Signed Logic Programs

Hudson Turner
Department of Computer Sciences
University of Texas at Austin
Austin, TX 78703
hudson@cs.utexas.edu

May 1, 1995

1 Introduction

In this paper we explore the notion of a “signing” of a logic program, in the framework of the answer set (or stable model) semantics [Gelfond and Lifschitz, 1991]. In particular, we generalize and extend the notion of a signing, and show that even for programs with classical negation and disjunction the existence of a signing is a simple syntactic criterion that guarantees several different sorts of good behavior.

The notion of a signing for a normal logic program (that is, a program without classical negation and disjunction) was introduced by Kunen [1989], who used it as a tool in his proof that two-valued and three-valued completion semantics coincide on the class of “strict” normal programs. For Kunen, the notion was defined on the predicate dependency graph of a finite first-order program, so when Gelfond and Lifschitz [1993] recast the definition to apply directly to the rules of infinite propositional normal programs, the notion of a signing was made strictly more general. In [Turner, 1993] the definition was extended to the class of nondisjunctive programs with classical negation. In this paper it is generalized slightly and further extended to apply to programs with disjunction as well as classical negation.

For a normal program \(P \), a signing \(S \) is a set of atoms such that for every rule in \(P \) either (i) the head and the positive atoms in the body belong to
S and the negated atoms do not, or (ii) the head and the positive atoms in the body do not belong to S and the negated atoms do. From the perspective of answer sets for normal programs, signings are already known to be interesting for the following four reasons.

1. Signed normal programs are consistent. This is a special case of a more general theorem by Fages [1994], who has shown that “order-consistent” normal programs are consistent.

2. If S is a signing for a normal program P, then P has two “standard” answer sets that are expressible in terms of S and the well-founded model of P. [Turner, 1993]

3. The consequences of a signed normal program under the answer set semantics coincide with its consequences under the well-founded semantics. This is a special case of a more general result due to Dung [1992], who has shown that the answer set and well-founded semantics coincide for “bottom-stratified & top-strict” programs. Notice that this result shows that interpreters such as SLG [Chen and Warren, 1993], which compute the well-founded semantics, can also be used to compute the consequences of such programs under the answer set semantics.¹

4. There is a monotonicity theorem for signed normal programs. [Turner, 1993]

In [Turner, 1993] we showed that some of these results can be extended to nondisjunctive programs with classical negation. In this paper we generalize these previous results slightly, and also extend them in various ways to signed programs with disjunction as well as classical negation.

For a disjunctive program P with classical negation, a signing S is a subset of the literals of the language of P, satisfying several simple syntactic conditions. (The precise definition appears in Section 3.) We show that under this extension of the notion of a signing, the following properties hold.

¹In [Lifschitz et al., 1993] we show that SLG can also be used, under certain qualifications, to correctly compute the consequences of signed nondisjunctive programs with classical negation.
1. Signed disjunctive programs without classical negation are consistent. (Corollary 4.) A similar result is known for "locally stratified" disjunctive programs without classical negation.\(^2\) Since some signed disjunctive programs without classical negation are not locally stratified, the consistency of such disjunctive programs is a new result.

2. If \(S\) is a signing for a consistent nondisjunctive program \(P\) with classical negation, then \(P\) has a "standard" answer set expressible in terms of \(S\) and a naive extension of the well-founded semantics.\(^3\) (Theorem 1(iii).)

3. If \(S\) is a signing for a consistent nondisjunctive program \(P\) with classical negation, then the consequences of \(P\) in the complement of \(S\) are also expressible in terms of a naive extension of the well-founded semantics. (Corollary 1.) This result corresponds to Lemma 8 of [Turner, 1993]. Similarly, if \(S\) is a signing for a disjunctive program \(P\) with classical negation, then the consequences of \(P\) in the complement of \(S\) can be characterized in terms of a syntactically determined family of signed nondisjunctive programs with classical negation. (Theorem 2, Corollary 3.)

4. A generalization of the monotonicity theorem from [Turner, 1993] applies to all signed programs.\(^4\) (Theorem 4.)

The key technical result in this paper is a theorem (Theorem 2) relating the consequences of a signed disjunctive program to the consequences of the members of a closely related family of signed nondisjunctive programs. These nondisjunctive programs are the "covers" of the disjunctive program, where a cover is any program that can be obtained by removing all but one literal from the head of each rule in the disjunctive program. The notion of a cover was introduced in the paper "Disjunctive Defaults" [Gelfond et al., 1991] in order to explore the possibility of reducing a "disjunctive default theory" to a family of (nondisjunctive) default theories. The authors showed

\(^2\)The definition of "local stratification" is due to Przymusinski [1988]. The consistency of locally stratified disjunctive programs without classical negation under the answer set semantics is clear from Przymusinski's similar result under the perfect model semantics.

\(^3\)This result is implicit in [Turner, 1993].

\(^4\)In [Turner, 1993] the monotonicity theorem is applied to nondisjunctive programs only, and even in this special case it is slightly less general than the monotonicity theorem in this paper.
by counterexample that in general this cannot be done in any straightforward manner. On the other hand, it follows from their results (Theorems 6.2, 6.3 and 7.2) that for any disjunctive logic program \(P \) with classical negation:

(i) every answer set for \(P \) is a minimal member of the set of answer sets for covers of \(P \), and

(ii) if \(P \) is positive (that is, includes no negation as failure), then \(X \) is an answer set for \(P \) if and only if \(X \) is a minimal member of the set of answer sets of covers of \(P \).

From (ii) it follows that the consequences of a positive disjunctive program \(P \) with classical negation coincide with the intersection of the consequences of all covers of \(P \). In this paper we extend this result by showing that if \(S \) is a signing for a disjunctive program \(P \) with classical negation, then the consequences of \(P \) in the complement of \(S \) coincide with the intersection of the consequences, in the complement of \(S \), of the covers of \(P \).

To illustrate the usefulness of these results, we apply them to a family of programs for reasoning about action. Gelfond and Lifschitz [1993] defined a high-level language \(\mathcal{A} \) for reasoning about action, and a sound translation from \(\mathcal{A} \) to nondisjunctive logic programs with classical negation. We define in this paper a slight extension \(\mathcal{A}_d \) of the language \(\mathcal{A} \), in which disjunctive information about the values of fluents can be expressed, and we specify a translation from \(\mathcal{A}_d \) into signed disjunctive logic programs with classical negation. We use our results on the properties of signed programs, along with the Splitting Sequence Theorem from [Lifschitz and Turner, 1994], to prove this translation sound and complete.

Section 2 consists of preliminary definitions and observations, after which we define the notion of a signing and give some examples (Section 3), and characterize useful properties of nondisjunctive programs with signings (Section 4). The theorem relating a signed disjunctive program to its signed nondisjunctive covers is discussed in Section 5, along with results on the existence of consistent answer sets for signed disjunctive programs. In Section 6 we discuss the restricted monotonicity theorem for signed programs. These various results are applied to a family of signed programs for reasoning about actions (Section 7), and finally we conclude with a few additional remarks (Section 8). Proofs are omitted due to page constraints.

2 Answer Sets

We begin with a brief review of the syntax and semantics of logic programs.
To specify a language \mathcal{L} for logic programs, we can begin with a nonempty set of symbols called *atoms*. A *literal* of \mathcal{L} is an atom of \mathcal{L} possibly preceded by the classical negation symbol \neg. A *rule* in \mathcal{L} is determined by three finite subsets of the literals of \mathcal{L}—the set of *head literals*, the set of *positive subgoals* and the set of *negated subgoals*. The rule with the head literals L_1, \ldots, L_d, the positive subgoals L_{d+1}, \ldots, L_m and the negated subgoals L_{m+1}, \ldots, L_n is written as

$$L_1 \mid \ldots \mid L_d \leftarrow L_{d+1}, \ldots, L_m, \text{not } L_{m+1}, \ldots, \text{not } L_n .$$

We will denote the three parts of a rule r by $\text{head}(r)$, $\text{pos}(r)$ and $\text{neg}(r)$. A *program* is a set of rules in a language \mathcal{L}. For convenience, we often use \mathcal{L}_P to denote the set of all literals of the language of a program P.

A program P is *positive* if, for every rule $r \in P$, $\text{neg}(r)$ is empty. The notion of an answer set is first defined for positive programs, as follows. Let P be a positive program and let X be a subset of \mathcal{L}_P. We say that X is *closed* under P if, for every rule $r \in P$ such that $\text{pos}(r) \subseteq X$, $\text{head}(r) \cap X$ is nonempty. (We write $X \subseteq Y$ when X is a subset of Y, not necessarily proper.) We say that X is *logically closed* (with respect to \mathcal{L}_P) if X is consistent or $X = \mathcal{L}_P$.

An *answer set* for P is a minimal set of literals that is both closed under P and logically closed (with respect to \mathcal{L}_P).

Now let P be an arbitrary program, with X a subset of \mathcal{L}_P. For each rule $r \in P$ such that $\text{neg}(r) \cap X$ is empty, consider the rule r' defined by $\text{head}(r') = \text{head}(r)$, $\text{pos}(r') = \text{pos}(r)$, $\text{neg}(r') = \emptyset$. The positive program consisting of all rules r' obtained in this way is the *reduct* of P relative to X, denoted by P^X. We say that X is an *answer set* for P if X is an answer set for P^X.

A program P *entails* exactly those literals from \mathcal{L}_P that are included in every answer set for P. By $\text{Cn}(P)$ we denote the set of literals entailed by program P. Finally, P is *consistent* if $\text{Cn}(P)$ is consistent, and *inconsistent* otherwise.

We will at times be interested in the following classes of programs. A program P is *constraint-free* if for every rule $r \in P$, $\text{head}(r)$ is nonempty. A program P is *nondisjunctive* if for every rule $r \in P$, $\text{head}(r)$ is a singleton.\(^{5}\)

\(^{5}\)Nondisjunctive programs are also known as *extended* programs [Gelfond and Lifschitz, 1990]. The objects we here call logic programs are also known as *extended disjunctive* programs [Gelfond and Lifschitz, 1991].
Notice that nondisjunctive programs are constraint-free. A program is basic if it is positive and nondisjunctive.

Traditionally, programs without classical negation have been of great interest. In particular, nondisjunctive programs without classical negation (that is, “normal” programs) have been extensively studied. In this paper, instead of making stipulations about the presence of classical negation, we’ll generally prefer the following more general condition.

Definition. For any program P, $\text{Head}(P) = \bigcup_{r \in P} \text{head}(r)$. We say that P is head-consistent if $\text{Head}(P)$ is a consistent set.

Observe that if a set X of literals is closed under a positive program P, then so is $X \cap \text{Head}(P)$. It follows that every minimal set closed under a head-consistent program is consistent. For our purposes, this is the most salient property possessed by programs without classical negation but not possessed by programs in general. So we’ll usually speak about head-consistent programs instead of programs without classical negation, and about head-consistent nondisjunctive programs instead of normal programs.

3 Signings

Definition. Let P be a constraint-free program, with S a subset of L_P such that no literal in $S \cap \text{Head}(P)$ appears complemented in $\text{Head}(P)$. We say that S is a signing for P if each rule $r \in P$ satisfies the following two conditions:

- $\text{head}(r) \cup \text{pos}(r) \subseteq S$ and $\text{neg}(r) \subseteq S$.
- $\text{head}(r) \cup \text{pos}(r) \subseteq S$ and $\text{neg}(r) \subseteq S$.

where $S = L_P \setminus S$. If a program has a signing, we say that it is signed.\(^6\)

Notice that every constraint-free positive program has the signing $S = \emptyset$. We also observe that for programs without classical negation, the class of

\(^6\)Even in the special case of nondisjunctive programs, this definition is more general than the one proposed in [Turner, 1993]. There, a signing for a nondisjunctive program P is defined as a set S of atoms that satisfies condition (i) above and also includes no atom whose complement appears in P.

6
signed programs and the class of locally stratified programs overlap, and neither contains the other.

Consider the following program P_1.

\[
\begin{align*}
a & \leftarrow \text{not } b \\
b & \leftarrow \text{not } a \\
\neg a & \leftarrow \\
\end{align*}
\]

Program P_1 has a signing $S = \{b\}$. Observe that neither \{a, \neg a\} nor \{a\} is a signing for P, since we have $a, \neg a \in \text{Head}(P)$. So we see that the definition of a signing is asymmetric. That is, if a program P with signing S is not head-consistent, then \overline{S} is not a signing for P, because there is a literal in $\overline{S} \cap \text{Head}(P)$ that appears complemented in $\text{Head}(P)$.

We will want the following definition in order to describe a second asymmetry in the definition of a signing.

Definition. Let P be a program. If S is a signing for P, then

\[
\begin{align*}
h_S(P) & = \{r \in P : \text{head}(r) \subseteq S\} \\
h_{\overline{S}}(P) & = \{r \in P : \text{head}(r) \subseteq \overline{S}\}.
\end{align*}
\]

Let r be a rule in a program P with signing S. Since signed programs are constraint-free, the set $\text{head}(r)$ is nonempty. Thus, either $\text{head}(r) \subseteq S$ or $\text{head}(r) \subseteq \overline{S}$, but not both. It follows that a signing S divides a program P into a pair of disjoint subprograms: $h_S(P)$ and $h_{\overline{S}}(P)$.

Consider the following program P_2.

\[
\begin{align*}
a & \mid b \leftarrow \\
b & \leftarrow \text{not } c \\
c & \leftarrow \text{not } a \\
\end{align*}
\]

Program P_2 has a signing $S = \{c\}$. So the last rule of P_2 belongs to $h_S(P_2)$, and $h_{\overline{S}}(P_2)$ consists of the first two rules of P_2. Because of the second condition in the definition of a signing, the set \{a, b\} is not a signing for P_2. And in general, if S is a signing for a program P, then $h_S(P)$ is a nondisjunctive program. So we see a second asymmetry in the definition of a signing. That is, if a program P with signing S is not nondisjunctive, then \overline{S} is not a signing for P, because $h_{\overline{S}}(P)$ is not a nondisjunctive program.

In later discussion we will indicate why these asymmetries in the definition of a signing are necessary.
4 Signed Nondisjunctive Programs

For the most part, the results in this section can also be found, in a slightly less general form, in [Turner, 1993], either explicitly or implicitly.

Definition. Let P be a basic program. By $\alpha(P)$ we denote the least subset of \mathcal{L}_P that is closed under P.

For any basic program P, it’s clear that if $\alpha(P)$ is a consistent set, then $\alpha(P)$ is the unique answer set for P and $\alpha(P) = \text{Cn}(P)$. On the other hand, if $\alpha(P)$ is inconsistent, then \mathcal{L}_P is the unique answer set for P. Observe that $\alpha(P) \subseteq \text{Head}(P)$.

Definition. Let P be a nondisjunctive program. For every $X \subseteq \mathcal{L}_P$, $\Gamma^X_P = \alpha(P^X)$.

Observe that the answer sets for a nondisjunctive program P are the fixpoints of Γ^X_P. It is easy to verify that Γ^X_P is anti-monotone. Consequently, Γ^X_P is monotone. Because Γ^X_P is monotone, we know by the Knaster–Tarski theorem [Tarski, 1955] that Γ^X_P has a least and a greatest fixpoint.

Definition. Let P be a nondisjunctive program. By $\text{WF}_\perp(P)$ we denote the least fixpoint of Γ^P_P, and by $\text{WF}_\tau(P)$ the greatest.

If P is a normal program, then these two sets — $\text{WF}_\perp(P)$ and $\text{WF}_\tau(P)$ — capture essential information about the well-founded semantics of P [Van Gelder et al., 1990]. That is, under the well-founded semantics, when an atom $L \in \mathcal{L}_P$ is submitted as a query: the answer should be “yes” when $L \in \text{WF}_\perp(P)$; “unknown” when $L \in \text{WF}_\tau(P) \setminus \text{WF}_\perp(P)$; and “no” when $L \notin \text{WF}_\perp(P)$.

Even when a nondisjunctive program P includes classical negation, the sets $\text{WF}_\perp(P)$ and $\text{WF}_\tau(P)$ provide lower and upper bounds on the consistent answer sets for P. Thus, if X is a consistent answer set for P, then

$$\text{WF}_\perp(P) \subseteq X \subseteq \text{WF}_\tau(P),$$

because each fixpoint of Γ^P_P is also a fixpoint of Γ^X_P.

7 The reader may notice that the sets $\text{WF}_\perp(P)$ and $\text{WF}_\tau(P)$ correspond, essentially, to a proposal by Przymusinski [1990], extending the well-founded semantics to nondisjunctive programs with classical negation. Further work in this direction can be found in [Pereira and Alferes, 1992].
Theorem 1 Let P be a nondisjunctive program with signing S. The following three conditions are equivalent.

(i) P is a consistent program.

(ii) $WF_\bot(P) \cap \overline{S}$ is a consistent set.

(iii) $WF_\bot(P) \cup (WF_\tau(P) \cap S)$ is a consistent answer set for P.

This theorem shows, for instance, that if a nondisjunctive program P with signing S is consistent, then P has a “standard” answer set expressible in terms of $WF_\bot(P)$, $WF_\tau(P)$ and S.

We also have the following corollary.

Corollary 1 Let P be a nondisjunctive program with signing S. If P is consistent, then $\text{Cn}(P) \cap \overline{S} = WF_\bot(P) \cap \overline{S}$.

The right to left direction is clear, since we’ve seen that every answer set for a nondisjunctive program P contains $WF_\bot(P)$. For the other direction, we know by Theorem 1(iii) that $WF_\bot(P) \cup (WF_\tau(P) \cap S)$ is an answer set for P. The intersection of this answer set with \overline{S} coincides with $WF_\bot(P) \cap \overline{S}$, and it follows that $\text{Cn}(P) \cap \overline{S} \subset WF_\bot(P) \cap \overline{S}$.

