
Representing Transition Systemsby Logic ProgramsVladimir Lifschitz1 and Hudson Turner21 Department of Computer SciencesUniversity of Texas at AustinAustin, TX 78712, USAvl@cs.utexas.edu2 Department of Computer ScienceUniversity of Minnesota at DuluthDuluth, MN 55812, USAhudson@d.umn.eduAbstract. This paper continues the line of research on representingactions, on the automation of commonsense reasoning and on planningthat deals with causal theories and with action language C. We show herethat many of the ideas developed in that work can be formulated in termsof logic programs under the answer set semantics, without mentioningcausal theories. The translations from C into logic programming that weinvestigate serve as a basis for the use of systems for computing answersets to reason about action domains described in C and to generate plansin such domains.1 IntroductionThis paper continues the line of research on representing actions, on the automa-tion of commonsense reasoning and on planning described in [11], [7] and [12].A large part of that work deals with a new nonmonotonic formalism|\causaltheories." We show here that many of the ideas developed in those papers canbe formulated also in terms of logic programs under the answer set semantics [5],without even mentioning causal theories.Speci�cally, we investigate here translations from action language C into logicprogramming. These translations serve as a basis for the use of systems forcomputing answer sets, such as smodels [13]1 and dlv [3]2, for planning inaction domains described in C, as proposed in [9].3 In [2] smodels is used togenerate plans for action domains described in the language of STRIPS, whichis not as expressive as C.One such translation can be obtained by composing the translation from Cinto the language of causal theories de�ned in [7] with the translation from1 http://saturn.hut.fi/pub/smodels .2 http://www.dbai.tuwien.ac.at/proj/dlv .3 See also http://www.cs.utexas.edu/users/esra/experiments/experiments.html .

causal theories into logic programs given by Proposition 6.1 from [10]. We callthis translation lpn . Our basic translation lp is similar (and equivalent) to lpnbut a little simpler, and our proof of the soundness of both translations is direct:it does not refer to causal theories.A modi�cation of the \literal completion" procedure from [11] allows us todescribe answer sets for these translations by propositional formulas. This factprovides an alternative explanation for some of the computational proceduresthat ccalc4 uses for temporal reasoning and planning. The new explanationis entirely in terms of logic programming; it does not appeal to any specializedlogic of causal reasoning.After a review of the syntax and semantics of C (Section 2) and of the con-cept of an answer set (Section 3), we de�ne the basic translation from C intologic programming and state a theorem expressing its adequacy (Section 4). InSection 5 we show that the result of the basic translation can be simpli�ed if thegiven domain description has a nontrivial \split mapping." Literal completion isdiscussed in Section 6. Proofs are postponed to Section 7.2 Review of CThis review of action language C follows [7] and [6].Consider a set � of propositional symbols partitioned into the
uent names �
and the elementary action names �act . An action is an interpretation of �act .There are two kinds of propositions in C: static laws of the formcaused F if G (1)and dynamic laws of the formcaused F if G after U ; (2)where F , G are formulas of signature �
 and U is a formula of signature �.In a proposition of either kind, the formula F is called the head. An actiondescription is a set of propositions.Consider an action description D. A state is an interpretation of �
 thatsatis�es G � F for every static law (1) in D. A transition is any triple hs; a; s0iwhere s, s0 are states and a is an action; s is the initial state of the transition,and s0 is its resulting state. A formula F is caused in a transition hs; a; s0i if it is(i) the head of a static law (1) from D such that s0 satis�es G, or(ii) the head of a dynamic law (2) from D such that s0 satis�es G and s [asatis�es U .A transition hs; a; s0i is causally explained by D if its resulting state s0 is theonly interpretation of �
 that satis�es all formulas caused in this transition.4 http://www.cs.utexas.edu/users/mccain/cc .

