimir Lifschitz. Action languages, answer sets and planning. In The Logic
Programming Paradigm: a 25-Year Perspective, pages 357-373. Springer Verlag,
1999.

Norman McCain. Causality in Commonsense Reasoning about Actions. PhD thesis,
University of Texas at Austin, 1997.

Norman McCain and Hudson Turner. Causal theories of action and change. In
Proc. AAAI-97, pages 460 465, 1997.

Norman McCain and Hudson Turner. Satisfiability planning with causal theories.
In Anthony Cohn, Lenhart Schubert, and Stuart Shapiro, editors, Proc. Sizth Int’l
Conf. on Principles of Knowledge Representation and Reasoning, pages 212 223,
1998.

Ilkka Niemela and Patrik Simons. Efficient implementation of the well-founded and
stable model semantics. In Proc. Joint Int’l Conf. and Symp. on Logic Programming,
pages 289-303, 1996.

Hudson Turner. Representing actions in logic programs and default theories: a
situation calculus approach. Journal of Logic Programmaing, 31:245 298, 1997.

Hudson Turner. Causal Action Theories and Satisfiability Planning. PhD thesis,
University of Texas at Austin, 1998.

Hantao Zhang. An efficient propositional prover. In Proc. CADE-97, 1997.