Consider, for example, program P_1 from the previous section. Since P_1 is finite, and very small, we can conveniently calculate $WF_\bot(P_1)$ as follows.

\[
\Gamma_{P_1}^0 = \{-a, a, b\} \\
\Gamma_{P_1}^1 = \{-a\} \\
\Gamma_{P_1}^2 = \{-a, a, b\}
\]

We see that $\Gamma_{P_1}^2$, \emptyset is the least fixpoint of $\Gamma_{P_1}^0$, so $WF_\bot(P_1) = \{-a\}$. Recall that $S = \{b\}$ is a signing for P_1, so $WF_\bot(P_1) \cap \overline{S} = \{-a\}$. Since $WF_\bot(P_1) \cap \overline{S}$ is a consistent set, we can conclude by Theorem 1 that P_1 is a consistent program. For any nondisjunctive program P, it follows from the anti-monotonicity of Γ_P that $WF_\tau(P) = \Gamma_P(WF_\bot(P))$, so we have $WF_\tau(P_1) = \Gamma_{P_1}^2 = \{-a, a, b\}$. Thus $WF_\tau(P_1) \cap S = \{b\}$, and we can conclude by Theorem 1 that $\{-a, a\}$ is an answer set for P_1.

Note that the set $WF_\bot(P_1) \cup (WF_\tau(P_1) \cap \overline{S}) = \{-a\} \cup \{-a, a\} = \{-a, a\}$ is not an answer set for P_1; so the asymmetry in the definition of a signing for a nondisjunctive program is needed for Theorem 1.
program P_1 is consistent and $WF_{\perp}(P_1) \cap \overline{S} = \{\neg a\}$, we can conclude by Corollary 1 that $Cn(P_1) \cap \overline{S} = \{\neg a\}$.

Observe that for any head-consistent basic program P, the set $\alpha(P)$ is consistent, since $\alpha(P) \subseteq Head(P)$. From this it follows easily that if P is a head-consistent nondisjunctive program, then $WF_{\perp}(P)$ is consistent. Furthermore, if such a program P has a signing S, then \overline{S} is also a signing for P. These observations yield the following corollary to the previous results.

Corollary 2 Let P be a head-consistent nondisjunctive program with signing S. The following three conditions hold:

(i) P is a consistent program;

(ii) $WF_{\perp}(P) \cup (WF_{\perp}(P) \cap S)$ and $WF_{\perp}(P) \cup (WF_{\perp}(P) \cap \overline{S})$ are consistent answer sets for P;

(iii) $Cn(P) = WF_{\perp}(P)$.

In particular, Corollary 2 applies when P is a normal program with signing S.

5 Signed Disjunctive Programs

Our subsequent results rely on the close relationship between a signed disjunctive program and the set of its (signed nondisjunctive) covers, defined as follows.

Definition. Let P be a constraint-free program. A nondisjunctive program P^* (in the language of P) is a cover of P if P^* can be obtained from P by replacing each rule $r \in P$ with a rule r' such that $head(r')$ is a singleton, $head(r') \subseteq head(r)$, $pos(r') = pos(r)$, and $neg(r') = neg(r)$.

Of course we’re particularly interested in the covers of signed programs, so notice that if P is a program with signing S, then each cover of P is a nondisjunctive program with signing S.

10
For example, the following two programs are the only covers of program P_2 from Section 3.

Program P_3:

```
a ← b ← not c
b ← not a
c ← not a
```

Program P_4:

```
b ← not c
b ← not c
c ← not a
```

Definition. Let P be a constraint-free program. By $\text{covers}(P)$ we denote the set of all covers of P, and by $\text{good-covers}(P)$ we denote the consistent programs in $\text{covers}(P)$.

Thus, $\text{covers}(P_2) = \{P_3, P_4\} = \text{good-covers}(P_2)$, since programs P_3 and P_4 are both consistent.\(^9\)

Now we state our main theorem relating a signed program to its covers.

Theorem 2 Let P be a program. If S is a signing for P, then

$$\begin{align*}
\text{Cn}(P) \cap \overline{S} &= \left(\bigcap_{P' \in \text{covers}(P)} \text{Cn}(P') \right) \cap \overline{S} \\
&= \left(\bigcap_{P' \in \text{good-covers}(P)} \text{WF}_\perp(P') \right) \cap \overline{S}.
\end{align*}$$

For example, we’ve already noted that $S = \{c\}$ is a signing for program P_2, and that $\text{covers}(P_2) = \{P_3, P_4\} = \text{good-covers}(P_2)$. It’s not hard to check that $\text{WF}_\perp(P_3) = \{a, b\}$ and $\text{WF}_\perp(P_4) = \{b, c\}$. So by Theorem 2 we can conclude that $\text{Cn}(P_2) \cap \overline{S} = \text{WF}_\perp(P_3) \cap \text{WF}_\perp(P_4) \cap \overline{S} = \{b\}$.\(^{10}\)

Recall that if S is a signing for a program P, then $h_S(P)$ is a nondisjunctive program. Without this asymmetry, Theorem 2 can fail to hold even in very simple cases. For example, program $h_{\overline{S}}(P_2)$ is not nondisjunctive, so \overline{S} is not a signing for P_2. And we can see that

$$\bigcap_{P' \in \text{good-covers}(P_2)} \text{WF}_\perp(P') \cap S = \text{WF}_\perp(P_3) \cap \text{WF}_\perp(P_4) \cap S = \emptyset.$$

\(^9\)Program P_3 has the unique answer set $\{a, b\}$, and program P_4 has the unique answer set $\{b, c\}$.

\(^{10}\)The unique answer set for program P_2 is $\{b, c\}$, so $\text{Cn}(P_2) = \{b, c\}$.

11
and yet \(Cn(P_2) \cap S = \{c\} \).

If a program \(P \) is signed and head-consistent, each of its covers is a signed head-consistent nondisjunctive program. It follows by Corollary 2(i) that every cover of \(P \) is consistent, and thus that \(\text{covers}(P) = \text{good-covers}(P) \). This gives us the following corollary to Theorem 2.

Corollary 3 Let \(P \) be a program with signing \(S \). If \(P \) is head-consistent, then

\[
Cn(P) \cap \overline{S} = \left(\bigcap_{P' \in \text{covers}(P)} WF_\bot (P') \right) \cap \overline{S}.
\]

The following theorem can be derived from Theorem 2 and the definitions.

Theorem 3 Let \(P \) be a program with signing \(S \). The following three conditions are equivalent.

(i) \(P \) is a consistent program.

(ii) \(P \) has a consistent cover.

(iii) \(Cn(P) \cap \overline{S} \) is a consistent set.

Again, since the covers of a signed program are signed nondisjunctive programs, and since such programs are consistent whenever they are head-consistent (Corollary 2(i)), we have the following corollary to Theorem 3.

Corollary 4 Every signed program with at least one head-consistent cover is consistent.

Notice that Corollary 4 may apply even to programs that are not themselves head-consistent. Notice also that, as a special case of Corollary 4, we get the result that every signed program without classical negation has at least one consistent answer set.

Proof sketch (Theorem 2) : The chief task is to show that

\[
Cn(P) \cap \overline{S} = \left(\bigcap_{P' \in \text{good-covers}(P)} WF_\bot (P') \right) \cap \overline{S}.
\]
Show that every consistent answer set for P is an answer set for a consistent cover of P. By Corollary 1, if A is a consistent answer set for a cover P' of P, then $WF_\bot (P) \cap S \subseteq A \cap \overline{S}$.

Show that for every consistent cover P' of P there is a consistent cover P'' of P such that $WF_\bot (P'') \cap S \subseteq WF_\bot (P') \cap S$ and $WF_\bot (P'') \cup (WF_\bot (P') \cap S)$ is an answer set for P. There are two key lemmas. First, define $\text{candidates}(P)$ as follows:

$$\text{candidates}(P) = \{WF_\bot (P') \cup (WF_\bot (P') \cap S) : P' \in \text{good-covers}(P)\}.$$

Define a partial order \leq_S on $\text{candidates}(P)$ such that $X \leq_S Y$ if the following two conditions hold: (i) $X \cap S \subseteq Y \cap \overline{S}$; (ii) if $X \cap S = Y \cap \overline{S}$, then $X \subseteq Y$. Show that each chain in this partial order has a lower bound in $\text{candidates}(P)$. Second, show that each minimal element in this partial order is an answer set for P. Notice that this proof sketch suggests the following additional result.

Signing Lemma. Let P be a program with signing S. The partial order $\langle \text{candidates}(P), \leq_S \rangle$ has minimal elements, each of which is a consistent answer set for P. Moreover, if A is a consistent answer set for P or any cover of P, then there is a minimal element A' in the partial order $\langle \text{candidates}(P), \leq_S \rangle$ such that $A' \cap S \subseteq A \cap \overline{S}$.

6 Restricted Monotonicity

Here we generalize and extend the restricted monotonicity theorem from [Turner, 1993]. A signing S for a program P is a subset of the literals in the language of P. The restricted monotonicity theorem shows, as a special case, that we can augment program P with any subset of the set of rules $\{L \leftarrow : L \in \overline{S}\}$ without losing any consequences of P in \overline{S}. Of course even this simple monotonicity property does not hold for arbitrary programs P and arbitrary subsets S of \mathcal{L}_P.

In order to formulate the restricted monotonicity theorem, we first introduce an ordering on the rules of programs, which will be used in turn to define an ordering on programs themselves. Before defining the ordering on rules, we describe the intuition underlying the definition. We have in mind three.

11 The notion of restricted monotonicity is given a general definition in [Lifschitz, 1993].
simple ways to strengthen a rule. First, one can strengthen a rule \(r \) by removing literals from \(\text{pos}(r) \) and \(\text{neg}(r) \). Second, one can strengthen a rule \(r \) by removing literals from \(\text{head}(r) \). Based on these two methods for strengthening a rule, there would be a transparent formal definition; it is the third method for strengthening a rule that makes the definition less obvious, although still intuitively straightforward. So, third, one can strengthen a rule \(r \) by removing a literal from \(\text{pos}(r) \) and adding the complementary literal to \(\text{head}(r) \).

Definition. Given rules \(r \) and \(r' \), we say that \(r \) is subsumed by \(r' \), and we write \(r \preceq r' \), if the following three conditions hold:

1. \(\text{neg}(r') \subseteq \text{neg}(r) \),
2. \(\text{pos}(r') \subseteq \text{pos}(r) \),
3. every literal in \(\text{head}(r') \setminus \text{head}(r) \) appears complemented in \(\text{pos}(r) \).

Following are some additional observations about the \(\preceq \) ordering for rules. First, note that if \(r \preceq r' \) and no literal in \(\text{head}(r') \) has its complement in \(\text{pos}(r) \), then \(\text{head}(r') \subseteq \text{head}(r) \). On the other hand, if \(\text{pos}(r) \cup \text{head}(r') \) is inconsistent, then we may have \(r \preceq r' \) and yet \(\text{head}(r') \not\subseteq \text{head}(r) \). For example, let \(r \) be the rule \(b \leftarrow \neg a \) and let \(r' \) be the rule \(a \mid b \leftarrow \). In this case we have \(r \preceq r' \), and yet \(\text{head}(r') \not\subseteq \text{head}(r) \).

Clearly the \(\preceq \) ordering for rules is reflexive. As it happens, it is not anti-symmetric. For instance, let \(r \) be the rule \(a \leftarrow a, \neg a \) and let \(r' \) be the rule \(\neg a \leftarrow a, \neg a \). We have \(r \preceq r' \) and \(r' \preceq r \), yet \(r \neq r' \). It is not difficult to establish also that the \(\preceq \) ordering for rules is transitive.

Definition. Given programs \(P \) and \(Q \), we say that \(P \) is subsumed by \(Q \), and we write \(P \preceq Q \), if for each rule \(r \in P \) there is a rule \(r' \in Q \) such that \(r \preceq r' \).

Because the \(\preceq \) ordering for rules is reflexive and transitive, we can conclude that the \(\preceq \) ordering for programs is reflexive and transitive as well. On the other hand, because the \(\preceq \) ordering for rules is not anti-symmetric, neither is the \(\preceq \) ordering for programs.

Now we can state the restricted monotonicity theorem.

\[12\] As subsequent discussion will illustrate, this third condition makes the definition of the \(\preceq \) ordering for rules more general than that used in [Turner, 1993], even when we consider only nondisjunctive rules.
Theorem 4 Let P, Q be programs in the same language, both with signing S. If $h_S(P) \preceq h_S(Q)$ and $h_S(Q) \preceq h_S(P)$, then $Cn(P) \cap S \subseteq Cn(Q) \cap S$.

In the interest of simplicity, Theorem 4 is stated in terms of the consequences of signed programs; we also have the following stronger result in terms of answer sets.

Theorem 5 Let P, Q be programs in the same language, both with signing S. If $h_S(P) \preceq h_S(Q)$ and $h_S(Q) \preceq h_S(P)$, then for every answer set A' for program Q, there is an answer set A for program P such that $A \cap S \subseteq A' \cap S$.

Consider for example the program P_2 discussed previously, along with the program P_2' obtained from P_2 by removing the rule $b \leftarrow \neg c$.

\[
\begin{array}{c|c}
\text{Program } P_2: & \text{Program } P_2': \\
a & b \leftarrow & a & b \leftarrow \\
b & \leftarrow \neg c & c & \leftarrow \neg a \\
c & \leftarrow \neg a &
\end{array}
\]

The two programs share a signing $S = \{c\}$, and we can see that $h_S(P_2) = h_S(P_2')$, while $h_S(P_2') \preceq h_S(P_2)$. Theorem 4 tells us that program P_2 is stronger in S than program P_2'. Recall that P_2 has a unique answer set — $\{b, c\}$ — and so entails the literal b from S. Program P_2' has an additional answer set — $\{a\}$ — and so entails no literals from S.

Next we demonstrate that the two asymmetries in the definition of a signing are necessary for the restricted monotonicity theorem. First, we might suppose that for a nondisjunctive program P, a set S of literals should be a signing if for every rule $r \in P$, either $\text{head}(r) \cup \text{pos}(r) \subseteq S$ and $\text{neg}(r) \subseteq \overline{S}$, or $\text{head}(r) \cup \text{pos}(r) \subseteq \overline{S}$ and $\text{neg}(r) \subseteq S$. But under this symmetric definition, the restricted monotonicity property is lost. For instance, consider again the program P_1, along with the program P_1' obtained from P_1 by removing the rule $\neg a \leftarrow$.

\[
\begin{array}{c|c}
\text{Program } P_1: & \text{Program } P_1': \\
a & \leftarrow \neg b & a & \leftarrow \neg b \\
b & \leftarrow \neg a & b & \leftarrow \neg a \\
\neg a & \leftarrow &
\end{array}
\]

Suppose that $S = \{a, \neg a\}$ was in fact a signing for programs P_1 and P_1'. Thus we would have $\text{Cn}(P_1) \cap S = \{b\}$ and $\text{Cn}(P_1') \cap \overline{S} = \emptyset$. Yet we would also
have $h_S(P_1) = h_S(P'_1)$ and $h_S(P_1') \preceq h_S(P'_1)$, and by restricted monotonicity we could mistakenly conclude that $Cn(P_1) \cap S \subset Cn(P'_1) \cap S$.

We might also suppose that a disjunctive program P should be signed whenever all its covers are. Under such an alternative definition, we would say that $S = \{a, b\}$ should be a common signing for programs P_2 and P'_2 above, and from this we could mistakenly conclude by restricted monotonicity that program P'_2 should be stronger in S than program P_2.

Proof sketch (Theorem 5): First, prove the theorem for the nondisjunctive case. (Roughly, follow the proof in [Turner, 1993], using the new definition of \preceq.) Second, show that for appropriate P and Q with signing S, for every cover Q' of Q there is a cover P' of P such that $h_S(P') \preceq h_S(Q')$ and $h_S(Q') \preceq h_S(P')$. Given these results, assume that A' is a consistent answer set for Q. By the Signing Lemma (Section 5), there is a consistent answer set A'' for Q such that $A'' \cap S \subset A' \cap S$ and A'' is a minimal element in $\langle \text{candidates}(Q), \preceq_S \rangle$. By the definition of $\text{candidates}(Q)$, there is a cover Q' of Q such that A'' is an answer set for Q'. It follows that there is a cover P' of P with consistent answer set A''' such that $A''' \cap S \subset A'' \cap S$. Again by the Signing Lemma we can conclude that there is a consistent answer set A for P such that $A \cap S \subset A''' \cap S$.

7 Application: Reasoning about Action

Recently Gelfond and Lifschitz [1993] defined a simple, elegant language, called \mathcal{A}, in which many benchmark problems of commonsense reasoning about action can be formalized simply and (intuitively) correctly. They also specified a translation from \mathcal{A} into nondisjunctive logic programming, and used properties of signed normal programs to prove the translation sound. Subsequently, several sound and complete translations from \mathcal{A} into variants of logic programming have been proposed. Denecker [1993] and Dung [1993] each define a version of abductive logic programming into which they specify a translation from \mathcal{A}. A translation into “equational logic programming” has also been proposed [Hölldobler and Thielescher, 1993]. In the remainder of this section, we define a slight extension of \mathcal{A}, called \mathcal{A}_d, and specify a sound and complete translation from \mathcal{A}_d into disjunctive logic programming with classical negation. This translation produces signed programs, and our soundness and completeness proof exploits many of the
results reported in this paper, including the restricted monotonicity property of signed programs and the close relationship between a signed disjunctive program and its (signed) nondisjunctive covers.

7.1 Example: Two-guns Domain

Before embarking on the definition of A_d and the translation from A_d into logic programming, we informally describe an action domain and present a correct program for it. We also indicate in part how properties related to signings can be of use in showing the program correct.

We will consider yet another variant of the Yale Shooting domain [Hanks and McDermott, 1987], which can be called the “two-guns” domain. There is a pilgrim and a turkey. The pilgrim has two guns. Initially, the turkey is alive, but if the pilgrim fires a loaded gun, the turkey dies. Furthermore, at least one of the pilgrim’s guns is loaded initially. We can conclude that the turkey will be dead if the pilgrim performs either of the following sequences of actions: (i) wait, shoot gun one, shoot gun two; or (ii) wait, shoot gun two, shoot gun one.