The transition system described by an action description D is the directedgraph which has the states of D as nodes, and which includes an edge from s tos0 labeled a for every transition hs; a; s0i that is causally explained by D.Consider two examples. The �rst describes the action of opening a spring-loaded door using the
uent name Closed and the elementary action nameOpenDoor . In the notation introduced in [6, Section 6], this action descriptioncan be written as default Closed ;OpenDoor causes :Closed (3)which is an abbreviation for5caused Closed if Closed ;caused :Closed if > after OpenDoor :The transition system described by (3) has 2 states (Closed and Closed) and4 causally explained transitions:h Closed ; OpenDoor ; Closed i ;h Closed ; OpenDoor ; Closed i ;h Closed ; OpenDoor ; Closed i ;h Closed ; OpenDoor ; Closed i :The �rst of these transitions shows that the door is spring-loaded: it closes byitself when we do nothing (OpenDoor).The other example describes the e�ect of putting an object in water. Itinvolves the
uent names InWater and Wet and the elementary action namePutInWater . In abbreviated notation, its propositions are:PutInWater causes InWater ;caused Wet if InWater ;inertial InWater ;:InWater ;Wet ;:Wet : (4)(InWater is treated here as a direct e�ect of the action, and Wet is an indirecte�ect.) Written out in full, (4) becomes:caused InWater if > after PutInWater ;caused Wet if InWater ;caused InWater if InWater after InWater ;caused :InWater if :InWater after :InWater ;caused Wet if Wet after Wet ;caused :Wet if :Wet after :Wet :The corresponding transition system has 3 statesInWater Wet ; InWater Wet ; InWater Wet5 We assume that the language contains the 0-place connectives > (true) and ? (false).

and 6 causally explained transitions:h InWater Wet ; PutInWater ; InWater Wet i ;h InWater Wet ; PutInWater ; InWater Wet i ;h InWater Wet ; PutInWater ; InWater Wet i ;h InWater Wet ; PutInWater ; InWater Wet i ;h InWater Wet ; PutInWater ; InWater Wet i ;h InWater Wet ; PutInWater ; InWater Wet i :The translations de�ned in this note are applicable to an action descriptionDonly if it satis�es the following condition: for all static laws (1) and dynamiclaws (2) in D,(i) F is a literal or the symbol ?,(ii) G and U are conjunctions of literals (possibly empty, understood as >).If this condition is satis�ed, we will say that D is de�nite.6 For instance, de-scriptions (3) and (4) are de�nite.We will identify an intepretation I of a signature with the set of literals ofthat signature that are satis�ed by I . If D is de�nite then the conditions0 is the only interpretation of �
 that satis�esall formulas caused in hs; a; s0iin the de�nition of a causally explained transition can be equivalently replacedby the set of formulas caused in hs; a; s0i is s0:3 Review of the Answer Set SemanticsThe de�nitions below diverge from [5] in how they treat constraints and incon-sistent sets of literals.Consider a set of propositional symbols, called atoms. A literal is an expres-sion of the form B or :B, where B is an atom. A rule element is an expressionof the form L or not L where L is a literal. The symbol : is called classical nega-tion, and the symbol not is negation as failure. A rule is a pair Head Bodywhere Head is a literal or the symbol ?, and Body is a �nite set of rule elements.Thus a rule has the formHead L1; : : : ; Lm;not Lm+1; : : : ;not Ln (5)where n � m � 0; we drop f g around the elements of the body. A rule (5) is aconstraint if Head = ?. A program is a set of rules.The notion of an answer set is de�ned �rst for programs whose rules do notcontain negation as failure. Let � be such a program, and let X be a consistent6 Part (ii) of this de�nition is not essential: it can be dropped at the cost of makingthe translations slightly more complicated.