The following program P_5 correctly formalizes the two-guns domain.

1. \(\text{Holds}(\text{Alive}, S_0) \leftarrow \)
2. \(\text{Holds}(\text{Loaded}_1, S_0) \mid \text{Holds}(\text{Loaded}_1, S_0) \leftarrow \)
3. \(\neg \text{Holds}(\text{Alive}, \text{Result}(\text{Shoot}_1, s)) \leftarrow \text{Holds}(\text{Loaded}_1, s) \)
4. \(\text{Noninertial}(\text{Alive}, \text{Shoot}_1, s) \leftarrow \neg \text{Holds}(\text{Loaded}_1, s) \)
5. \(\neg \text{Holds}(\text{Alive}, \text{Result}(\text{Shoot}_2, s)) \leftarrow \text{Holds}(\text{Loaded}_2, s) \)
6. \(\text{Noninertial}(\text{Alive}, \text{Shoot}_2, s) \leftarrow \neg \text{Holds}(\text{Loaded}_2, s) \)
7. \(\text{Holds}(f, \text{Result}(a, s)) \leftarrow \text{Holds}(f, s), \neg \text{Noninertial}(f, a, s) \)
8. \(\neg \text{Holds}(f, \text{Result}(a, s)) \leftarrow \neg \text{Holds}(f, s), \neg \text{Noninertial}(f, a, s) \)
9. \(\text{Holds}(f, S_0) \mid \neg \text{Holds}(f, S_0) \leftarrow \)

Before we describe the intended meaning of each of these rules, we point out that rules 3–9 are “schematic rules.” In our description of languages and programs in Section 2, we adopted an abstract view of what atoms are and said nothing about their internal structure. But the most important case is when the set of atoms is defined as the set of ground atoms of a first-order language; then a large (even infinite) set of rules can be specified by a single schematic rule with variables. Thus, the atoms of L_P correspond to the ground atoms of the appropriate many-sorted first-order language,
with variables \(f, a, s \) for sorts \textit{fluents, actions, and situations}. The rules of program \(P_5 \) correspond to the ground instances in this language of the schematic rules given above.\(^{13}\)

Rule 1 says that the turkey is initially alive, and rule 2 says that at least one of the pilgrim’s guns is initially loaded. Rule 3 says that the turkey is not alive after the pilgrim fires gun one, if gun one is loaded. Rule 4 indicates that if gun one is fired when it might be loaded, it is not safe to assume that the turkey remains alive. Rules 5 and 6 tell us the same things with respect to the second gun. Rules 7 and 8 are "inertia" rules; they express the commonsense notion that things generally don’t change unless they are made to. Finally, rule 9 represents the fact that it must be the case initially that each fluent is either true or false.\(^{14}\)

Notice that the set \(S \) consisting of all the \textit{Noninertial} literals is a signing for program \(P_5 \), with \(h_S(P_5) \) consisting of rules 4 and 6, and with \(h_{\overline{S}}(P_5) \) consisting of the remaining rules. Of course we are primarily interested in the \textit{Holds} literals entailed by this program; that is, we are interested in the literals belonging to \(\overline{S} \). Theorem 2 allows us to determine the consequences of \(P_5 \) in \(\overline{S} \) by considering each of the covers of \(P_5 \). The following program \(P_6 \) is one of these covers.

1. \textit{Holds(Alive, }S_0) \leftarrow \\
2.1. \textit{Holds(}Loaded_1, S_0) \leftarrow \\
3. \neg \textit{Holds(Alive, Result(Shoot_1, s))} \leftarrow \textit{Holds(}Loaded_1, s) \\
4. \textit{Noninertial(Alive, Shoot_1, s)} \leftarrow \neg \textit{Holds(}Loaded_1, s) \\
5. \neg \textit{Holds(Alive, Result(Shoot_2, s))} \leftarrow \textit{Holds(}Loaded_2, s) \\
6. \textit{Noninertial(Alive, Shoot_2, s)} \leftarrow \neg \textit{Holds(}Loaded_2, s) \\
7. \textit{Holds(f, Result(a, s))} \leftarrow \textit{Holds(f, s), not Noninertial(f, a, s)} \\
8. \neg \textit{Holds(f, Result(a, s))} \leftarrow \neg \textit{Holds(f, s), not Noninertial(f, a, s)} \\
9.1.1. \textit{Holds(Alive, }S_0) \leftarrow \\
9.1.2. \textit{Holds(}Loaded_1, S_0) \leftarrow \\
9.1.3. \neg \textit{Holds(}Loaded_2, S_0) \leftarrow \\

\(^{13}\)For convenience in the exposition below, we will speak of the family of rules specified by a given schematic rule as if it were in fact a single rule.

\(^{14}\)This obvious fact about the initial state must be made explicit in our program because the law of excluded middle is not implied by the semantics of logic programs (unless we impose a closed world assumption). In effect, rule 9 enforces the law of excluded middle for fluents in the initial situation, and the correctness of rules 3–9 preserves this property in all subsequent situations.
The reader may notice that program P_6 is very much like the programs for reasoning about action proposed by Apt and Bezem [1990], and thus it is relatively easy to reason about. For instance, we can show that program P_6 correctly formalizes a “specialization” of the two-guns domain in which we know in addition that the first gun is loaded initially and the second isn’t.

In fact, each consistent cover of program P_5 correctly formalizes one of the consistent specializations of the two-guns domain in which we know the initial values of all fluents. Conversely, each such consistent specialization of the two-guns domain is correctly formalized by one of the consistent covers of P_5. We will make our claims precise in a more general setting below, but the key is that the two-guns domain entails just what is entailed by all such consistent specializations. Meanwhile, our observations above indicate that whatever is entailed by all such consistent specializations of the two-guns domain is exactly what is entailed about the values of fluents by all consistent covers of program P_5. Finally, we know by Theorem 2 that whatever is entailed about the values of fluents by all consistent covers of program P_5 is exactly what is entailed about the values of fluents by program P_5 itself. Therefore, the two-guns domain entails just what is entailed about the values of fluents by program P_5.

7.2 The Language \mathcal{A}_d

In the language \mathcal{A}_d, a description of an action domain is a set of propositions of two kinds: value propositions, which restrict the values of fluents in situations resulting from sequences of actions, and effect propositions, which describe the effect of an action on a fluent.

First we describe the syntax of \mathcal{A}_d. We begin with two disjoint nonempty sets of symbols, called fluent names and action names. A fluent expression is a fluent name possibly preceded by \neg. An atomic value proposition is an expression of the form F after $A_1; \ldots; A_m$, where F is a fluent expression, and A_1, \ldots, A_m ($m \geq 0$) are action names. If $m = 0$, we write instead initially F. A value proposition is an expression of the form $V_1 or \ldots or V_k$, ($k \geq 1$) where all of V_1, \ldots, V_k are atomic value propositions. An effect proposition is an expression of the form A causes F if G_1, \ldots, G_n, where A is an action name, and each of F, G_1, \ldots, G_n ($n \geq 0$) is a fluent expression.

15 In \mathcal{A}, all value propositions are atomic. \mathcal{A} and \mathcal{A}_d coincide on domains that include only atomic value propositions.
About this proposition we say that it describes the effect of \(A \) on \(F \), and that \(G_1, \ldots, G_n \) are its preconditions. If \(n = 0 \), we drop the if and write simply \(A \) causes \(F \).

To describe the semantics of \(A_d \), we must define what the “models” of a domain description are, and when a value proposition is “entailed” by a domain description.

A state is a set of fluent names. Given a fluent name \(F \) and a state \(\sigma \), we say that \(F \) holds in \(\sigma \) if \(F \in \sigma \); and that \(\neg F \) holds in \(\sigma \) if \(F \notin \sigma \). A transition function is a mapping \(\Phi \) from the set of pairs \((A, \sigma)\), where \(A \) is an action name and \(\sigma \) is a state, into the set of states. A structure is a pair \((\sigma_0, \Phi)\), where \(\sigma_0 \) is a state (the initial state of the structure), and \(\Phi \) is a transition function.

For any structure \(M \) and any action names \(A_1, \ldots, A_m \), by \(M^{A_1; \ldots; A_m} \) we denote the state

\[
\Phi(A_m, \Phi(A_{m-1}, \ldots, \Phi(A_1, \sigma_0) \ldots)),
\]

where \(\Phi \) is the transition function of \(M \), and \(\sigma_0 \) is the initial state of \(M \). We say that an atomic value proposition \(F \) after \(A_1; \ldots; A_m \) is true in a structure \(M \) if \(F \) holds in the state \(M^{A_1; \ldots; A_m} \), and that it is false otherwise. In particular, a proposition of the form initially \(F \) is true in \(M \) if and only if \(F \) holds in the initial state of \(M \). Furthermore, we say that a value proposition \(V_1 \) or \(\ldots \) or \(V_k \) (where each of \(V_1, \ldots, V_k \) is an atomic value proposition) is true in \(M \) if at least one of \(V_1, \ldots, V_k \) is true in \(M \), and that it is false otherwise.

A structure \((\sigma_0, \Phi)\) is a model of a domain description \(D \) if every value proposition from \(D \) is true in \((\sigma_0, \Phi)\), and, for every action name \(A \), every fluent name \(F \), and every state \(\sigma \), the following three conditions are satisfied:

- if \(D \) includes an effect proposition describing the effect of \(A \) on \(F \) whose preconditions hold in \(\sigma \), then \(F \in \Phi(A, \sigma) \);
- if \(D \) includes an effect proposition describing the effect of \(A \) on \(\neg F \) whose preconditions hold in \(\sigma \), then \(F \notin \Phi(A, \sigma) \);
- if \(D \) does not include such effect propositions, then \(F \in \Phi(A, \sigma) \) if and only if \(F \in \sigma \).
A domain description is consistent if it has a model. A value proposition is entailed by a domain description \(D \) if it is true in every model of \(D \).

For example, we represent the two-guns domain \(D_2 \) in \(\mathcal{A}_d \) as follows, with actions \{Shoot_1, Shoot_2, Wait\} and fluents \{Loaded_1, Loaded_2, Alive\}.

- Initially Alive
- Initially Loaded_1 or Initially Loaded_2
- Shoot_1 causes \(\neg \text{Alive if Loaded}_1 \)
- Shoot_2 causes \(\neg \text{Alive if Loaded}_2 \)

Domain \(D_2 \) has three models: one in which Loaded_1 holds initially and Loaded_2 doesn’t, one in which Loaded_2 holds initially and Loaded_1 doesn’t, and one in which both Loaded_1 and Loaded_2 hold initially. The following are among the value propositions entailed by domain \(D_2 \).

- \(\neg \text{Alive after Wait; Shoot}_1; \text{Shoot}_2 \)
- \(\neg \text{Alive after Wait; Shoot}_2; \text{Shoot}_1 \)
- \(\neg \text{Alive after Shoot}_1 \text{ or } \neg \text{Alive after Shoot}_2 \)

7.3 The Translation from \(\mathcal{A}_d \) into Logic Programming

In specifying the translation from a domain description \(D \) in \(\mathcal{A}_d \) into a logic program \(\pi D \), we borrow a number of conventions from Gelfond and Lifschitz [1993]. We utilize schematic rules containing sorted variables \(f, a, s \) for fluents, actions, and situations, as discussed previously. Also, for any fluent expression \(F \), \(|F| \) denotes the fluent name contained in \(F \), and for any fluent name \(F \) and situation term \(t \), \(\text{Holds}(\neg F,t) \) stands for \(\neg \text{Holds}(F,t) \).

Now we specify the translation. To begin, if \(V \) is an atomic value proposition \(F \text{ after } A_1; \ldots; A_m \), then \(\pi V \) stands for the literal

\[
\text{Holds}(F, \text{Result}(A_m, \text{Result}(A_{m-1}, \ldots, \text{Result}(A_1, S_0) \ldots))).
\]

(1)

In particular, \(\pi(\text{Initially } F) \) is \(\text{Holds}(F, S_0) \).

For any domain description \(D \), the program \(\pi D \) consists of the following four kinds of rules.
1. Rules for the value propositions.
Each value proposition V_1 or ... or V_k in D (where $k > 0$ and each of V_1, \ldots, V_k is atomic) is translated into the rule

$$\pi V_1 | \ldots | \pi V_k \leftarrow .$$

2. Rules for the effect propositions.
Each effect proposition A causes F if G_1, \ldots, G_n is translated into a pair of rules. The first of them is the “effect” rule

$$\text{Holds}(F, \text{Result}(A, s)) \leftarrow \text{Holds}(G_1, s), \ldots, \text{Holds}(G_n, s).$$

The second is the “noninertial” rule

$$\text{Noninertial}([F], A, s) \leftarrow \neg \text{Holds}(G_1, s), \ldots, \neg \text{Holds}(G_n, s),$$

where for any literal L, \overline{L} denotes its complement.

3. Inertia rules.

$$\text{Holds}(f, \text{Result}(a, s)) \leftarrow \text{Holds}(f, s), \neg \text{Noninertial}(f, a, s)$$

$$\neg \text{Holds}(f, \text{Result}(a, s)) \leftarrow \neg \text{Holds}(f, s), \neg \text{Noninertial}(f, a, s)$$

4. Complete initial situations rule.

$$\text{Holds}(f, S_0) \mid \neg \text{Holds}(f, S_0) \leftarrow$$

For example, the logic program πD_2 obtained from the two-guns domain D_2 is precisely the program P_5 considered previously.

Of course the Noninertial literals play an auxiliary role in programs such as these. We are primarily interested in the Holds literals. Thus, if S is defined as before, value propositions contribute only rules with their heads in \overline{S}, so we can conclude by the restricted monotonicity theorem (Theorem 4) that adding value propositions to a domain D can only increase the Holds literals entailed by the corresponding program πD. Furthermore, we can see by Theorem 2 that the Holds literals entailed by a program πD are exactly those Holds literals entailed by every cover of πD. We use properties such as these to establish the following general theorem showing that for any consistent domain D, the program πD is sound and complete with respect to the semantics of A_d.

Theorem 6 Let D be a consistent domain description in A_d. For every atomic value proposition V, D entails V if and only if πD entails πV.

22
Although Theorem 6 applies only to atomic value propositions, we also have the following stronger result which applies also to disjunctive value propositions.

Theorem 7 Let D be a consistent domain description in A_d. For all value propositions V and all atomic value propositions V_1, \ldots, V_k ($k \geq 1$) such that $V = V_1 \lor \ldots \lor V_k$, domain D entails V if and only if each consistent cover of πD entails at least one of $\pi V_1, \ldots, \pi V_k$.

In point of fact, Theorem 6 follows easily from Theorem 7 by Theorem 2, which relates the behavior of a signed program πD to the behavior of its covers.

We remark again that the covers of such a program πD resemble the acyclic (normal) programs for reasoning about action proposed by Apt and Bezem [1990]. Thus, these covers are relatively easy to reason about. Nonetheless, more than half of the proof of Theorem 7 is devoted essentially to proving the correctness of such nondisjunctive programs for “complete temporal projection” domains, in which value propositions are atomic, refer only to the initial situation, and completely specify the values of fluents in the initial situation. This intermediate result is not particularly difficult, but it brings together a number of complex definitions: the definition of the translation π, the definition of a model in A_d, and the definitions related to the Splitting Sequence Theorem from [Lifschitz and Turner, 1994]. Once we’ve established the correctness of such nondisjunctive programs for complete temporal projection domains, we use the restricted monotonicity of signed programs (Theorem 4) to show that for any consistent domain D, each consistent cover of program πD corresponds to a model of D, and vice versa.

8 Conclusion

The existence of a signing for a logic program is a simple syntactic criterion that guarantees many convenient declarative properties for the program under the answer set semantics.

One such property is the existence of a consistent answer set for signed disjunctive programs with at least one head-consistent cover (Corollary 4). As a special case of this, we have the consistency of signed disjunctive programs without classical negation. It seems likely though that consistency
may hold also for larger classes of programs: for instance, disjunctive programs for which all covers are signed and one cover is also head-consistent. For now though, the consistency of programs in this larger class remains an open question.

On the other hand, without going into details, we know that the consistency result for signed disjunctive programs with a head-consistent cover can be extended in another direction by use of the notion of “U-components” from [Lifschitz and Turner, 1994]. More specifically, we can show that a disjunctive program with a head-consistent cover is consistent whenever there is a “splitting sequence” U for P such that every U-component of P is a signed program. Again we have as a special case the fact that a disjunctive program without classical negation is consistent if it has a splitting sequence U with all U-components signed. This result is strictly more general than the corresponding result for (locally) stratified programs, since a disjunctive program P without classical negation is (locally) stratified if and only if it has a splitting sequence U such that every U-component of P is a positive program.

Of course this generalization of the consistency result for signed programs holds as well in the nondisjunctive case. Recall that one of the most general results on the consistency of nondisjunctive programs belongs to Fages [1994] who showed that “order-consistent” normal programs have answer sets. In Section 5 of [Lifschitz and Turner, 1994], we show that a normal program is order-consistent if and only if it has a splitting sequence U such that all U-components are signed. Thus Fages’ consistency theorem is a special case of the more general theorem alluded to above.16

In contrast to the consistency results for signed programs, the examples considered in this paper suggest that it should be difficult or impossible to extend very significantly the restricted monotonicity result for signed programs.

In general, the asymmetric nature of these results may limit their utility. But we imagine that in many cases it may be possible to write programs for which the literals belonging to a signing S represent auxiliary concepts, as

16 The underlying idea of this redefinition of order-consistency is already apparent in Kunen’s [1989] use of signnings in relation to “call-consistent” programs. He noticed, roughly speaking, that every call-consistent program (and thus every “strict” program) has signed parts, and he explained certain behaviors of those programs in terms of the behavior of their signed parts.
in fact they do in our programs for reasoning about action. In such cases, we are interested primarily in the literals that belong to \bar{S}, about which our theorems have much to say.