set of literals. We say that X is closed under � if, for every rule Head Bodyin � , Head 2 X whenever Body � X . (For a constraint, this condition meansthat the body is not contained in X .) We say that X is an answer set for � ifX is minimal among the sets closed under � . It is clear that a program withoutnegation as failure can have at most one answer set.To extend this de�nition to arbitrary programs, take any program � , andlet X be a consistent set of literals. The reduct �X of � relative to X is the setof rules Head L1; : : : ; Lmfor all rules (5) in � such that Lm+1; : : : ; Ln 62 X . Thus �X is a programwithout negation as failure. We say that X is an answer set for � if X is ananswer set for �X . (Note that, according to these de�nitions, all answer sets areconsistent.)A set X of literals is complete if for every atom B, B 2 X or :B 2 X . Theuse of the answer set semantics in this paper is similar to its use in [14] in thatwe will be interested in complete answer sets only. It is clear that the incompleteanswer sets for any program can be eliminated by adding the constraints not B;not :B (6)for all atoms B.4 Basic TranslationLetD be a de�nite action description. We will de�ne, for every positive integer T ,a logic program lpT (D) whose answer sets correspond to \histories"|paths oflength T in the transition system described by D.The language of lpT (D) has atoms of two kinds:(i)
uent atoms|the
uent names of D followed by (t) where t = 0; : : : ; T , and(ii) action atoms|the action names of D followed by (t) where t = 0; : : : ; T �1.Thus every literal in this language ends with (t) for some natural number t. Thisnumber will be called the time stamp of the literal.Program lpT (D) consists of the following rules:(i) for every static law caused F if L1 ^ � � � ^ Lmin D, the rules F (t) not L1(t); : : : ;not Lm(t) (7)for all t = 0; : : : ; T (we understand F (t) as ? if F is ?; L stands for theliteral complementary to L),

(ii) for every dynamic lawcaused F if L1 ^ � � � ^ Lm after Lm+1 ^ � � � ^ Lnin D, the rulesF (t+ 1) not L1(t+ 1); : : : ;not Lm(t+ 1); Lm+1(t); : : : ; Ln(t) (8)for all t = 0; : : : ; T � 1,(iii) the rules :B not B ;B not :Bwhere B is a
uent atom with the time stamp 0 or an action atom.For instance, the translation of (3) consists of all rules of the formsClosed (t) not :Closed (t) ;:Closed (t+ 1) OpenDoor(t) ;Closed (0) not :Closed (0) ;:Closed (0) not Closed (0) ;OpenDoor(t) not :OpenDoor(t) ;:OpenDoor(t) not OpenDoor(t) : (9)The translation of (4) isInWater(t+ 1) PutInWater(t) ;Wet(t) not :InWater(t) ;InWater(t+ 1) not :InWater (t+ 1); InWater(t) ;:InWater(t+ 1) not InWater(t+ 1);:InWater(t) ;Wet(t+ 1) not :Wet(t+ 1);Wet(t) ;:Wet(t+ 1) not Wet(t+ 1);:Wet(t) ;InWater(0) not :InWater(0) ;:InWater(0) not InWater(0) ;Wet(0) not :Wet(0) ;:Wet(0) not Wet(0) ;PutInWater(t) not :PutInWater(t) ;:PutInWater(t) not PutInWater(t) :
(10)

Proposition 1. A complete set X of literals is an answer set for lpT (D) i� ithas the form "T�1[t=0fL(t) : L 2 st [atg# [fL(T) : L 2 sT gfor some path hs0; a0; s1; : : : ; sT�1; aT�1; sT i in the transition system describedby D.