Acknowledgements

Special thanks to Vladimir Lifschitz. Thanks also to Michael Gelfond and Norman McCain. This work was partially supported by the National Science Foundation under grant IRI-9306751.

References

Appendix : Proofs

Lemma 1 Let P be a nondisjunctive program with signing S, and with $X \subseteq \mathcal{L}_P$.

(i) $\alpha(P^X) = \alpha(h_S(P)^{X \cap \overline{S}}) \cup \alpha(h\overline{S}(P)^{X \cap S})$

(ii) $\alpha(P^X) \cap S = \alpha(h_S(P)^{X \cap S})$

(iii) $\alpha(P^X) \cap \overline{S} = \alpha(h\overline{S}(P)^{X \cap S})$

Proof. Observe that $P = h_S(P) \cup h\overline{S}(P)$. Thus, by the definition of the reduct operator, we have $P^X = (h_S(P) \cup h\overline{S}(P))^X = h_S(P)^X \cup h\overline{S}(P)^X$. By the definition of a signing, we know that for every rule $r \in h_S(P)$, head$(r) \cup \text{pos}(r) \subseteq S$. So $\text{Lit}(h_S(P)^X) \subseteq S$. Likewise, $\text{Lit}(h\overline{S}(P)^X) \subseteq \overline{S}$. So we’ve shown that $\text{Lit}(h_S(P)^X) \cap \text{Lit}(h\overline{S}(P)^X) = \emptyset$, from which we can conclude that $\alpha(P^X) = \alpha(h_S(P)^X) \cup \alpha(h\overline{S}(P)^X)$. Again by the definition of a signing, we know that for every rule $r \in h_S(P)$, neg$(r) \subseteq \overline{S}$. So $h_S(P)^X = h_S(P)^{X \cap \overline{S}}$. Likewise, $h\overline{S}(P)^X = h\overline{S}(P)^{X \cap S}$. Therefore we have $\alpha(P^X) = \alpha(h_S(P)^{X \cap \overline{S}}) \cup \alpha(h\overline{S}(P)^{X \cap S})$, with $\alpha(P^X) \cap S = \alpha(h_S(P)^{X \cap S})$ and $\alpha(P^X) \cap \overline{S} = \alpha(h\overline{S}(P)^{X \cap S})$. □

Lemma 2 Let P be a nondisjunctive program with signing S. The set of literals $WF_\perp(P) \cup (WF_\tau(P) \cap S)$ is a fixpoint of Γ_P.

Proof. Let $A = WF_\perp(P) \cup (WF_\tau(P) \cap S)$. Observe that $A \cap \overline{S} = WF_\perp(P) \cap \overline{S}$ and $A \cap S = WF_\tau(P) \cap S$. Now, because $WF_\tau(P)$ is a fixpoint of Γ_P, we know that $\Gamma_P(WF_\tau(P))$ is also a fixpoint of Γ_P. Therefore, by the anti-monotonicity of Γ_P, along with the fact that $WF_\perp(P)$ and $WF_\tau(P)$ are the least and greatest fixpoints of Γ_P, we can conclude that $WF_\perp(P) = \Gamma_P(WF_\tau(P))$. By the definition of Γ_P, $\Gamma_P(WF_\tau(P)) = \alpha(P^{WF_\tau(P)})$. Thus, by Lemma 1(iii), we have $\Gamma_P(WF_\tau(P)) \cap \overline{S} = \alpha(h\overline{S}(P)^{WF_\tau(P) \cap \overline{S}})$. Combining these observations, we have the following.

$$A \cap \overline{S} = WF_\perp(P) \cap \overline{S} = \Gamma_P(WF_\tau(P)) \cap \overline{S} = \alpha(h\overline{S}(P)^{WF_\tau(P) \cap \overline{S}}) = \alpha(h\overline{S}(P)^{A \cap \overline{S}})$$
By symmetric reasoning, we can conclude that $A \cap S = \alpha(h_S(P)^A \cap S)$. Finally, by the definition of Γ_P and Lemma 1(i), along with the foregoing observations, we have shown the following.

$$\Gamma_P A = \alpha(h_S(P)^A \cap S) \cup \alpha(h_S(P)^A \cap \overline{S})$$
$$= (A \cap S) \cup (A \cap \overline{S})$$
$$= A$$

□

Lemma 3 Let P be a nondisjunctive program with signing S, with B a fixpoint of Γ_P. B is a consistent set if and only if $B \cap \overline{S}$ is a consistent set.

Proof. By the definition of a signing, no literal in $\text{Head}(P) \cap S$ appears complimented in $\text{Head}(P)$. Since B is a fixpoint of Γ_P, we know that $B \subseteq \text{Head}(P)$. So no literal in $B \cap S$ appears complemented in B. Thus any literal in B that appears complemented in B must appear in $B \cap \overline{S}$. That is, any complementary pair of literals in B is contained in $B \cap \overline{S}$. Therefore, B is consistent if and only if $B \cap \overline{S}$ is consistent. □

Theorem 1 Let P be a nondisjunctive program with signing S. The following three conditions are equivalent.

(i) P is a consistent program.

(ii) $\WF_{\perp}(P) \cap \overline{S}$ is a consistent set.

(iii) $\WF_{\perp}(P) \cup (\WF_{\tau}(P) \cap S)$ is a consistent answer set for P.

Proof. By Lemma 2, $\WF_{\perp}(P) \cup (\WF_{\tau}(P) \cap S)$ is a fixpoint of Γ_P. So if $\WF_{\perp}(P) \cup (\WF_{\tau}(P) \cap S)$ is consistent, it is an answer set for P. By Lemma 3, $\WF_{\perp}(P) \cup (\WF_{\tau}(P) \cap S)$ is consistent if and only if $\WF_{\perp}(P) \cap \overline{S}$ is consistent. So we’ve established the equivalence of parts (ii) and (iii). Furthermore, it’s clear that (iii) implies (i). We complete our proof by showing that (i) implies (ii). Assume that P is consistent, so P has a consistent answer set B. Since B is a fixpoint of Γ_P, we can conclude by Lemma 3 that $B \cap \overline{S}$ is consistent. We know that $\WF_{\perp}(P) \subseteq B$, so $\WF_{\perp}(P) \cap \overline{S}$ is consistent. □
Lemma 4 Let P be a program with signing S:

$$\bigcap_{P' \in \text{covers}} Cn(P') \cap \overline{S} = \left(\bigcap_{P' \in \text{good-covers}} WF_\perp(P') \right) \cap \overline{S}.$$

Proof. Every cover of P is a signed nondisjunctive program, so by Corollary 1 we know that for each cover P' of P, if P is consistent, then $Cn(P') \cap \overline{S} = WF_\perp(P') \cap \overline{S}$. So clearly

$$\left(\bigcap_{P' \in \text{good-covers}} Cn(P') \right) \cap \overline{S} = \left(\bigcap_{P' \in \text{good-covers}} WF_\perp(P') \right) \cap \overline{S}.$$

Since every program with a signing is constraint-free, we know that $\text{covers}(P)$ is nonempty. And since each inconsistent cover of P entails L_P, we're done.

\[\Box\]

Definition. Let P be a nondisjunctive program with signing S, with $X \subseteq L_P$:

$$\Delta^P_S X = \alpha(h_S(P)^{a(h_\overline{P}(P)^X)}) ,$$

$$\Delta^P_{\overline{S}} X = \alpha(h_\overline{P}(P)^{a(h_S(P)^X)}) .$$

Observe that Δ^P_S and $\Delta^P_{\overline{S}}$ are monotone operators (by the monotonicity of α and the anti-monotonicity of the reduct operators).

Lemma 5 Let P be a nondisjunctive program with signing S, and with $X \subseteq L_P$. X is a fixpoint of Γ^2_P if and only if $X \cap S$ is a fixpoint of Δ^P_S and $X \cap \overline{S}$ is a fixpoint of $\Delta^P_{\overline{S}}$.

Proof. By the definition of Γ_P, we have $\Gamma_P X = \alpha(P^X)$. By Lemma 1(ii), $\Gamma_P X \cap S = \alpha(h_S(P)^{X \cap \overline{S}})$, and by Lemma 1(iii), $\Gamma_P X \cap \overline{S} = \alpha(h_\overline{P}(P)^{X \cap S})$. Again by the definition of Γ_P, $\Gamma^2_P X = \alpha(P^{\Gamma_P X})$. Again by Lemma 1(ii&iii), we have $\Gamma^2_P X \cap S = \alpha(h_S(P)^{\Gamma_P X \cap \overline{S}})$ and $\Gamma^2_P X \cap \overline{S} = \alpha(h_\overline{P}(P)^{\Gamma_P X \cap S})$. In sum, $\Gamma^2_P X \cap S = \alpha(h_S(P)^{\Gamma_P X \cap \overline{S}}) = \alpha(h_\overline{P}(P)^{\alpha(h_S(P)^{X \cap \overline{S}})}) = \Delta^P_S(X \cap S)$. Likewise, $\Gamma^2_P X \cap \overline{S} = \alpha(h_S(P)^{\Gamma_P X \cap S}) = \alpha(h_\overline{P}(P)^{\alpha(h_S(P)^{X \cap S})}) = \Delta^P_{\overline{S}}(X \cap \overline{S})$. Therefore we can conclude the following.

$$\Gamma^2_P X = X \quad \text{iff} \quad \Gamma^2_P X \cap S = X \cap S \quad \text{and} \quad \Gamma^2_P X \cap \overline{S} = X \cap \overline{S}$$

$$\text{iff} \quad \Delta^P_S(X \cap S) = X \cap S \quad \text{and} \quad \Delta^P_{\overline{S}}(X \cap \overline{S}) = X \cap \overline{S}$$

\[\Box\]
Lemma 6 Let P be a nondisjunctive program with signing S:
\[
\text{lf}(\Delta^P_S) = WF_\perp(P) \cap S.
\]

Proof. Because the operators \(\Delta^P_S\) and \(\Delta^P_S\) are monotone, we know by the Knaster-Tarski theorem that each has a least and greatest fixpoint. Since \(WF_\perp(P)\) is a fixpoint of \(\Gamma^P_P\), it follows by the previous lemma that \(WF_\perp(P) \cap S\) is a fixpoint of \(\Delta^P_S\). It remains to show that for any fixpoint \(X\) of \(\Delta^P_S\), \(WF_\perp(P) \cap S \subseteq X\). So let \(X \subseteq S\) be a fixpoint of \(\Delta^P_S\), and let \(Y \subseteq S\) be a fixpoint of \(\Delta^P_S\). By the previous lemma, \(X \cup Y\) is a fixpoint of \(\Gamma^P_P\). But because \(WF_\perp(P)\) is the least fixpoint of \(\Gamma^P_P\), we have \(WF_\perp(P) \subseteq X \cup Y\), and therefore \(WF_\perp(P) \cap S \subseteq (X \cup Y) \cap S = X\).

Lemma 7 Let \(T : 2^S \to 2^S\) be a monotone operator, with \(B \subseteq S\). If \(B\) is a pre-fixpoint of \(T\) (that is, if \(T(B) \subseteq B\)), then \(\text{lf}(T) \subseteq B\).

Proof. By the Knaster-Tarski theorem [Tarski, 1955], \(\text{lf}(T) = \bigcap_{\{A \subseteq A\} \subseteq A} A\). That is, \(\text{lf}(T)\) coincides with the intersection of all pre-fixpoints of \(T\). So every pre-fixpoint of \(T\) is a superset of \(\text{lf}(T)\).

In subsequent proofs we will sometimes find it convenient to represent a rule \(r\) by the ordered triple \(\langle X, Y, Z \rangle \), where \(X = \text{head}(r), Y = \text{pos}(r)\) and \(Z = \text{neg}(r)\).

Lemma 8 Let \(P\) be a program. A nondisjunctive program \(P^*\) in the language \(L_P\) is a cover of \(P\) if and only if there is a total surjective function \(\phi : P \to P^*\) such that for every rule \(r \in P\), \(\phi r = \langle \{L\}, \text{pos}(r), \text{neg}(r) \rangle\), with \(L \in \text{head}(r)\).

Proof. Immediate from the definitions.

Lemma 9 Let \(P\) be a program with cover \(Q\), and with \(A, B \subseteq L_P\). If \(B\) is closed under \(Q^A\), then \(B\) is closed under \(P^A\).

Proof. Assume that \(B\) is closed under \(Q^A\). Let \(r\) be a rule in \(P^A\), with \(\text{pos}(r) \subseteq B\). We must show that \(\text{head}(r) \cap B \neq \emptyset\). By the definition of reduct, there is a rule \(r' \in P\) s.t. \(\{r\}^A = r'\). Of course \(\text{neg}(r) \cap A = \emptyset\).
By Lemma 8 there is a total surjective function $\phi : P \rightarrow Q$ s.t. $\phi r' = \langle \{ L \}, \text{pos}(r'), \text{neg}(r') \rangle$, with $L \in \text{head}(r')$. Let $r'' = \langle \text{head}(\phi r'), \text{pos}(r'), \emptyset \rangle$. It's clear that $r'' \in Q^A$, and we know that $\text{pos}(r'') \subseteq B$. Since B is closed under Q^A, we can conclude that $\text{head}(r'') \cap B \neq \emptyset$. And since $\text{head}(r'') = \text{head}(\phi r') \cap \text{head}(r') = \text{head}(r)$, we have shown that $\text{head}(r) \cap B \neq \emptyset$. □

Lemma 10 Let P be a program, with $A \subseteq \mathcal{L}_P$. For each cover P' of P^A, there is a cover Q of P such that $Q^A = P'$.

Proof. Let P' be a cover of P^A. By Lemma 8, we know there is a total surjective function $\phi : P^A \rightarrow P'$ s.t. for every rule $r \in P^A$, $\phi r = \langle \{ L \}, \text{pos}(r), \text{neg}(r) \rangle$, with $L \in \text{head}(r)$. By the definition of reduct, we can also specify a partial surjective function $\psi : P \rightarrow P^A$ s.t. for every rule $r \in P$, if $\text{neg}(r) \cap A = \emptyset$, then $\psi r = \langle \text{head}(r), \text{pos}(r), \emptyset \rangle$. Now we construct a cover Q of P, with $Q^A = P'$. For each $r \in P$, do the following: (i) if $\text{neg}(r) \cap A \neq \emptyset$, replace r by a rule $r' = \langle \{ L \}, \text{pos}(r), \text{neg}(r) \rangle$, with $L \in \text{head}(r)$; (ii) if $\text{neg}(r) \cap A = \emptyset$, replace r by the rule $r' = \phi \psi r$. □

Lemma 11 Let P be a program with cover Q, and with $A, B \subseteq \mathcal{L}_P$. If B is a consistent answer set for P^A, then there is a cover P' of P^A such that B is closed under P'.

Proof. Assume that B is a consistent answer set for P^A. In step (ii) below we use the fact that B is closed under P^A. To construct a suitable cover P' for P^A, do the following for each $r \in P^A$: (i) if $\text{neg}(r) \cap A \neq \emptyset$ or if $\text{pos}(r) \subseteq B$, replace r by a rule $r' = \langle \{ L \}, \text{pos}(r), \text{neg}(r) \rangle$, with $L \in \text{head}(r)$; (ii) if $\text{neg}(r) \cap A = \emptyset$ and $\text{pos}(r) \subseteq B$, replace r by a rule $r' = \langle \{ L \}, \text{pos}(r), \text{neg}(r) \rangle$, with $L \in \text{head}(r) \cap B$. □

Lemma 12 Let P be a program, with $A, B \subseteq \mathcal{L}_P$. If B is a consistent answer set for P^A, then there is a cover Q of P such that B is an answer set for Q^A.

Proof. By Lemma 11, there is a cover P' of P^A such that B is closed under P'. Let Q be a cover of P such that $Q^A = P'$. The existence of such a Q is guaranteed by Lemma 10. Observe that B is closed under Q^A and consistent. It remains only to show that B is the least subset of \mathcal{L}_P that
is closed under Q^A. Let D be a subset of B that is closed under Q^A. We will show that $D = B$. By Lemma 9, we can conclude that D is also closed under P^A. But B is a consistent answer set for P^A, so $D = B$. Thus, B is an answer set for Q^A. \[\]

Lemma 13 Every consistent answer set for a constraint-free program P is an answer set for some cover of P.

Proof. Immediate from Lemma 12 and the definition of an answer set. \[\]

Lemma 14 Let P be a constraint-free program:

$$\bigcap_{P' \in \text{covers}} \text{Cn}(P') \subseteq \text{Cn}(P).$$

Proof. If P is inconsistent, we're done; so assume that P is consistent. By Lemma 13, every consistent answer set for P is also an answer set for some cover P' of P. \[\]

Proposition 1 Let P be a positive program. If $B \subseteq \mathcal{L}_P$ is closed under P and logically closed, then some subset of B is an answer set for P.