As discussed at the end of Section 3, the restriction to complete sets canbe dropped if we extend the program by constraints (6). In the case of lpT (D),it is su�cient to add these constraints for the
uent atoms with nonzero timestamps.The case of T = 1 deserves a special mention:Corollary 1. A complete set X of literals is an answer set for lp1(D) i� it hasthe form fL(0) : L 2 s [ag [fL(1) : L 2 s0gfor some transition hs; a; s0i causally explained by D.5 Simplifying the Basic TranslationA split mapping for a de�nite action description D is a function � from
uentliterals7 to ordinals such that, for every static lawcaused F if L1 ^ � � � ^ Lmand every dynamic lawcaused F if L1 ^ � � � ^ Lm after Lm+1 ^ � � � ^ Lnin D such that F is not ?,�(L1); : : : ; �(Lm) � �(F) :If � is a split mapping for D, then we can sometimes eliminate some occur-rences of negation as failure in the translation of static and dynamic laws: byreplacing not Li(t) (1 � i � m) with Li(t) whenever �(F) > �(Li).Proposition 2. If � is a split mapping for a de�nite action description D,then in rules (7) and (8) of lpT (D) with
uent literal heads we can replaceany expressions of the form not Li(t) (1 � i � m) such that �(F) > �(Li)with Li(t) without a�ecting the complete answer sets. Similarly, in rules (7) and(8) of lpT (D) with head ? we can replace any expressions of the form not Li(t)(1 � i � m) with Li(t).For instance, a split mapping for (4) can be de�ned by�(InWater) = �(:InWater) = 0; �(Wet) = �(:Wet) = 1:It follows that the second ruleWet(t) not :InWater (t)7 A
uent literal is a literal containing a
uent name; an action literal is a literalcontaining an action name. We apply this terminology both to the language of actiondescriptions and to the language of their translations into logic programming.

in the translation (10) of (4) can be equivalently replaced byWet(t) InWater(t) :A result analagous to Proposition 2, applied to an extension of causal the-ories, appears as Theorem 5.15 in [15]. There the issue is when a formulaCF � CG, read \G is caused whenever F is caused" can be replaced by F � CGwithout a�ecting the \causally explained interpretations." The �rst of theseformulas corresponds to the treatment of static causal laws in the language Bfrom [6] and in the translation of static causal laws into logic programmingfrom [14].6 Literal CompletionPrograms lpT (D) are \positive-order-consistent," or \tight." This concept isde�ned in [4] for the special case of programs without classical negation; for tightprograms without classical negation, the answer set semantics is shown in thatpaper to be equivalent to the completion semantics de�ned in [1]. Accordingto Proposition 3 below, complete answer sets for a �nite tight program canbe characterized by the propositional formulas generated from the program by\literal completion." This process, similar to Clark's completion, is de�ned in [11]for causal theories, and here we show how this idea applies to tight programs.A level mapping is a function from literals to ordinals. (For �nite programs,we can assume, without the loss of generality, that the values of a level mappingare nonnegative integers.) A program � is tight if there exists a level mapping� such that, for every rule (5) in � that is not a constraint,�(L1); : : : ; �(Lm) < �(Head) :Note that this condition does not impose any restriction on the rule elementsthat include negation as failure.Consider a �nite program � . If H is a literal or the symbol ?, by Bodies(H)we denote the set of the bodies of all rules in � whose head is H . For any �niteset Body of rule elements, the propositional formula pf (Body) is de�ned by theequationpf (L1; : : : ; Lm;not Lm+1; : : : ;not Ln) = L1 ^ � � � ^ Lm ^ Lm+1 ^ � � � ^ Ln :The literal completion of � consists of the formulasH � _Body2Bodies(H) pf (Body)for all H . (The range of values of H includes all literals of the underlying lan-guage, even those that do not occur in � , and the symbol ?.)Proposition 3. For any �nite tight program � and any complete set X ofliterals, X is an answer set for � i� X is an interpretation satisfying the literalcompletion of �.