Proof. Let S be the set of subsets of B that are closed under P. Consider the partial order $\langle S, \subseteq \rangle$. We will show that every chain in $\langle S, \subseteq \rangle$ has a lower bound (in S), from which it follows that $\langle S, \subseteq \rangle$ has minimal elements. Thus, some subset of B is an answer set for P, since any minimal subset of B that is closed under P is also a minimal subset of \mathcal{L}_P that is both closed under P and logically closed (that is, an answer set for P). Let C be a chain in $\langle S, \subseteq \rangle$, with index set I. What we show, more precisely, is that the set of literals $\bigcap_{i \in I} C_i$, denoted by $\bigcap C$, is closed under P, and thus must be included in S. Suppose $\bigcap C$ is not closed under P. We will derive a contradiction. Since $\bigcap C$ is not closed under P, we know there is a rule $r \in P$ s.t. $\text{pos}(r) \subseteq \bigcap C$ and $\text{head}(r) \cap \bigcap C = \emptyset$. Since $\bigcap C \subseteq B$, we have $\text{pos}(r) \subseteq B$. And since B is closed under P, we know that $\text{head}(r) \cap B \neq \emptyset$. For each literal $L \in \text{head}(r) \cap B$, let X_L denote the intersection of all members of C that include the literal L. Observe that for each such X_L we have $\bigcap C \subseteq X_L$, and
of course $\text{head}(r) \cap X_L \neq \emptyset$. Also we can see that for all $L, L' \in \text{head}(r) \cap B$, it is the case that $X_L \subseteq X_{L'}$ or $X_{L'} \subseteq X_L$. Let X denote the set

$$\bigcap_{L \in \text{head}(r) \cap B} X_L.$$

Note that $\bigcap \mathcal{C} \subseteq X$. Furthermore, since $\text{head}(r)$ is finite, so is $\text{head}(r) \cap B$. It follows that there is an $L \in \text{head}(r) \cap B$ such that $X = X_L$, from which we can conclude that $X \cap \text{head}(r) \neq \emptyset$. Since $\bigcap \mathcal{C} \cap \text{head}(r) = \emptyset$, we know that $X \notin \bigcap \mathcal{C}$. We can conclude there is a proper subset Y of X such that Y belongs to \mathcal{C}. And by the construction of X, we know that $Y \cap \text{head}(r) = \emptyset$. Since $\bigcap \mathcal{C} \subseteq Y$, we have $\text{pos}(r) \subseteq Y$. So we’ve shown that \mathcal{C} includes a set Y that is not closed under P. Contradiction. So $\bigcap \mathcal{C}$ is closed under P, and thus belongs to S. That is, $\bigcap \mathcal{C}$ is a lower bound of \mathcal{C}. □

Definition. Let P be a program with signing S:

$$\text{candidates}(P) = \{ \text{WF}_\perp(P') \cup (\text{WF}_\tau(P') \cap S) : P' \in \text{good-covers}(P) \}.$$

Definition. Let \mathcal{L} be a language, with $A, B, S \subseteq \mathcal{L}$, where $\overline{S} = S \setminus \mathcal{L}$. We say that $A \leq S B$ if the following two conditions hold:

(i) $A \cap \overline{S} \subseteq B \cap \overline{S}$,

(ii) if $A \cap \overline{S} = B \cap \overline{S}$, then $A \subseteq B$.

Observe that $\leq S$ partially orders the subsets of \mathcal{L}.

Lemma 15 Let P be a program with signing S. If P has a consistent cover, then the partial order $\langle \text{candidates}(P), \leq S \rangle$ has minimal elements.

Proof. Since P has a consistent cover, we know by the definition of $\text{candidates}(P)$ that $\text{candidates}(P) \neq \emptyset$. We will show that each maximal chain in $\langle \text{candidates}(P), \leq S \rangle$ has a least element, from which it follows that $\langle \text{candidates}(P), \leq S \rangle$ has minimal elements.

Let \mathcal{C} be a maximal chain in $\langle \text{candidates}(P), \leq S \rangle$, with index set I. If \mathcal{C} is not infinite decreasing, then \mathcal{C} has a least element and we’re done. So we’ll suppose that \mathcal{C} is infinite decreasing, and from this assumption we’ll derive a contradiction.
For each $i \in I$, let P_i be a cover of P s.t. $C_i = WF_P(P_i) \cup (WF_T(P_i) \cap S)$. The existence of such a family of programs is guaranteed by the definition of $candidates(P)$. For each $i \in I$, let $\phi_i : P \to P_i$ be a total surjective function such that for every rule $r \in P$, $\phi_i(r) = \langle \{L\}, pos(r), neg(r) \rangle$, with $L \in head(r)$. The existence of such a family of functions is guaranteed by Lemma 8.

For convenience, assume a well-founded total ordering on L_P. Given a rule $r \in P$ and a chain $C' \subset C$ (with index set $P' \subset I$), let $choice(r, C')$ denote the least literal $L \in head(r)$ which satisfies the following condition: for every $j \in P'$ there is an $i \in P$ s.t. $i \leq j$ and $\phi_i(r) = \{L\}$. We can be sure of the existence of such an $L \in head(r)$ because $head(r)$ is finite.

Given a rule $r \in P$ and a chain $C' \subset C$ (with index set $P' \subset I$), let $fix(r, C') = \{C_i : i \in P' \land head(\phi_i(r)) = choice(r, C')\}$. It’s clear that $fix(r, C')$ is always a subchain of C'. Furthermore, by the definition of $choice(r, C')$, we know that if C' is infinite decreasing, then so is $fix(r, C')$. Finally, observe that for all $i, j \in I$, if $C_i \in fix(r, C')$ and $C_j \in fix(r, C')$, then $\phi_i(r) = \phi_j(r)$.

Now, let J be a well-founded, totally-ordered index set for the rules r in P. For convenience we also stipulate that J should have a greatest element, which we will denote by \top. Let \bot denote the least element of J. For all $j \in J$,

$$fix_j = \begin{cases} fix(r_j, C) & \text{if } j = \bot, \\ fix(r_j, \bigcap_{i < j} fix_i) & \text{otherwise}. \end{cases}$$

Since we’ve assumed that C is infinite decreasing, and because the fix function preserves the infinite decreasing property, it is clear (by induction) that for every $j \in J$, fix_j is an infinite decreasing subchain of C. But consider the chain $C_J = fix_\top$. On the one hand, we know that C_J should be infinite decreasing. On the other hand, we will show that C_J must be a singleton.

Let $I_J = \{i \in I : C_i \in C_J\}$. By the definition of C_J in terms of the fix function, we know that for every rule $r \in P$, and for all $i, j \in I_J$, it must be the case that $\phi_i(r) = \phi_j(r)$. Therefore we can conclude that for all $i, j \in I_J$, $P_i = P_j$, and thus that $C_i = C_j$. That is to say, C_J is a singleton.

So by supposing that there is a maximal chain in $\langle candidates(P), \leq_S \rangle$ that has no least element, we derive a contradiction, thereby establishing that each maximal chain in $\langle candidates(P), \leq_S \rangle$ has a least element.

\[\square\]
Definition. Let P be a program with signing S. We denote the set of members of $\text{candidates}(P)$ that are minimal in $\langle \text{candidates}(P), \leq_S \rangle$ by $\text{minimal-candidates}(P)$.

Note that the use of minimality in this definition is justified by the previous lemma.

Lemma 16 Let P_d be a program with signing S. If P_d has a consistent cover, then each member of $\text{minimal-candidates}(P_d)$ is a consistent answer set for P_d.

Proof. Since P_d has a consistent cover, we know by the definition of $\text{candidates}(P_d)$ that $\text{minimal-candidates}(P_d)$ is nonempty. Furthermore, by the previous lemma, $\langle \text{candidates}(P_d), \leq_S \rangle$ has minimal elements. Let A be an element in $\text{minimal-candidates}(P_d)$. By the definition of $\text{candidates}(P_d)$, we know that there is a cover Q of P_d such that $A = \text{WF}_\perp(Q) \cup (\text{WF}_\tau(Q) \cap S)$. Also, since Q is a consistent program, we know by Theorem 1 that A is a consistent answer set for Q. So A is consistent and thus logically closed. By Lemma 9, we know that A is closed under P_d^A. By Proposition 1 it follows that some subset of A is an answer set for P_d^A. So, let us assume that $B \subset A$ is a consistent answer set for P_d^A; we'll be able to establish that B must coincide with A, which will suffice to prove the lemma.

Let P be a cover of P_d such that $B = \alpha(P^A)$; the existence of such a program P is guaranteed by Lemma 12. Note that since B is a consistent set, we know that P^A is a consistent program. Since S is a signing for P_d, S is also a signing for P. And since P is a nondisjunctive program, we can conclude by Lemma 1(ii) that $B \cap S = \alpha(h_S(P)^{A \cap \overline{S}})$. By the asymmetry in the definition of a signing, we know that $h_S(P) = h_S(P_d)$; so $B \cap S = \alpha(h_S(P_d)^{A \cap \overline{S}})$. Recall that Q is a cover of P_d such that $A = \alpha(Q^A)$. Again by Lemma 1(ii), $A \cap S = \alpha(h_S(Q)^{A \cap \overline{S}})$; and again by the asymmetry of signings, $h_S(Q) = h_S(P_d)$. Therefore, $A \cap S = \alpha(h_S(P_d)^{A \cap \overline{S}})$, and thus we've established that $B \cap S = A \cap S$.

Now we will show that $A \cap S \subset \text{WF}_\tau(P) \cap S$. We do this by supposing otherwise and deriving a contradiction. So suppose that $A \cap S \not\subset \text{WF}_\tau(P) \cap S$. We have already established that $A \cap S = \alpha(h_S(P_d)^{A \cap \overline{S}})$; and since $h_S(P_d) = h_S(P)$, we have $A \cap S = \alpha(h_S(P)^{A \cap \overline{S}})$. Because $\text{WF}_\perp(P)$ is a fixpoint of Γ_P, we know that $\Gamma_P(\text{WF}_\perp(P))$ is also a fixpoint of Γ_P. Therefore, by the anti-monotonicity of Γ_P, along with the fact that $\text{WF}_\perp(P)$
and $WF_{\tau}(P)$ are the least and greatest fixpoints of Γ^P_τ, we can conclude that $WF_{\tau}(P) = \Gamma_P(WF_{\perp}(P))$. Thus, by Lemma 1(ii) and the definition of Γ_P, we have $WF_{\tau}(P) \cap S = \alpha(h_s(P)^{WF_{\perp}(P)\cap S})$. So we have shown that $\alpha(h_s(P)^{\mathcal{A}\cap S}) = A \cap S \not\subset WF_{\tau}(P) \cap S = \alpha(h_s(P)^{WF_{\perp}(P)\cap S})$. By the monotonicity of α and the anti-monotonicity of the reduct operators, we can conclude that $WF_{\perp}(P) \cap S \not\subset A \cap S$. And since $B \cap \overline{S} \subset A \cap S$, we have shown that $WF_{\perp}(P) \cap \overline{S} \not\subset B \cap \overline{S}$. By Lemma 6, $\text{lp}_{\text{p}}(\Delta_S^P) = WF_{\perp}(P) \cap \overline{S}$. Thus, $\text{lp}_{\text{p}}(\Delta_S^P) \not\subset B \cap \overline{S}$. Because $\text{lp}_{\text{p}}(\Delta_S^P) \not\subset B \cap \overline{S}$, we know by Lemma 7 that $B \cap \overline{S}$ is not a fixpoint of Δ_S^P. That is, we know that $\Delta_S^P(B \cap \overline{S}) \not\subset B \cap \overline{S}$. Yet we can show that $\Delta_S^P(B \cap \overline{S}) \subset B \cap \overline{S}$, as follows. To begin, by definition, $\Delta_S^P(B \cap \overline{S}) = \alpha(h_\overline{S}(P)^{\alpha(h_s(P)^{\mathcal{A}\cap \overline{S}})})$. Since $B \cap \overline{S} \subset A \cap \overline{S}$, we have $\alpha(h_\overline{S}(P)^{\mathcal{A}\cap \overline{S}}) \subset \alpha(h_\overline{S}(P)^{B\cap \overline{S}})$, and therefore $\alpha(h_\overline{S}(P)^{\alpha(h_s(P)^{\mathcal{A}\cap \overline{S}})}) \subset \alpha(h_\overline{S}(P)^{\alpha(h_s(P)^{\mathcal{A}\cap \overline{S}})})$ (by the anti-monotonicity of reduct operators and the monotonicity of α). We’ve already established that $\alpha(h_s(P)^{\mathcal{A}\cap \overline{S}}) = A \cap \overline{S}$, and since $B = \alpha P^A$, we know by Lemma 1(iii) that $\alpha(h_\overline{S}(P)^{\mathcal{A}\cap \overline{S}}) = B \cap \overline{S}$. So, to sum up, we have shown that $\Delta_S^P(B \cap \overline{S}) = \alpha(h_\overline{S}(P)^{\alpha(h_s(P)^{\mathcal{A}\cap \overline{S}})}) \subset \alpha(h_\overline{S}(P)^{\alpha(h_s(P)^{\mathcal{A}\cap \overline{S}})}) = \alpha(h_\overline{S}(P)^{\mathcal{A}\cap \overline{S}}) = B \cap \overline{S}$. Thus, both $\Delta_S^P(B \cap \overline{S}) \subset B \cap \overline{S}$ and $\Delta_S^P(B \cap \overline{S}) \not\subset B \cap \overline{S}$, which is a contradiction. So we’ve established that $A \cap \overline{S} \subset WF_{\tau}(P) \cap \overline{S}$.

We will now show that $B \cap \overline{S} = A \cap \overline{S}$. By the anti-monotonicity of the reduct operator and the monotonicity of α, we can show that $\alpha(h_\overline{S}(P)^{WF_{\tau}(P)\cap \overline{S}}) \subset \alpha(h_\overline{S}(P)^{\mathcal{A}\cap \overline{S}})$. Since $WF_{\tau}(P)$ is a fixpoint of Γ^2_P, we know that $\Gamma_P(WF_{\tau}(P))$ is also a fixpoint of Γ^2_P. Therefore, by the anti-monotonicity of Γ_P, along with the fact that $WF_{\perp}(P)$ and $WF_{\tau}(P)$ are the least and greatest fixpoints of Γ^2_P, we can conclude that $WF_{\perp}(P) = \Gamma_P(WF_{\tau}(P))$. Thus, by Lemma 1(iii) and the definition of Γ_P, we have $\alpha(h_\overline{S}(P)^{WF_{\tau}(P)\cap \overline{S}}) = WF_{\perp}(P) \cap \overline{S}$. We have already shown that $\alpha(h_\overline{S}(P)^{\mathcal{A}\cap \overline{S}}) = B \cap \overline{S}$. To sum up so far, we have $WF_{\perp}(P) \cap \overline{S} = \alpha(h_\overline{S}(P)^{WF_{\tau}(P)\cap \overline{S}}) \subset \alpha(h_\overline{S}(P)^{\mathcal{A}\cap \overline{S}}) = B \cap \overline{S}$. Yet $B \cap \overline{S} \subset A \cap \overline{S}$. So $WF_{\perp}(P) \cap \overline{S} \subset B \cap \overline{S} \subset A \cap \overline{S}$. And since A is minimal in $\text{candidates}(P_d)$, we know that $WF_{\perp}(P) \cap \overline{S}$ cannot be a proper subset of $A \cap \overline{S}$. Therefore, $WF_{\perp}(P) \cap \overline{S} = B \cap \overline{S} = A \cap \overline{S}$. And since we’ve already shown that $B \cap \overline{S} = A \cap \overline{S}$, we have $B = A$. So we’ve shown that A is a consistent answer set for P_d, and since A was an arbitrarily chosen member of $\text{minimal-candidates}(P_d)$, it follows that each member of $\text{minimal-candidates}(P_d)$ is a consistent answer set for P_d. □
Theorem 2 Let P be a program with signing S:

$$Cn(P) \cap \overline{S} = \bigcap_{P' \in \text{covers}(P)} Cn(P') \cap \overline{S} = \left(\bigcap_{P' \in \text{good-covers}(P)} WF_{\perp}(P') \right) \cap \overline{S}.$$

Proof. By Lemma 4, we have

$$\bigcap_{P' \in \text{covers}(P)} Cn(P') \cap \overline{S} = \left(\bigcap_{P' \in \text{good-covers}(P)} WF_{\perp}(P') \right) \cap \overline{S}.$$

By Lemma 14, we know that

$$\bigcap_{P' \in \text{covers}(P)} Cn(P') \cap \overline{S} \subseteq Cn(P) \cap \overline{S}.$$

We complete the proof by showing that

$$Cn(P) \cap \overline{S} \subseteq \left(\bigcap_{P' \in \text{good-covers}(P)} WF_{\perp}(P') \right) \cap \overline{S}.$$

If P has no consistent covers, we’re done; so assume otherwise. It follows that

$$\left(\bigcap_{P' \in \text{good-covers}(P)} WF_{\perp}(P') \right) \cap \overline{S} = \bigcap_{P' \in \text{good-covers}(P)} WF_{\perp}(P') \cap \overline{S}.$$

By the definition of $\text{candidates}(P)$,

$$\bigcap_{P' \in \text{good-covers}(P)} WF_{\perp}(P') \cap \overline{S} = \bigcap_{A \in \text{candidates}(P)} A \cap \overline{S}.$$

Furthermore, by the definition of $\text{minimal-candidates}(P)$, we can conclude that

$$\bigcap_{A \in \text{candidates}(P)} A \cap \overline{S} = \bigcap_{A \in \text{minimal-candidates}(P)} A \cap \overline{S}.$$

By Lemma 16, every element in $\text{minimal-candidates}(P)$ is a consistent answer set for P. Therefore,

$$Cn(P) \cap \overline{S} \subseteq \bigcap_{A \in \text{minimal-candidates}(P)} A \cap \overline{S}.$$

\square
Signing Lemma. Let P be a program with signing S. The partial order $\langle \text{candidates}(P), \leq_S \rangle$ has minimal elements, each of which is a consistent answer set for P. Moreover, if A is a consistent answer set for P or any cover of P, then there is a minimal element A' in the partial order $\langle \text{candidates}(P), \leq_S \rangle$ such that $A' \cap \overline{S} \subset A \cap \overline{S}$.

Proof. To prove the first part, we first show that $\langle \text{candidates}(P), \leq_S \rangle$ has minimal elements. If P has no consistent covers, then $\text{candidates}(P)$ is empty and the assertion is trivial. On the other hand, if P has a consistent cover, then the assertion follows by Lemma 15. Next, assume that A is a minimal element in $\langle \text{candidates}(P), \leq_S \rangle$. Thus, by the definition of $\text{candidates}(P)$, P has a consistent cover, and it follows by Lemma 16 that A is a consistent answer set for P. To prove the second part, observe first that by Lemma 13, every consistent answer set for P is an answer set for a cover of P. Next, assume that A is a consistent answer set for a cover P' of P. Let $A'' = \text{WF}_\bot(P') \cup (\text{WF}_\top(P') \cap S)$. By the definition of $\text{candidates}(P)$, $A'' \in \text{candidates}(P)$. Furthermore, it's easy to show that $A'' \cap \overline{S} \subset A \cap \overline{S}$. We already know that $\langle \text{candidates}(P), \leq_S \rangle$ has minimal elements, so there must be a minimal element A' in $\langle \text{candidates}(P), \leq_S \rangle$ such that $A' \cap \overline{S} \subset A'' \cap \overline{S}$. \hfill \Box

Theorem 3 Let P be a program with signing S. The following three conditions are equivalent.

(i) P is a consistent program.

(ii) P has a consistent cover.

(iii) $Cn(P) \cap \overline{S}$ is a consistent set.

Proof. ((i) \Rightarrow (ii)) : By Lemma 13, each consistent answer set for P is an answer set for some cover of P.

((ii) \Rightarrow (i)) : If P has a consistent cover, then $\text{minimal-candidates}(P)$ is nonempty. By Lemma 16, each member of $\text{minimal-candidates}(P)$ is a consistent answer set for P.

((i) \Rightarrow (iii)) : If P is consistent, then $Cn(P)$ is consistent; so $Cn(P) \cap \overline{S}$ is too.

((iii) \Rightarrow (i)) : Assume that $Cn(P) \cap \overline{S}$ is consistent. Consider two cases.
Case 1: P is head-consistent.

In this case, each cover of P is a signed head-consistent nondisjunctive program, so by Corollary 2, each cover of P is consistent. We've already established that if P has a consistent cover, then P is consistent.

Case 2: P is not head-consistent.

It follows that S is an inconsistent set. And since $Cn(P) \cap S$ is consistent, we know that $Cn(P) \cap S \neq S$. So $Cn(P) \neq L_P$. From this we can conclude that P is consistent.

\square

Lemma 17 The ordering relation \(\preceq \) for rules is transitive.

Proof. Assume $r_3 \preceq r_2$ and $r_2 \preceq r_1$. Thus, $\text{neg}(r_1) \subset \text{neg}(r_2)$ and $\{ \text{L} : L \in \text{head}(r_1) \setminus \text{head}(r_2) \} \cup \text{pos}(r_1) \subset \text{pos}(r_2)$. And also $\text{neg}(r_2) \subset \text{neg}(r_3)$ and $\{ \text{L} : L \in \text{head}(r_2) \setminus \text{head}(r_3) \} \cup \text{pos}(r_2) \subset \text{pos}(r_3)$. So clearly we have $\text{neg}(r_1) \subset \text{neg}(r_3)$ and $\text{pos}(r_1) \subset \text{pos}(r_3)$. It is easy to verify that $X \setminus Z \subset X \setminus Y \cup Y \setminus Z$, for arbitrary sets X, Y, Z. Thus, we can conclude that $\{ \text{L} : L \in \text{head}(r_1) \setminus \text{head}(r_3) \} \subset \{ \text{L} : L \in (\text{head}(r_1) \setminus \text{head}(r_2)) \cup (\text{head}(r_2) \setminus \text{head}(r_3)) \}$. And since $\{ \text{L} : L \in \text{head}(r_1) \setminus \text{head}(r_2) \} \subset \text{pos}(r_3)$, and $\{ \text{L} : L \in \text{head}(r_2) \setminus \text{head}(r_3) \} \subset \text{pos}(r_3)$, we have $\{ \text{L} : L \in \text{head}(r_1) \setminus \text{head}(r_3) \} \subset \text{pos}(r_3)$. Therefore, $\text{neg}(r_1) \subset \text{neg}(r_3)$ and $\{ \text{L} : L \in \text{head}(r_1) \setminus \text{head}(r_3) \} \cup \text{pos}(r_1) \subset \text{pos}(r_3)$; that is, $r_3 \preceq r_1$. So \preceq for rules is transitive. \square

Lemma 18 The ordering relation \preceq for programs is transitive.

Proof. Immediate by the definition of \preceq for programs and Lemma 17. \square

Lemma 19 Let P, Q be nondisjunctive programs, with $L_P = L_Q$, and with $X, Y \subset L_P$. If $P \preceq Q$ and $Y \subset X$, then $P_X \preceq Q_Y$.

Proof. By the definition of \preceq for programs, we know that for every rule $r \in P$ there is a rule $r' \in Q$ s.t. $r \preceq r'$. By the definition of \preceq for rules, we can conclude that for every rule $r \in P$ there is a rule $r' \in Q$ s.t. $\text{neg}(r') \subset \text{neg}(r)$ and $\{ \text{L} : L \in \text{head}(r') \setminus \text{head}(r) \} \cup \text{pos}(r') \subset \text{pos}(r)$. In particular, for every rule $r \in P$, if $\text{neg}(r) \cap X = \emptyset$, then there is a rule $r' \in Q$.
Lemma 20 Let P, Q be basic programs. If $P \preceq Q$ and Q is consistent, then $\alpha P \subseteq \alpha Q$.

Proof. It seems that in order to prove this lemma we must resort to a version of the standard “immediate consequence” operator T_P, where P is a basic program. Relying on the familiarity of T_P, we make several claims about it without proof. Given a set of literals $X \subseteq \mathcal{L}_P$, $T_P X$ is, intuitively, the set of literals derivable by the rules of P in one step from the literals in X. Formally,

$$T_P X = \{L \in \mathcal{L}_P : \exists r \in P . \ pos(r) \subseteq X \land head(r) = \{L\}\} .$$

T_P is monotone and continuous, with

$$\bigcup_{n \in \{0,1,2,\ldots\}} T_P^n \emptyset = \alpha(P) .$$

We give an inductive proof for the following assertion, of which this lemma is an immediate consequence: for basic programs P and Q,

$$P \preceq Q \Rightarrow \left(\forall n \in \{0,1,2,\ldots\} . T_Q^n \emptyset \text{ is consistent } \Rightarrow T_P^n \emptyset \subseteq T_Q^n \emptyset \right) .$$

Base Case: $n = 0$. Trivial.

Inductive Step: Assume that $T_Q^{n+1} \emptyset$ is consistent. Since T_Q is monotone, we know that $T_Q^n \emptyset \subseteq T_Q^{n+1} \emptyset$, so $T_Q^n \emptyset$ is also consistent. Therefore, by the inductive hypothesis, we have $T_P^n \emptyset \subseteq T_Q^n \emptyset$. We need to show that $T_P^{n+1} \emptyset \subseteq T_Q^{n+1} \emptyset$.

Now, suppose that there is a rule $r \in P$ s.t. $pos(r) \subseteq T_P^n \emptyset$ and $head(r) \neq head(\neg r)$. We'll show that this supposition leads to a contradiction of our assumption that $T_Q^{n+1} \emptyset$ is consistent. Since $P \preceq Q$, we know by the definition of \preceq that there is a total function $\psi : P \rightarrow Q$ s.t. for every rule $r \in P$, $\{\overline{a} : a \in head(\psi r) \setminus head(r)\} \cup pos(\psi r) \subseteq pos(\psi r)$. By the definition of ψ, we know that $\{\overline{a} : a \in head(\neg r) \setminus head(r)\} \cup pos(\neg r) \subseteq$
\(\text{pos}(r) \). Since \(\text{head}(\phi r) \neq \text{head}(r) \), we know that there is a literal \(a \) such that \(\text{head}(\phi r) = \{ a \} \) and \(\pi \in \text{pos}(r) \). Since \(\text{pos}(r) \subseteq T^{|} \), we have \(\pi \in T^{|} \). Since \(T^{|} \subseteq T^{|+1} \), we have \(\pi \in T^{|+1} \). And since \(T^{|} \) is monotone, we have \(\pi \in T^{|+1} \). But since rule \(\phi r \) of program \(Q \) contributes the literal \(a \) to \(T^{|+1} \), we also have \(a \in T^{|+1} \). Therefore \(a, \pi \in T^{|+1} \), and thus \(T^{|+1} \) is not consistent. So we’ve shown by contradiction that for every rule \(\phi r \in P \), if \(\text{pos}(r) \subseteq T^{|} \), then \(\text{head}(\phi r) = \text{head}(r) \). We complete the proof by considering the corresponding cases on rules \(r \in P \).

Case 1: \(\text{pos}(r) \not\subseteq T^{|} \).

In this case, rule \(r \) does not contribute the literal in \(\text{head}(r) \) to \(T^{|} \), so such a rule \(r \in P \) cannot cause the falsification of \(T^{|+1} \subseteq T^{|+1} \).

Case 2: \(\text{pos}(r) \subseteq T^{|} \).

In this case, rule \(r \) does contribute the literal in \(\text{head}(r) \) to \(T^{|+1} \). But because \(T^{|} \subseteq T^{|+1} \) and \(\text{pos}(\phi r) \subseteq \text{pos}(r) \) and \(\text{head}(\phi r) = \text{head}(r) \), we know that rule \(\phi r \) of program \(Q \) contributes the same literal to \(T^{|+1} \). So such a rule \(r \in P \) cannot cause the falsification of \(T^{|+1} \subseteq T^{|+1} \).

\(\Box \)

Lemma 21 Let \(P, Q \) be nondisjunctive programs with \(L_P = L_Q \), and with \(S \) a signing for both \(P \) and \(Q \), and with \(X \subseteq L_P \). If \(h_S(P) \leq h_S(Q) \) and \(h_S(Q) \leq h_S(P) \) and \(\Delta X^{Q} \) is consistent, then \(\Delta X^{P} \subseteq \Delta X^{Q} \).

Proof. By Lemma 19, since \(h_S(Q) \leq h_S(P) \), we know that \(h_S(Q)^X \leq h_S(P)^X \). Since \(S \) is a signing for \(P \), we know that \(h_S(P)^X \) is a head-consistent program, and thus that it is consistent. So by Lemma 20 \(\alpha(h_S(Q)^X) \subseteq \alpha(h_S(P)^X) \). Once more by Lemma 19, since \(h_S(P) \leq h_S(Q) \) and \(\alpha(h_S(Q)^X) \subseteq \alpha(h_S(P)^X) \) we have \(h_S(P)^{\alpha(h_S(P)^X)} \leq h_S(Q)^{\alpha(h_S(Q)^X)} \). Because \(\Delta X^{Q} \) is consistent, we know that program \(h_S(Q)^{\alpha(h_S(Q)^X)} \) is consistent; so by Lemma 20 we have \(\alpha(h_S(P)^{\alpha(h_S(P)^X)}) \subseteq \alpha(h_S(Q)^{\alpha(h_S(Q)^X)}) \). That is to say, \(\Delta X^{P} \subseteq \Delta X^{Q} \). \(\Box \)

Now we prove a slightly more general, and stronger, version of the restricted monotonicity theorem from [Turner, 1993] for nondisjunctive programs.

Proposition 2 Let \(P, Q \) be nondisjunctive programs in the same language, both with signing \(S \). If \(h_S(P) \leq h_S(Q) \) and \(h_S(Q) \leq h_S(P) \), then if \(A^r \) is
consistent answer set for program \(Q \), then there is a consistent answer set \(A \) for program \(P \) such that \(A \cap \overline{S} \subseteq A' \cap \overline{S} \).

Proof. If \(Q \) is inconsistent, we're done; so assume that \(Q \) is consistent. Assume that \(A' \) is a consistent answer set for \(Q \). By Proposition 1 we know that \(WF_{\perp}(Q) \cap \overline{S} \) is consistent, and by Corollary 1, \(Cn(Q) \cap \overline{S} = WF_{\perp}(Q) \cap \overline{S} \). It follows that \(WF_{\perp}(Q) \cap \overline{S} \subseteq A' \cap \overline{S} \). By Lemma 6, we know that \(WF_{\perp}(P) \cap \overline{S} = lfp(\Delta^P_S) \) and \(WF_{\perp}(Q) \cap \overline{S} = lfp(\Delta^Q_S) \). Since \(WF_{\perp}(Q) \cap \overline{S} \) is a fixpoint of \(\Delta^Q_S \), we have \(\Delta^Q_S(WF_{\perp}(Q) \cap \overline{S}) = WF_{\perp}(Q) \cap \overline{S} \). So \(\Delta^Q_S(WF_{\perp}(Q) \cap \overline{S}) \) is a consistent set, and thus by Lemma 21 we know that \(\Delta^Q_S(WF_{\perp}(Q) \cap \overline{S}) \subseteq \Delta^Q_S(WF_{\perp}(Q) \cap \overline{S}) \). So \(\Delta^Q_S(WF_{\perp}(Q) \cap \overline{S}) \subseteq WF_{\perp}(Q) \cap \overline{S} \). That is, \(WF_{\perp}(Q) \cap \overline{S} \) is a pre-fixpoint of \(\Delta^Q_S \). By the Knaster-Tarski theorem [Tarski, 1955], the least fixpoint of a monotone operator coincides with the intersection of all its pre-fixpoints. Thus we've shown that \(WF_{\perp}(P) \cap \overline{S} \subseteq WF_{\perp}(Q) \cap \overline{S} \). So \(WF_{\perp}(P) \cap \overline{S} \) is consistent. Let \(A = WF_{\perp}(P) \cup (WF_{\perp}(Q) \cap \overline{S}) \). By Theorem 1, \(A \) is a consistent answer set for \(P \); and we can see that \(A \cap \overline{S} \subseteq A' \cap \overline{S} \). \(\square \)

Lemma 22. Let \(P, Q \) be programs. If \(P \preceq Q \), then for every cover \(Q' \) of \(Q \) there is a cover \(P' \) of \(P \) such that \(P' \preceq Q' \).

Proof. Let \(\psi : P \rightarrow Q \) be a total function such that for every rule \(r \in P \), \(r \preceq \psi r \). We know that such a function exists since \(P \preceq Q \). Let \(Q' \) be an arbitrary cover of program \(Q \). By Lemma 8, we know there is a total surjective function \(\phi : Q \rightarrow Q' \) such that for every rule \(r \in Q \), \(\phi r = \langle \{ L \}, \text{pos}(r), \text{neg}(r) \rangle \), with \(L \in \text{head}(r) \). Since \(P \preceq Q \), we know that for every rule \(r \in P \), \(\text{neg}(\psi r) \subseteq \text{neg}(r) \) and \(\{ L : L \in \text{head}(\psi r) \setminus \text{head}(r) \} \subseteq \text{pos}(\psi r) \subseteq \text{pos}(r) \). Thus we know that for every rule \(r \in P \), \(\text{neg}(\phi \psi r) \subseteq \text{neg}(r) \) and \(\text{pos}(\phi \psi r) \subseteq \text{pos}(r) \).

Now we specify a construction for a cover \(P' \) of \(P \) s.t. \(P' \preceq Q' \). Let \(\phi' \) be a surjective function with domain \(P \) s.t. for every rule \(r \in P \): (i) if \(\text{head}(\phi \psi r) \subseteq \text{head}(r) \), then \(\phi' r = \langle \text{head}(\phi \psi r), \text{pos}(r), \text{neg}(r) \rangle \); (ii) if \(\text{head}(\phi \psi r) \not\subseteq \text{head}(r) \), then \(\phi' r = \langle \{ L \}, \text{pos}(r), \text{neg}(r) \rangle \), with \(L \in \text{head}(r) \). By Lemma 8, \(P' = \{ \phi' r : r \in P \} \) is a cover of \(P \). It remains to show that \(P' \preceq Q' \). Consider cases on the rules \(\phi' r \in P' \).

Case 1: \(\text{head}(\phi \psi r) \subseteq \text{head}(r) \).
In this case, we have \(\text{head}(\phi r) = \text{head}(\phi \psi r) \), with \(\text{neg}(\phi \psi r) \subseteq \text{neg}(\phi r) \) and \(\text{pos}(\phi \psi r) \subseteq \text{pos}(\phi r) \). So \(\phi r \preceq \phi \psi r \).

Case 2: \(\text{head}(\phi \psi r) \not\subseteq \text{head}(r) \).

Since \(r \preceq \psi r \), we know that \(\{T : L \in \text{head}(\psi r) \setminus \text{head}(r) \cup \text{pos}(\psi r) \subseteq \text{pos}(r)\} \). Let \(L \in \mathcal{L}_P \) be such that \(\text{head}(\phi \psi r) = \{L\} \). We see that \(L \in \text{head}(\psi r) \setminus \text{head}(r) \), so \(T \in \text{pos}(r) \). And since \(\text{pos}(\phi r) = \text{pos}(r) \). We have \(\{T : L \in \text{head}(\phi \psi r) \setminus \text{head}(\psi r)\} \subseteq \text{pos}(\phi r) \). We also know that \(\text{neg}(\phi \psi r) \subseteq \text{neg}(\phi r) \) and \(\text{pos}(\phi \psi r) \subseteq \text{pos}(\phi r) \). So \(\phi r \preceq \phi \psi r \).

\[\Box\]

Lemma 23: Let \(P, Q \) be programs with \(\mathcal{L}_P = \mathcal{L}_Q \), and with \(S \) a signing for both \(P \) and \(Q \). If \(h_{\overline{S}}(P) \preceq h_{\overline{S}}(Q) \) and \(h_{S}(Q) \preceq h_{S}(P) \), then for every cover \(Q' \) of \(Q \) there is a cover \(P' \) of \(P \) such that \(h_{\overline{S}}(P) \preceq h_{\overline{S}}(Q') \) and \(h_{S}(Q') \preceq h_{S}(P') \).

Proof. Recall that if \(S \) is a signing for a program, then \(S \) is also a signing for each cover of that program. We know by the asymmetry of the definition of a signing that for every cover \(P \) of \(P \) we have \(h_{S}(P) = h_{S}(P) \). Likewise for every cover \(Q' \) of \(Q \). So we already know that if \(h_{S}(Q) \preceq h_{S}(P) \), then for every cover \(Q' \) of \(Q \) there is a cover \(P' \) of \(P \) such that \(h_{S}(Q') \preceq h_{S}(P') \).

It remains only to show that if \(h_{\overline{S}}(P) \preceq h_{\overline{S}}(Q) \), then for every cover \(Q' \) of \(Q \) there is a cover \(P' \) of \(P \) such that \(h_{\overline{S}}(P') \preceq h_{\overline{S}}(Q') \).