Consider, for instance, the programp not :p ;:p not p ;q not :q ;:q not q ;r q : (11)This program has 4 answer sets:fp; q; rg; fp;:qg; f:p; q; rg; f:p;:qg;two of them are complete. The literal completion for (11) consists of the formulasp � p; :p � :p;q � q; :q � :q;r � q; :r � ?:This set of formulas is equivalent to q ^ r. Consequently, it is satis�ed by twointerpretations, fp; q; rg and f:p; q; rg. In accordance with Proposition 3, theseare the same as the complete answer sets for (11).It is clear that lpT (D) is tight: take �(L) to be the time stamp of L. Conse-quently, the complete answer sets for this program can be characterized as themodels of its literal completion. This fact is important for two reasons.First, it shows that one does not need a system for computing answer setsto plan in a domain described in C; a propositional solver, such as sato [16],will su�ce. This is, in fact, how ccalc operates when the available actions aredescribed by a de�nite action description in C.Second, this fact can be used to prove that some modi�cations of lpT (D),for �nite D, are essentially equivalent to lpT (D), in the sense that they havethe same complete answer sets as lpT (D). Consider, for instance, a programobtained from lpT (D) by replacing some of the rule elements Li(t) (m < i � n)in the translations (8) of dynamic laws by not Li(t). The result is a �nite tightprogram with the same literal completion; Proposition 3 implies that it has thesame complete answer sets as lpT (D).In particular, this replacement can be applied to every rule element in lpT (D)that does not contain negation as failure. We will denote the result by lpnT (D).For instance, if D is (3) then lpnT (D) isClosed (t) not :Closed (t) ;:Closed (t+ 1) not :OpenDoor(t) ;Closed (0) not :Closed (0) ;:Closed (0) not Closed (0) ;OpenDoor(t) not :OpenDoor(t) ;:OpenDoor(t) not OpenDoor(t) :(Program lpnT (D) is, in fact, the alternative translation from C into logic pro-gramming mentioned in the introduction.) Proposition 3 shows that lpT (D) andlpnT (D) have the same complete answer sets, for �nite D.

In the next section, we prove Proposition 3 on the basis of a similar resultapplicable even when D is not �nite. The same result plays a role in the proofsof Propositions 1 and 2.7 ProofsWe begin with de�nitions and a theorem from [8] concerning tight programs.Take any program � , and consistent set X of literals. We say that X is closedunder � if, for every ruleHead L1; : : : ; Lm;not Lm+1; : : : ;not Ln (12)Head 2 X whenever L1; : : : ; Lm 2 X and Lm+1; : : : ; Ln 62 X. We say that X issupported by � if, for every L 2 X, there is a rule (12) in � s.t. Head = L,L1; : : : ; Lm 2 X and Lm+1; : : : ; Ln 62 X.Proposition 4 ([4, 8]). For any tight program �, a consistent set X of literalsis an answer set for � i� X is closed under and supported by �.Since Proposition 4 appears in [4] in a less general form, and in [8] withoutproof, we include a proof at the end of this section.7.1 Proof of Proposition 1Proposition 1. A complete set X of literals is an answer set for lpT (D) i� ithas the form "T�1[t=0fL(t) : L 2 st [atg# [fL(T) : L 2 sT g (13)for some path hs0; a0; s1; : : : ; sT�1; aT�1; sT i in the transition system describedby D.To prove this fact, we will establish three lemmas about the modi�cationlpnT of the translation lpT de�ned in Section 6. Recall that, in the modi�edtranslation, a dynamic lawcaused F if L1 ^ � � � ^ Lm after Lm+1 ^ � � � ^ Lnis represented by the rulesF (t+ 1) not L1(t+ 1); : : : ;not Lm(t+ 1);not Lm+1(t); : : : ;not Ln(t)instead ofF (t+ 1) not L1(t+ 1); : : : ;not Lm(t+ 1); Lm+1(t); : : : ; Ln(t)(t = 0; : : : ; T � 1). The �rst lemma shows that programs lpT (D) and lpnT (D)have the same complete answer sets. The third lemma di�ers from Proposition 1only in that lpT (D) in its statement is replaced by lpnT (D).

Lemma 1. Programs lpT (D) and lpnT (D) have the same complete answer sets.Proof. Both programs are tight. It is easy to verify that a complete, consistentset of literals is closed under one i� it is closed under the other. It is also easy toverify that they have the same complete supported sets. So, by Proposition 4,they have the same complete answer sets.Lemma 2. If X has the form (13), for some states s0; s1; : : : ; sT�1; sT andsome interpretations a0; : : : ; aT�1 of �act , then for every
uent literal L andt 2 f0; : : : ; T � 1g, L(t+ 1) 2 lpnT (D)X i� L is caused in hst; a; st+1i.Proof. Assume that L(t + 1) 2 lpnT (D)X . At least one of the following twocases holds.Case 1 : D contains a static lawcaused L if L1 ^ � � � ^ Lmsuch that L1(t+ 1); : : : ; Lm(t+ 1) =2 X . Then L1(t+1); : : : ; Lm(t+1) 2 X , andconsequently L1; : : : ; Lm 2 st+1. It follows that L is caused in hst; a; st+1i.Case 2 : D contains a dynamic lawcaused L if L1 ^ : : : ^ Lm after Lm+1 ^ : : : ^ Lnsuch that L1(t+ 1); : : : ; Lm(t+ 1); Lm+1(t); : : : ; Ln(t) =2 X:Then L1(t+ 1); : : : ; Lm(t+ 1); Lm+1(t); : : : ; Ln(t) 2 X;and consequently L1; : : : ; Lm 2 st+1 and Lm+1; : : : ; Ln 2 st. It follows that L iscaused in hst; a; st+1i.A similar argument shows that if L(t + 1) =2 lpnT (D)X , then L is notcaused in hst; a; st+1i.Lemma 3. A complete set X of literals is an answer set for lpnT (D) i� it hasform (13) for some path hs0; a0; s1; : : : ; sT�1; aT�1; sT i in the transition systemdescribed by D.Proof. Left-to-right: Assume that X is a complete answer set for lpnT (D).Clearly X has the form (13), for some interpretations s0; s1; : : : ; sT�1; sT of �actand a0; : : : ; aT�1 of �act . Since X is closed under lpnT (D)X , we know that forevery rule (7) obtained from a static causal law caused F if L1 ^ � � � ^ Lm, ifL1(t); : : : ; Lm(t) =2 X , then F (t) 2 X . Hence, for all t 2 f0; : : : ; Tg, st satis�esL1 ^ � � � ^Lm � F , for every static causal law caused F if L1 ^ � � � ^Lm: Thatis, each st is a state. It remains to show that for each t 2 f0; : : : ; T � 1g, the setof formulas caused in hst; a; st+1i is st+1. This follows easily from Lemma 2.Right-to-left: Assume that hs0; a0; s1; : : : ; sT�1; aT�1; sT i is a path in thetransition system described by D, and let X be the associated complete set

of literals of form (13). We complete the proof by showing that L(t) 2 X i�L(t) 2 lpnT (D)X . Consider three cases.Case 1 : L(t) is an action literal. The claim is trivial in this case, since in lpnT (D)such literals appear in the heads only of rules obtained in clause (iii) of thetranslation.Case 2 : L(t) is a
uent literal, and t = 0. It is clear that if L(0) 2 X , thenL(0) 2 lpnT (D)X , because of the rules obtained in clause (iii) of the trans-lation. Assume L(0) =2 X . Then, with regard to the rule L(0) not L(0) ob-tained by clause (iii) of the translation, notice that L(0) 2 X . All other rulesin lpnT (D) with L(0) in the head have the form L(0) not L1(0); : : : ;not Lm(0)for some static causal law caused L if L1 ^ � � � ^ Lm, and since s0 is a state towhich L does not belong, we can conclude that at least one of L1; : : : ; Lm be-longs to s0. Hence, at least one of L1(0); : : : ; Lm(0) belongs to X . Consequently,L(0) =2 lpnT (D)X .Case 3 : L(t) is a
uent literal, and t 6= 0. The claim in this case follows fromLemma 2.7.2 Proof of Proposition 2Proposition 2. If � is a split mapping for a de�nite action description D,then in rules (7) and (8) of lpT (D) with
uent literal heads we can replaceany expressions of the form not Li(t) (1 � i � m) such that �(F) > �(Li)with Li(t) without a�ecting the complete answer sets. Similarly, in rules (7) and(8) of lpT (D) with head ? we can replace any expressions of the form not Li(t)(1 � i � m) with Li(t).Proof. Let � be the split mapping for D, and let � be the program obtainedfrom lpT (D) by replacing some rule elements not Li(t) with Li(t). It is easy toverify that the same complete, consistent sets of literals are closed under andsupported by the two programs. As previously observed, lpT (D) is tight, so wecan conclude by Proposition 4 that the two programs have the same completeanswer sets, if we can show that � is tight also. We do this by constructing asuitable level mapping ��.Take � = sup f�(L) : L is a
uent literalg :For all
uent literals L and t 2 f0; : : : ; Tg, let��(L(t)) = (�+ 1) � t+ �(L) :For all action literals L and t 2 f0; : : : ; T � 1g, we de�ne ��(L(t)) = 0.First observe that for any
uent literals L;L0, and any t 2 f0; : : : ; T � 1g,��(L(t)) < ��(L0(t+ 1)) ;