Notice that if \(P' \) is a cover of \(h_{S}(P) \) and \(P'' \) is a cover of \(h_{\overline{S}}(P') \), then \(P' \cup P'' \) is a cover of \(P \), with \(P' \cap P'' = \emptyset \), and with \(h_{S}(P \cup P'') = P \) and \(h_{\overline{S}}(P' \cup P'') = P'' \). Thus, it is enough to show that for any cover \(Q' \) of \(h_{\overline{S}}(Q) \) there is a cover \(P' \) of \(h_{\overline{S}}(P) \) such that \(P' \preceq Q' \), which follows from the previous lemma. \(\Box\)

Theorem 4: Let \(P, Q \) be programs in the same language, both with signing \(S \). If \(h_{\overline{S}}(P) \preceq h_{\overline{S}}(Q) \) and \(h_{S}(Q) \preceq h_{S}(P) \), then \(\text{cn}(P) \cap \overline{S} \subseteq \text{cn}(Q) \cap \overline{S} \).

Proof. This theorem will follow easily from the next theorem. \(\Box\)

Theorem 5: Let \(P, Q \) be programs in the same language, both with signing \(S \). If \(h_{\overline{S}}(P) \preceq h_{\overline{S}}(Q) \) and \(h_{S}(Q) \preceq h_{S}(P) \), then if \(A' \) is a consistent answer set for \(Q \), then there is a consistent answer set \(A \) for \(P \) such that \(A \cap \overline{S} \subseteq A' \cap \overline{S} \).
Proof. Assume that A' is a consistent answer set for Q. By the Signing Lemma (Section 5), there is a consistent answer set A'' for Q such that $A'' \cap S \subseteq A' \cap S$ and A'' is a minimal element in the partial order $\preceq \text{candidates}(Q), \leq_S$. By the definition of $\text{candidates}(Q)$, there is a cover Q' of Q such that A'' is an answer set for Q'. By Lemma 23, there is a cover P' of P s.t. $h_S(P') \leq h_S(Q')$ and $h_S(Q') \leq h_S(P')$. So by Proposition 2, there is a consistent answer set A''' for P' such that $A''' \cap S \subseteq A'' \cap S$. Again by the Signing Lemma there is a consistent answer set A for P such that $A \cap S \subseteq A''' \cap S$. □

The proof of Theorem 6 will use Theorem 7, so we present the proof of Theorem 6 first. We begin the proof of Theorem 7 by reproducing the Splitting Sequence Theorem from [Lifschitz and Turner, 1994], which is needed in the proofs of two of the following lemmas.

Definition. Given a rule r, $\text{literals}(r)$ stands for $\text{head}(r) \cup \text{pos}(r) \cup \text{neg}(r)$. A splitting set for a program P is any set U of literals such that, for every rule $r \in P$, if $\text{head}(r) \cap U$ is nonempty then $\text{literals}(r) \subseteq U$. The set of rules $r \in P$ such that $\text{literals}(r) \subseteq U$ is called the bottom of P relative to the splitting set U and denoted by $b_U(P)$. The set $P \setminus b_U(P)$ is the top of P relative to U. A (transfinite) sequence is a family whose index set is an initial segment of ordinals, $\{\alpha : \alpha < \mu\}$. The ordinal μ is the length of the sequence. A sequence $\langle U_\alpha \rangle_{\alpha < \mu}$ of sets is monotone if $U_\alpha \subseteq U_\beta$ whenever $\alpha < \beta$, and continuous if, for each limit ordinal $\alpha < \mu$, $U_\alpha = \bigcup_{\beta < \alpha} U_\beta$. A splitting sequence for a program P is a monotone, continuous sequence $\langle U_\alpha \rangle_{\alpha < \mu}$ of splitting sets for P such that $\bigcup_{\alpha < \mu} U_\alpha = \text{literals}(P)$. Let $U = \langle U_\alpha \rangle_{\alpha < \mu}$ be a splitting sequence for a program P. A solution to P (with respect to U) is a sequence $\langle X_\alpha \rangle_{\alpha < \mu}$ of sets of literals such that

- X_0 is an answer set for $b_{U_0}(P)$,
- for any α such that $\alpha + 1 < \mu$, $X_{\alpha+1}$ is an answer set for
 $$\epsilon_{U_\alpha}(b_{U_\alpha+1}(P) \setminus b_{U_\alpha}(P), \bigcup_{\nu < \alpha} X_\nu),$$
- for any limit ordinal $\alpha < \mu$, $X_\alpha = \emptyset$,
- $\bigcup_{\alpha < \mu} X_\alpha$ is consistent.
Splitting Sequence Theorem. Let $U = \{U_\alpha\}_{\alpha \leq \beta}$ be a splitting sequence for a program P. A set A of literals is a consistent answer set for P if and only if $A = \bigcup_{\alpha \leq \beta} X_\alpha$ for some solution $\langle X_\alpha \rangle_{\alpha \leq \beta}$ to P with respect to U.

Next we extend the standard definition of stratification to apply as well to programs with classical negation. Under this definition, it is easy to see that the programs obtained by the translation π are stratified.

Definition. A constraint-free program P is stratified if there is a level mapping f from L_P to the set of ordinals such that for every rule $r \in P$ the following conditions hold:

- for all $L, L' \in head(r)$, $f(L) = f(L')$,
- for all $L \in pos(r)$ there is an $L' \in head(r)$ such that $f(L') > f(L)$,
- for all $L \in neg(r)$ there is an $L' \in head(r)$ such that $f(L') > f(L)$.

Lemma 24 If a consistent nondisjunctive program is stratified, it has a unique answer set.

This lemma is an easy consequence of the Splitting Sequence Theorem. We omit the proof, which is almost identical to the proof of Proposition 4 in [Lifschitz and Turner, 1994].

Lemma 25 Let D be a domain description without value propositions. Each consistent cover of πD has a unique answer set.

Proof. Follows immediately from the previous lemma, since each consistent cover of πD is a stratified nondisjunctive program. □

Lemma 26 Let D be a consistent domain description without value propositions. Let M be a model of D. There is a consistent cover P of πD such that for every atomic value proposition V, V is true in M if and only if πV belongs to the unique answer set for P.

46
Proof. The plan of the proof is as follows. First we specify a suitable cover P of πD. Second we define a consistent set X of literals such that an atomic value proposition V is true in M if and only if $\pi V \in X$. We then show that X is an answer set for P. From this it follows by the previous lemma that X is the unique answer set for P, which suffices to establish the lemma.

We define a suitable P as follows. For each fluent expression F, P includes the rule $\text{Holds}(F, S_0) \leftarrow$ if the atomic value proposition initially F is true in M. P also includes the effect rule (3) and the noninertial rule (4) for each effect proposition in D, as well as the inertia rules (5). Clearly P is a cover of πD.

We define a suitable set X of literals as follows. For each atomic value proposition V, the literal πV belongs to X if V is true in M. Furthermore, for each fluent F, action A, and sequence of actions A_1, \ldots, A_k ($k \geq 0$), the literal $\text{Noninertial}(F, A, \text{Result}(A_k, \ldots, \text{Result}(A_1, S_0) \ldots))$ belongs to X if either: (i) there is an effect proposition A causes F if G_1, \ldots, G_n such that for all $i \in \{1, \ldots, n\}$, the value proposition G_i after $A_1; \ldots; A_k$ is true in M, or (ii) there is an effect proposition A causes $\neg F$ if G_1, \ldots, G_n such that for all $i \in \{1, \ldots, n\}$, the value proposition G_i after $A_1; \ldots; A_k$ is true in M. Clearly X is consistent.

It remains only to show that X is an answer set for P. We will use the Splitting Sequence Theorem for this purpose, so we begin by defining a suitable splitting sequence for P.

First, we define a sequence $T = \langle T_\alpha \rangle_{\alpha < \omega}$ of sets of situation terms, as follows. Let $T_0 = \{S_0\}$, and for all $\alpha < \omega$, $T_{\alpha + 1}$ is the set of all terms of the form $\text{Result}(A, S)$, where A is an action name and $S \in T_\alpha$.

Given T, we define a splitting sequence $U = \langle U_\alpha \rangle_{\alpha < \omega}$ as follows. For all $\alpha < \omega$, U_α consists of the literals in $\bigcup_{\gamma < 2\alpha} U_\gamma$ along with all literals of the form $\text{Holds}(F, S)$, where F is a fluent expression and $S \in T_\alpha$. For all $\alpha < \omega$, $U_{2\alpha + 1}$ consists of the literals in $\bigcup_{\beta < 2\alpha + 1} U_\beta$ along with all literals of the form $\text{Noninertial}(F, A, S)$, where F is a fluent name, A is an action and $S \in T_\alpha$.

Finally, we define the sequence $\langle X_\alpha \rangle_{\alpha < \omega}$ such that for all $\alpha < \omega$, $X_\alpha = X \cap (U_\alpha \setminus \bigcup_{\beta < \alpha} U_\beta)$. We will show that this sequence is a solution to P with respect to U. Since $\bigcup_{\alpha < \omega} X_\alpha = X$, it will follow by the Splitting Sequence Theorem that X is an answer set for P.

Program $bU_\alpha(P)$ consists entirely of rules of the form

$$\text{Holds}(F, S_0) \leftarrow,$$
where F is a fluent expression. In fact, for each fluent name F, the rule $\text{Holds}(F, S_0) \leftarrow$ belongs to program $b_{v_a}(P)$ if and only if the value proposition initially F is true in M, and likewise, the rule $\neg \text{Holds}(F, S_0) \leftarrow$ belongs to program $b_{v_a}(P)$ if and only if the value proposition initially $\neg F$ is true in M. Thus, by the definition of X, we know that for each fluent expression F, the rule $\text{Holds}(F, S_0) \leftarrow$ belongs to program $b_{v_a}(P)$ if and only if the literal $\text{Holds}(F, S_0)$ belongs to X_0. We can conclude that X_0 is an answer set for program $b_{v_a}(P)$.

There are no limit ordinals less than ω, so for any limit ordinal $\alpha < \omega$, $X_\alpha = \emptyset$. Furthermore, we know that $\bigcup_{\alpha<\omega} X_\alpha$ is consistent, since X is. It remains only to show that for all $\alpha + 1 < \omega$, $X_{\alpha+1}$ is an answer set for the program $c_{v_a}(b_{v_{a+1}}(P) \setminus b_{v_a}(P), \bigcup_{\nu \leq \alpha} X_\nu)$. This last obligation requires consideration of many details, but is otherwise straightforward. We consider two cases, beginning with the simpler case.

Case 1: α is even.

In this case, the program $c_{v_a}(b_{v_{a+1}}(P) \setminus b_{v_a}(P), \bigcup_{\nu \leq \alpha} X_\nu)$ consists entirely of rules of the form

$$\text{Noninertial}(F, A, S) \leftarrow,$$

where the literal $\text{Noninertial}(F, A, S)$ belongs to $U_{a+1} \setminus U_\alpha$. So what we need to show is that a literal $\text{Noninertial}(F, A, S)$ from $U_{a+1} \setminus U_\alpha$ is a member of X_{a+1} if and only if the rule $\text{Noninertial}(F, A, S) \leftarrow$ is a member of $c_{v_a}(b_{v_{a+1}}(P) \setminus b_{v_a}(P), \bigcup_{\nu \leq \alpha} X_\nu)$.

We can begin by observing that the program $b_{v_{a+1}}(P) \setminus b_{v_a}(P)$ consists entirely of “noninertial” rules of the form

$$\text{Noninertial}(F, A, S) \leftarrow \text{not } \text{Holds}(G_1, S), \ldots, \text{not } \text{Holds}(G_n, S),$$

where A causes F if G_1, \ldots, G_n is an effect proposition in D and the literal $\text{Noninertial}(F, A, S)$ is a member of $U_{a+1} \setminus U_\alpha$. For each such rule r, the corresponding rule $\text{Noninertial}(F, A, S) \leftarrow$ belongs to program $c_{v_a}(b_{v_{a+1}}(P) \setminus b_{v_a}(P), \bigcup_{\nu \leq \alpha} X_\nu)$ if $\text{neg}(r) \cap X_\alpha = \emptyset$.

(Left-to-right): Assume $\text{Noninertial}(F, A, S) \in X_{a+1}$. Let $A_1; \ldots; A_k$ be the sequence of actions such that

$$S = \text{Result}(A_k, \text{Result}(A_{k-1}, \ldots, \text{Result}(A_1, S_0) \ldots)).$$

By the definition of X, there exists an action A along with fluent expressions G_1, \ldots, G_n ($n \geq 0$) such that either: (i) there is an effect proposition
A causes \(F \) if \(G_1, \ldots, G_n \) in \(D \) such that for all \(i \in \{1, \ldots, n\} \), the value proposition \(G_i \) after \(A_1; \ldots; A_k \) is true in \(M \), or (ii) there is an effect proposition \(A \) causes \(\neg F \) if \(G_1, \ldots, G_n \) in \(D \) such that for all \(i \in \{1, \ldots, n\} \), the value proposition \(G_i \) after \(A_1; \ldots; A_k \) is true in \(M \). Since either (i) or (ii) holds, we know that the rule

\[
\text{Noninertial}(F, A, S) \leftarrow \text{not } \overline{\text{Holds}(G_1, S)}, \ldots, \text{not } \overline{\text{Holds}(G_n, S)},
\]

belongs to program \(b_{U_{a+1}}(P) \setminus b_{U_a}(P) \). Again by the definition of \(X \), the literals \(\text{Holds}(G_1, S), \ldots, \text{Holds}(G_n, S) \) are members of \(X_a \), and since \(X \) is consistent, it follows that the literals \(\overline{\text{Holds}(G_1, S)}, \ldots, \overline{\text{Holds}(G_n, S)} \) are not members of \(X_a \). Thus we can conclude by the definition of \(e_{U_a} \) that the rule

\[
\text{Noninertial}(F, A, S) \leftarrow \text{belongs to program } e_{U_a}(b_{U_{a+1}}(P) \setminus b_{U_a}(P), \cup_{b \leq a} X_b).
\]

(Right-to-left): Assume that the rule \(\text{Noninertial}(F, A, S) \leftarrow \) belongs to program \(e_{U_a}(b_{U_{a+1}}(P) \setminus b_{U_a}(P), \cup_{b \leq a} X_b) \). We can conclude that program \(b_{U_{a+1}}(P) \setminus b_{U_a}(P) \) includes a rule

\[
\text{Noninertial}(F, A, S) \leftarrow \text{not } \overline{\text{Holds}(G_1, S)}, \ldots, \text{not } \overline{\text{Holds}(G_n, S)},
\]

satisfying the following three conditions.

- The literal \(\text{Noninertial}(F, A, S) \) is a member of \(U_{a+1} \setminus U_a \).
- Either: (i) \(A \) causes \(F \) if \(G_1, \ldots, G_n \) is an effect proposition in \(D \), or
 (ii) \(A \) causes \(\neg F \) if \(G_1, \ldots, G_n \) is an effect proposition in \(D \).
- For all \(i \in \{1, \ldots, n\}, \overline{\text{Holds}(G_i, S)} \notin X_a \).

Let \(A_1; \ldots; A_k \) be the sequence of actions such that

\[
S = \text{Result}(A_k, \text{Result}(A_{k-1}, \ldots, \text{Result}(A_1, S_0) \ldots)).
\]

We can conclude by the definition of \(X \) that for all \(i \in \{1, \ldots, n\} \), the value proposition \(\overline{G_i} \) after \(A_1; \ldots; A_k \) is false in \(M \), where \(\overline{G_i} \) denotes the fluent expression complementary to \(G_i \). It follows that for all \(i \in \{1, \ldots, n\} \), the value proposition \(G_i \) after \(A_1; \ldots; A_k \) is true in \(M \). And since \(D \) includes either: (i) an effect proposition \(A \) causes \(F \) if \(G_1, \ldots, G_n \), or (ii) an effect proposition \(A \) causes \(\neg F \) if \(G_1, \ldots, G_n \), we can conclude by the definition of \(X \) that the literal \(\text{Noninertial}(F, A, S) \) belongs to \(X_{a+1} \).

Case 2: \(\alpha \) is odd.
In this case, the program $e_{v_a}(b_{v_{a+1}}(P) \setminus b_v(P), \bigcup_{\nu \leq a} X_\nu)$ consists entirely of rules of the form

$$\text{Holds}(F, \text{Result}(A, S)) \leftarrow,$$

where F is a fluent expression and the literal $\text{Holds}(F, \text{Result}(A, S))$ belongs to $U_{a+1} \setminus U_a$. What we must show is that a literal $\text{Holds}(F, \text{Result}(A, S))$ from $U_{a+1} \setminus U_a$ belongs to X_{a+1} if and only if the rule $\text{Holds}(F, \text{Result}(A, S)) \leftarrow$ belongs to program $e_{v_a}(b_{v_{a+1}}(P) \setminus b_v(P), \bigcup_{\nu \leq a} X_\nu)$.

The program $b_{v_{a+1}}(P) \setminus b_v(P)$ includes one rule of the form

$$\text{Holds}(F, \text{Result}(A, S)) \leftarrow \text{Holds}(G_1, S), \ldots, \text{Holds}(G_n, S)$$

for each effect proposition A causes F if G_1, \ldots, G_n in D, where the literal $\text{Holds}(F, \text{Result}(A, S))$ belongs to $U_{a+1} \setminus U_a$. Also, for each fluent expression F, program $b_{v_{a+1}}(P) \setminus b_v(P)$ includes the inertia rule

$$\text{Holds}(F, \text{Result}(A, S)) \leftarrow \text{Holds}(F, S), \text{not Non inertial}([F], A, S),$$

where the literal $\text{Holds}(F, \text{Result}(A, S))$ belongs to $U_{a+1} \setminus U_a$.