since (�+ 1) � t+ �(L) < (�+ 1) � t+ (�+ 1)= (�+ 1) � t+ (�+ 1) � 1= (�+ 1) � (t+ 1)� (�+ 1) � (t+ 1) + �(L0) :(The �rst step uses the fact that �(L) < �+ 1, along with the right monotonicityof ordinal addition. The third step uses the fact that ordinal multiplicationdistributes from the left over addition.) Hence, level mapping �� establishesthat lpT (D) itself is tight. It remains to show that the allowed replacements ofrule elements preserve tightness.Consider any rule in lpT (D) with a
uent literal head L(t) in which a ruleelement not Li(t) has been replaced with Li(t) in � . In this case, we know that�(Li) < �(L), and we complete the proof by observing that, consequently,��(Li(t)) = (�+ 1) � t+ �(Li) < (�+ 1) � t+ �(L) = ��(L(t))(again by the right monotonicity of ordinal addition).7.3 Proof of Proposition 3Proposition 3. For any �nite tight program � and any complete set X ofliterals, X is an answer set for � i� X is an interpretation satisfying the literalcompletion of �.Proof. Assume X is a complete answer set for � . Since � is tight, we know byProposition 4 that X is closed under and supported by � . Let H be any literalor ?. We must show that X satis�esH � _Body2Bodies(H) pf (Body) :Case 1 : H 2 X . Since X is supported by � , there is at least one ruleH L1; : : : ; Lm;not Lm+1; : : : ;not Lnin� such that L1; : : : ; Lm 2 X and Lm+1; : : : ; Ln 62 X . It follows thatX satis�esthe corresponding element of Bodies(H).Case 2 : H =2 X . Since X is closed under � , we know that for every ruleH L1; : : : ; Lm;not Lm+1; : : : ;not Lnin � either fL1; : : : ; Lmg 6� X or fLm+1; : : : ; Lng \X 6= ;. It follows that Xsatis�es no element of Bodies(H).Proof in the other direction is similar.

It may be worth noting that Proposition 3 holds even when � is not �nite,as long as there are �nitely many rules in � with any given head (so that theliteral completion can be de�ned). Moreover, even this restriction can be droppedin the case of constraints (rules with head ?), if we modify the de�nition ofliteral completion slightly, so that H ranges only over literals, and we add tothe resulting propositional theory the formula :pf (Body) for each constraint? Body in � .7.4 Proof of Proposition 4Proposition 4. For any tight program �, a consistent set X of literals is ananswer set for � i� X is closed under and supported by �.Lemma 4. For any tight program � without negation as failure, and consistentset X of literals, if X is closed under and supported by �, then X is an answerset for �.Proof. We need to show that X is minimal among sets closed under � . Supposeotherwise; let Y be a proper subset of X that is also closed under � . Let � be alevel mapping establishing that � is tight. Choose a literal L 2 X nY such that�(L) is minimal. Since X is supported by � , there is a ruleL L1; : : : ; Lmin Pi such that L1; : : : ; Lm 2 X . Since � is tight, �(L1); : : : ; �(Lm) < �(L).Hence, by choice of L, we can conclude that L1; : : : ; Lm 2 Y , which shows thatY is not closed under � , contrary to the choice of Y .Proof of Proposition 4: The left-to-right direction is straightforward, and doesnot rely on tightness. For the other direction, assume X is closed under andsupported by � . It follows that X is closed under and supported by �X . Since� is tight, so is �X . Hence, by Lemma 4, X is an answer set for �X , and,consequently, an answer set for � .AcknowledgementsThanks to Esra Erdem for comments on a draft of this note. Some of these resultswere presented by the �rst author in his seminar on planning at the Universityof Texas in the Spring semester of 1999, and he is grateful to the participantsof the seminar for interesting discussion. His work was partially supported byNational Science Foundation under grant IRI-9732744. The second author is par-tially supported by University of Minnesota Grant-in-Aid of Research, Artistry& Scholarship #17831.

References1. Keith Clark. Negation as failure. In Herve Gallaire and Jack Minker, editors, Logicand Data Bases, pages 293{322. Plenum Press, New York, 1978.2. Yannis Dimopoulos, Bernhard Nebel, and Jana Koehler. Encoding planning prob-lems in non-monotonic logic programs. In Proc. European Conf. on Planning 1997,pages 169{181, 1997.3. Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco Scar-cello. The KR system dlv: Progress report, comparisons and benchmarks. InAnthony Cohn, Lenhart Schubert, and Stuart Shapiro, editors, Proc. Sixth Int'lConf. on Principles of Knowledge Representation and Reasoning, pages 406{417,1998.4. Fran�cois Fages. Consistency of Clark's completion and existence of stable models.Journal of Methods of Logic in Computer Science, 1:51{60, 1994.5. Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs anddisjunctive databases. New Generation Computing, 9:365{385, 1991.6. Michael Gelfond and Vladimir Lifschitz. Action languages. Electronic Transactionson AI, 3, 1998. Available at http://www.ep.liu.se/ea/cis/1998/016/.7. Enrico Giunchiglia and Vladimir Lifschitz. An action language based on causalexplanation: Preliminary report. In Proc. AAAI-98, pages 623{630, 1998.8. Vladimir Lifschitz. Foundations of logic programming. In Principles of KnowledgeRepresentation, pages 69{127. CSLI Publications, 1996.9. Vladimir Lifschitz. Action languages, answer sets and planning. In The LogicProgramming Paradigm: a 25-Year Perspective, pages 357{373. Springer Verlag,1999.10. NormanMcCain. Causality in Commonsense Reasoning about Actions. PhD thesis,University of Texas at Austin, 1997.11. Norman McCain and Hudson Turner. Causal theories of action and change. InProc. AAAI-97, pages 460{465, 1997.12. Norman McCain and Hudson Turner. Satis�ability planning with causal theories.In Anthony Cohn, Lenhart Schubert, and Stuart Shapiro, editors, Proc. Sixth Int'lConf. on Principles of Knowledge Representation and Reasoning, pages 212{223,1998.13. Ilkka Niemel�a and Patrik Simons. E�cient implementation of the well-founded andstable model semantics. In Proc. Joint Int'l Conf. and Symp. on Logic Programming,pages 289{303, 1996.14. Hudson Turner. Representing actions in logic programs and default theories: asituation calculus approach. Journal of Logic Programming, 31:245{298, 1997.15. Hudson Turner. Causal Action Theories and Satis�ability Planning. PhD thesis,University of Texas at Austin, 1998.16. Hantao Zhang. An e�cient propositional prover. In Proc. CADE-97, 1997.