(Left-to-right) Assume $\text{Holds}(F, \text{Result}(A, S)) \in X_{a+1}$, where F is a fluent expression. Let $A_1; \ldots; A_k$ be the sequence of actions such that

$$S = \text{Result}(A_k, \text{Result}(A_{k-1}, \ldots, \text{Result}(A_1, S_0)), \ldots)) .$$

By the definition of X, the value proposition F after $A_1; \ldots; A_k; A$ is true in M. Now consider two subcases.

Subcase 1: Non inertial([F], A, S) \in X_a.

By the definition of X, there exists an action A along with fluent expressions G_1, \ldots, G_n ($n \geq 0$) such that either: (i) there is an effect proposition A causes F if G_1, \ldots, G_n in D such that for all $i \in \{1, \ldots, n\}$, the value proposition G_i after $A_1; \ldots; A_k$ is true in M, or (ii) there is an effect proposition A causes \overline{F} if G_1, \ldots, G_n in D, where \overline{F} is the fluent expression complementary to F, such that for all $i \in \{1, \ldots, n\}$, the value proposition G_i after $A_1; \ldots; A_k$ is true in M. Since we know that the value proposition F after $A_1; \ldots; A_k; A$ is true in M, we can conclude that (ii) cannot be the case, so (i) holds. So program $b_{v_{a+1}}(P) \setminus b_v(P)$ includes the rule

$$\text{Holds}(F, \text{Result}(A, S)) \leftarrow \text{Holds}(G_1, S), \ldots, \text{Holds}(G_n, S) .$$
Let β be such that $\beta + 1 = \alpha$. Again by the definition of X, we know that the literals $\text{Holds}(G_1, S), \ldots, \text{Holds}(G_n, S)$ are members of X_{β}. Thus these literals belong to $\bigcup_{\nu = 0}^\alpha X_{\nu}$, so it follows by the definition of ϵ_{V_a} that the rule $\text{Holds}(F, \text{Result}(A, S)) \leftarrow$ belongs to the program $\epsilon_{V_a}(b_{V_{a+1}}(P) \setminus b_{V_a}(P), \bigcup_{\nu = 0}^\alpha X_{\nu})$.

Subcase 2: $\text{Noninertial}([F], A, S) \notin X_{\alpha}$.

By the definition of X, we can conclude that there is no effect proposition A causes F if G_1, \ldots, G_n in D such that for all $i \in \{1, \ldots, n\}$, the value proposition G_i after $A_1; \ldots; A_k$ is true in M. Nor is there an effect proposition A causes \bar{F} if G_1, \ldots, G_n in D, where \bar{F} is the fluent expression complementary to F, such that for all $i \in \{1, \ldots, n\}$, the value proposition G_i after $A_1; \ldots; A_k$ is true in M. Since the value proposition F after $A_1; \ldots; A_k; A$ is true in M, we can conclude by the definition of Φ that the value proposition F after $A_1; \ldots; A_k$ is true in M. Let β be such that $\beta + 1 = \alpha$. By the definition of X, we have $\text{Holds}(F, S) \in X_{\beta}$. So we’ve shown that the literal $\text{Holds}(F, S)$ belongs to $\bigcup_{\nu = 0}^\alpha X_{\nu}$, while the literal $\text{Noninertial}([F], A, S)$ does not. Program $b_{V_{a+1}}(P) \setminus b_{V_a}(P)$ includes the inertia rule

\[
\text{Holds}(F, \text{Result}(A, S)) \leftarrow \text{Holds}(F, S), \text{not Noninertial}([F], A, S),
\]

and it follows by the definition of ϵ_{V_a} that the rule $\text{Holds}(F, \text{Result}(A, S)) \leftarrow$ belongs to $\epsilon_{V_a}(b_{V_{a+1}}(P) \setminus b_{V_a}(P), \bigcup_{\nu = 0}^\alpha X_{\nu})$.

(Right-to-left): Assume that the rule $\text{Holds}(F, \text{Result}(A, S)) \leftarrow$ belongs to program $\epsilon_{V_a}(b_{V_{a+1}}(P) \setminus b_{V_a}(P), \bigcup_{\nu = 0}^\alpha X_{\nu})$. Let $A_1; \ldots; A_k$ be the sequence of actions such that

\[
S = \text{Result}(A_k, \text{Result}(A_{k-1}, \ldots, \text{Result}(A_1, S_0) \ldots)).
\]

Again consider two subcases.

Subcase 1: $\text{Noninertial}([F], A, S) \in X_{\alpha}$.

It is clear at this point that the rule

\[
\text{Holds}(F, \text{Result}(A, S)) \leftarrow
\]

in program $\epsilon_{V_a}(b_{V_{a+1}}(P) \setminus b_{V_a}(P), \bigcup_{\nu = 0}^\alpha X_{\nu})$ must correspond to an effect rule

\[
\text{Holds}(F, \text{Result}(A, S)) \leftarrow \text{Holds}(G_1, S), \ldots, \text{Holds}(G_n, S)
\]
in program $b_{v_{n+1}}(P) \setminus b_{v_n}(P)$ such that all of $\text{Holds}(G_1, S), \ldots, \text{Holds}(G_n, S)$ belong to $\bigcup_{\beta \leq \alpha} X_{\beta}$. It follows by the definitions of X and π that there is an effect proposition A causes F if G_1, \ldots, G_n in D such that for all $i \in \{1, \ldots, n\}$, the value proposition G_i after $A_1; \ldots; A_k$ is true in M. Thus by the definition of Φ we know that the value proposition F after $A_1; \ldots; A_k; A$ is true in M, and by the definition of X, the literal $\text{Holds}(F, \text{Result}(A, S))$ belongs to $X_{\alpha+1}$.

Subcase 2: Noninertial $(|F|, A, S) \notin X_{\alpha}$.

By the definition of X, we can conclude that there is no effect proposition A causes F if G_1, \ldots, G_n in D such that for all $i \in \{1, \ldots, n\}$, the value proposition G_i after $A_1; \ldots; A_k$ is true in M. Nor is there an effect proposition A causes \overline{F} if G_1, \ldots, G_n in D such that for all $i \in \{1, \ldots, n\}$, the value proposition G_i after $A_1; \ldots; A_k$ is true in M, where \overline{F} denotes the fluent expression complementary to F. We can conclude that the rule

$$\text{Holds}(F, \text{Result}(A, S)) \leftarrow$$

in program $e_{v_n}(b_{v_{n+1}}(P) \setminus b_{v_n}(P), \bigcup_{\beta \leq \alpha} X_{\beta})$ must correspond to the inertia rule

$$\text{Holds}(F, \text{Result}(A, S)) \leftarrow \text{Holds}(F, S), \text{not Noninertial}(|F|, A, S)$$

in program $b_{v_{n+1}}(P) \setminus b_{v_n}(P)$. It follows by the definition of e_{v_n} that the literal $\text{Holds}(F, S)$ belongs to X_{β}, where β is such that $\beta + 1 = \alpha$. Thus, by the definition of X, the value proposition F after $A_1; \ldots; A_k$ is true in M. By the definition of Φ, since there are no applicable effect propositions whose preconditions are all true in $M^{A_1; \ldots; A_k}$, we can conclude that F after $A_1; \ldots; A_k; A$ is true in M, from which it follows by the definition of X that the literal $\text{Holds}(F, \text{Result}(A, S))$ belongs to $X_{\alpha+1}$.

\[\square \]

Lemma 27 Let P, Q be programs. If Q is positive, then $\text{Cn}(Q) \subset \text{Cn}(P \cup Q)$.

Proof. If $P \cup Q$ is inconsistent, we’re done; so assume that B is a consistent answer set for $P \cup Q$. Since B is an answer set for $P \cup Q$, we know that B is closed under $(P \cup Q)^B = P^B \cup Q$, from which it follows that B is closed under Q. Let A be the unique answer set for Q. Since A is the least set closed under Q, we have $A \subset B$. \[\square \]
Lemma 28 Let D be a consistent domain description without value propositions. Let P be a consistent cover of πD. There is a model M of D such that for every atomic value proposition V, V is true in M if and only if πV is a member of the unique answer set for P.

Proof. Given P, we define a suitable M as follows. Let σ_0 be the set of fluent names F such that $\text{Holds}(F, S_0) \in Cn(P)$. Let Φ be the transition function for D. Since D is without value propositions, we know that $M = (\sigma_0, \Phi)$ is indeed a model of D. We must show that for each sequence of actions $A_1, \ldots, A_k (k > 0)$, and for each fluent expression F, F after $A_1; \ldots; A_k$ is true in M if and only if $\pi(F$ after $A_1; \ldots; A_k)$ is entailed by P. We know by Lemma 26 that there is a consistent cover P' of πD with this property. We will show that in fact $P = P'$.

We know that for each fluent name F, πD includes a disjunctive rule

$$\text{Holds}(F, S_0) \lor \neg \text{Holds}(F, S_0) \leftarrow .$$

Since D is without value propositions, there are no other disjunctive rules in πD, and no nondisjunctive rule in πD has a head containing a literal of the form $\text{Holds}(F, S_0)$, where F is a fluent expression. Let Q be the program containing exactly those rules from P of the form $\text{Holds}(F, S_0) \leftarrow$, where F is a fluent expression. Note that $Q \subseteq P$, and that $P \setminus Q$ is the set of nondisjunctive rules in πD. Program Q is positive, so by the previous lemma we know that $Cn(Q) \subseteq Cn(P)$. And since P is consistent, it follows that a literal of the form $\text{Holds}(F, S_0)$, where F is a fluent expression, belongs to $Cn(P)$ if and only if the rule $\text{Holds}(F, S_0) \leftarrow$ belongs to program Q. Thus we can conclude by the definition of M that for each fluent expression F, the program Q includes the rule $\text{Holds}(F, S_0) \leftarrow$ if and only if the atomic value proposition initially F is true in M. By the definition of program P' in Lemma 26, we know that for each fluent expression F, P' includes the rule $\text{Holds}(F, S_0) \leftarrow$ if and only if the atomic value proposition initially F is true in M. Thus $Q \subseteq P'$, and $P' \setminus Q$ is the set of nondisjunctive rules in πD, from which we can conclude that $P' = P$.

\square

Lemma 29 Let P be a program with a consistent answer set A. Let B be a subset of A, and let Q be the program $\{L \leftarrow : L \in B\}$. A is an answer set for program $P \cup Q$.

53
Proof. We know that \((P \cup Q)^A = P^A \cup Q^A\). Of course \(A\) is closed under \(Q\), and under \(P^A\), so \(A\) is closed under \(P^A \cup Q\). Suppose there is a set \(C\) such that \(A \not\subset C\) and \(C\) is closed under \(P^A \cup Q\). Then \(C\) is also closed under \(P^A\), contradicting the fact that \(A\) is an answer set for \(P^A\). So \(A\) is a minimal set closed under \(P^A \cup Q = (P \cup Q)^A\). Thus \(A\) is an answer set for \(P \cup Q\). □

Lemma 30 Let \(D\) be a consistent domain description, and let \(M\) be a model of \(D\). There is a consistent cover \(P\) of \(\pi D\) such that for every atomic value proposition \(V\), \(V\) is true in \(M\) if and only if \(\pi V\) is entailed by \(P\).

Proof. Let \(D_e\) be the domain consisting of only the effect propositions of \(D\), and let \(\pi_e D\) be the program consisting of the translations of only the value propositions of \(D\). Of course \(\pi_e D \cup \pi_e D = \pi D\). Observe that \(M\) is a model of \(D_e\), so \(D_e\) is consistent. By Lemma 26, there is a consistent cover \(P'\) of \(\pi D_e\) such that for every atomic value proposition \(V\), \(V\) is true in \(M\) if and only if \(\pi V\) is a member of the unique answer set for program \(P'\).

Since \(M\) is a model of domain \(D\), every value proposition in \(D\) has at least one atomic part \(V\) that is true in \(M\). Let \(Q\) be a cover of \(\pi_e D\) constructed as follows: from each value proposition in \(D\) select one atomic part \(V\) that is true in \(M\) and add to program \(Q\) the rule \(\pi V \leftarrow \). For each such rule we know already that the literal \(\pi V\) belongs to the unique answer set for program \(P'\), so by the preceding lemma we can conclude that the unique answer set for \(P'\) is also an answer set for program \(P' \cup Q\). So program \(P' \cup Q\) is consistent.

If \(P' \cap Q\) is empty, it’s clear that \(P\) is a cover for program \(\pi D\). On the other hand, any rule in \(\pi D_e \cap \pi_e D\) must have the form \(\text{Holds}(F, S) \mid \neg \text{Holds}(F, S) \leftarrow \), where \(F\) is a fluent name. And since program \(P' \cup Q\) is consistent, we can conclude that either: (i) the rule \(\text{Holds}(F, S) \leftarrow \) belongs to both \(P'\) and \(Q\); or (ii) \(\neg \text{Holds}(F, S) \leftarrow \) belongs to both \(P'\) and \(Q\). It follows that program \(P' \cup Q\) is a cover for program \(\pi D\).

Let \(P = P' \cup Q\). By monotonicity (Theorem 2), \(Cn(P') \cap S \subset Cn(P) \cap S\). Furthermore, for every literal \(L \in S\), either \(L \in Cn(P') \cap S\) or \(\neg L \in Cn(P') \cap S\). It follows that \(Cn(P) \cap \overline{S} = Cn(P') \cap \overline{S}\), and thus \(P\) is a consistent cover of \(\pi D\) such that for every atomic value proposition \(V\), \(V\) is true in \(M\) if and only if \(\pi V\) is entailed by \(P\). □
Lemma 31 Let D be a consistent domain description, and let P be a consistent cover of πD. There is a model M of D such that for every atomic value proposition V, V is true in M if and only if πV is entailed by P.

Proof. Let D_e be the domain consisting of only the effect propositions of D, and let $\pi_e D$ be the program consisting of the translations of only the value propositions of D. Since $\pi D = \pi D_e \cup \pi D$, it is clear that program P can be represented in the form $P' \cup Q$, where program P' is a cover of program πD_e and program Q is a cover of $\pi_e D$. Let S be the set of all Noninertial literals. It’s clear that $h_S(P) = h_S(P')$ and $h_S(P') \subseteq h_S(P)$, so we can conclude by monotonicity (Theorem 4) that $Cn(P') \cap S \subseteq Cn(P) \cap S$. Since P is consistent, we can conclude by Proposition 2 that program P' is consistent. By Lemma 28, there is a model M of D_e such that for every atomic value proposition V, V is true in M if and only if $\pi V \in Cn(P) \cap S$. Thus, for every Holds literal L, either $L \in Cn(P') \cap S$ or $L \in Cn(P) \cap S$. Again since P is a consistent program, we can conclude that $Cn(P') \cap S = Cn(P) \cap S$, and it follows that an atomic value proposition V is true in M if and only if $\pi V \in Cn(P) \cap S$.

We need to show that every value proposition in D is true in M. So let V be a value proposition in D, with $V = V_1 \text{ or } \ldots \text{ or } V_k$, where each of V_1, \ldots, V_k is an atomic value proposition. By definition, V is true in M if at least one of V_1, \ldots, V_k is true in M. We know that the rule

$$\pi V_1 \mid \ldots \mid \pi V_k \leftarrow$$

belongs to $\pi_e D$. Since Q is a cover of $\pi_e D$, we know there is an i ($1 \leq i \leq k$) such that the rule

$$\pi V_i \leftarrow$$

belongs to program Q. Thus we have $\pi V_i \in Cn(Q)$. By Lemma 27 we know that $Cn(Q) \subset Cn(P)$. It follows that V_i is true in M, so V is also.

\Box

Theorem 7 Let D be a consistent domain description in A_d. For all value propositions V and all atomic value propositions V_1, \ldots, V_k ($k \geq 1$) such that $V = V_1 \text{ or } \ldots \text{ or } V_k$, domain D entails V if and only if each consistent cover of πD entails at least one of $\pi V_1, \ldots, \pi V_k$.
Proof. Let V be a value proposition and let V_1, \ldots, V_k $(k \geq 1)$ be atomic value propositions such that $V = V_1 \text{ or} \ldots \text{ or} V_k$.

(Left-to-right): Assume that D entails V. We must show that each consistent cover of πD entails at least one of $\pi V_1, \ldots, \pi V_k$. Assume that P is a consistent cover of πD. By Lemma 31 there is a model M of D such that for every atomic value proposition V' that is true in M, P entails $\pi V'$. Since D entails V, we know by the definition of entailment in A_d that at least one of V_1, \ldots, V_k is true in M. Therefore P entails at least one of $\pi V_1, \ldots, \pi V_k$.

(Right-to-left): Assume that each consistent cover of πD entails at least one of $\pi V_1, \ldots, \pi V_k$. We must show that D entails V. That is, we must show that at least one of V_1, \ldots, V_k is true in each model of D. Let M be a model of D. By Lemma 30 there is a consistent cover P of πD such that for every atomic value proposition V', V' is true in M whenever P entails $\pi V'$. Since P entails at least one of $\pi V_1, \ldots, \pi V_k$, at least one of V_1, \ldots, V_k is true in M.

\square

Theorem 6 Let D be a consistent domain description in A_d. For every atomic value proposition V, D entails V if and only if πD entails πV.

Proof. The set S of all Noninertial literals is a signing for πD, and we know that for every atomic value proposition V, program πD entails πV if and only if $\pi V \in Cn(\pi D) \cap \overline{S}$. By Theorem 2,

$$Cn(\pi D) \cap \overline{S} = \bigcap_{P \in \text{covers}(\pi D)} Cn(P) \cap \overline{S}.$$

Since domain D is consistent, we know by Lemma 30 that program πD has a consistent cover, so

$$\bigcap_{P \in \text{covers}(\pi D)} Cn(P) \cap \overline{S} = \bigcap_{P \in \text{good-covers}(\pi D)} Cn(P) \cap \overline{S}.$$

Again by the definition of S, we know that for every consistent cover P of πD, and for every atomic value proposition V, $\pi V \in Cn(P) \cap \overline{S}$ if and only if P entails πV. So we’ve shown that for every atomic value proposition V, πD entails πV if and only if every consistent cover of πD entails πV. The theorem now follows immediately from Theorem 7.

\square