From Fourier Transform to Laplace Transform

Fourier Transform of a Signal x(t)

X (@) = F[x(1)] X(1)=F[x(®)]
OR
X () = Tx(t)e‘j“’tdt X (1) = [x(®)e " dt
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Fourier Transform of a Constant Function

Fourier Transform of a Singal x(t) “;,
X(t) %,
© - A {I}[é,
X (w) = j x(t)e 'dt 1 e
X : —jat |* >
—_ J-e_Ja)tdt = € - :O-I—OO:OO t
4 ~jo|
Let’s try indirectly — let’s find the Inverse Fourier Transform of o(w)
X(t) = F[X ()] = Zi [ X (@)e'da '
" 275 (w)
1 5 - 1 1 ‘
:>F_15 = — 5 eja)td :—e0:—
[5(@)] = j ()¢ d=——e=—
= F[Zi] =0(w) = F[1] =27 (w)
T
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What about Fourier Transform of Unit Step Function

y u(t)

Flu@t)] = Tu(t)e‘j“’tdt .

v

= Tej”tdt t
0

= Does not Converge
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What about Fourier Transform of Unit Step Function

o0 A u(t)

_ —jot
F[u(t)]—_J;o u(t)e 1 dt .

:J‘e_Ja)tdt :t

0

e—ja)t
= |— = Does not Converge

el [ .

How about if Jo—>o+ jo=5
X (@)= | x(t)e 9t X (s) = [ x(t)e " dt
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y u(t)

Flu(t)] = j u(t)e 1 dt .
= j e gt '
0
e—ja)t 0
= |— = Does not Converge
—_ Ja) 0
NewTransform[u(t)] = j u(t)etdt
K e ™" 1
“fetdt="— == >0
: -S|, S
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How Convergence Occurs

x(#)

\.\ /
.
/\ N ;

Figure 9.1
«  The effect of the decaying-exponential convergence factor on
js. the original function.

L]
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Laplace Transform

L[x(t)]= X (s) = Tx(t)e‘“dt

—Q0

= [ x()e It
= j x(t)e e I dt
= j [x(t)e *Je 1 dt

= Flx(e "]
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Laplace Transform - Example

L[x(t)]= X (s) = Tx(t)e‘“dt

Let’s look at another example

X(t) = Ae“u(t)

X(t) = Ae”u(t)

A/

X(t) does not have Fourier transform but
Laplace transform exists

L[x(t)]= X (s) = nge“tu(t)e‘Stdt

—Q0
0

»
»

t

o>
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Now Let’s look at another example

X(t) = Ae”
X(t) — Aeat A
A
-
Does Laplace Transform exists? =t

L[x(t)]= X (s) = TAe“te‘Stdt

= j Ae C'dt = A J' e o lle It
This integral does not converge

Therefore, the defined Laplace transform does not exist for this function
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Bilateral vs. Unilateral Laplace Transform

L[x(t)] = X(s) = Tx(t)e‘“dt

—Q0

Bilateral Laplace Transform

To avoid non-convergence Laplace transform is
redefined for causal signals

o0

L[x(t)] = X (s) = j x(t)e *tdt

Unilateral Laplace Transform

(applies to causal signals only)
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Laplace Transform - Example

X(t) = e cos(a,t)u(t)

o0

LIX(t)] = X (s) = [ x(t)e dt

0

je‘“t cos(w,t)u(t)edt
0
= J' e~ cos(aw,t)e"dt

0

; e ijt _|_ e_ja)Ot
—0

= z‘;e ; e S'dt
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0 Jopt — jopt
LIX(®)] = X () = [e 7 2e et

0

_ %T(e(jwo—s—a)t n e(—ja)o—s—a)t)dt

_1{ e(ja)o—s—a)t N e—(ja)0+s+a)t T
2| Jo—(s+a) —Jo,~(s+a) |

_1 N -1
2 Jo,— (S+a) — Jo,—(S+a)

S+«

= — o>«
(s+a) +w;
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S+«
2 2
(s+a) + w;

L[e™ cos(a,t)u(t)] =

Similarly

L[e ™ sin(at)u(t)] = )

2 2
(S+a) +w;

= L[cos(a,t)u(t)] =— > 2
+ @y
and ’
. Wy
L[sin(a,t)u(t)] = —5——
S° + @,
—at 1
Also Lle “u(t)]=——
S+«
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Properties of Laplace Transform

Linearity
KX (1) + K%, (1) = K X (@) + K, X, () FT

ko, () + KX (1) < kX, (5) +k, X, () LT

Time Shifting
X(t—-t,) o X(we '™ ET

X(t—t,) < X(s)e™ LT
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Frequency Shifting
X(t)ejwot = X (0)— C()O) EFT

x(t)e™ < G(s—s,) LT

Scaling
x(at) < — X (%) ET
4 a
@) s =xS), a0 LT
a a
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Convolution
X(O*y() & X(0)Y(w) FT

X(1)*y(t) < X(s)Y (s) LT

Similarly

y(t) = x(t) *h(t)
=Y (s)= X(s)H(s)
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Time Differentiation — once

o0

LIX(t)] = X (s) = [ x(t)e “dt

We know that Integration by parts rule

_[udv = uv—_[vdu
If we let
u = x(t) and dv =e~*'dt

—st

= du :%(x(t))dt =>V=-

0

= [ (e dt = x(t)(- e;) o e %(x(t))dt

o O 5
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st |®

R O
S

0 0

= Tx(t)e‘stdt = X(t)(~

X(s)_@ % | di (x(t))e"dt
><<s)—x‘°)+ L[—(x(t»]

SX (5) = x(0) + L[% (X()]

- L[% (X(®)] = $X () - X(0)
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Time Differentiation — twice

2 d . d
e X(t) = o (a X(t))

we already know

L[% (X()] = $X (5) — x(0)

Therefore

d’ d d
L[F X(D)]= SL{E X(t)}- m X(t)

t=0

d’ d
L[F X(t)]=s[sX(s)—x(0)] - o X(t)

t=0

L[% X(t)] = s*X (s) —sx(0) —% x(t)

t=0
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Initial Value Theorem

X(0) = !m sX(S)

We know
L[% (X(®))] = $X () - X(0)

Also

L[% X(t)] = j % x(t)e *tdt

o0

= lim % x(t)e 'dt = lim sX (s) — x(0)
0

0= !m sX(s)—x(0) = !m sX(s) = x(0)
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Final Value Theorem
!im X(t) = Iing sX(s)

We know
L[% (x(®))] = $X () - X(0)

Also

L[% X(t)] = j % x(t)e *tdt

o0

= lim dix(t)e Stdt_llmsX(s) x(0)

s—0

s—0

Ilm{i x(t)e St}dt = I|m sX(s)—x(0)

0
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s—0

Ilm{di x(t)e St}dt = I|m sX(s)—x(0)

- |
! Xt =1im sX (s) - x(0)

x(t)\zo = Islgg sX(s)—x(0)
lim x(t) — x(0) = I|m sX(s)—x(0)

t—oo

= !im X(t) = Iing sX(S)
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Example (1)

S+3
s +55+6

H(s) =

What is the final value of the impulse response?

What is the final value of the unit step response?

What is the impulse response in time domain?

What is the unit step response in time domain?
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Z Transform

Discrete Time Discrete Time
Fourier Transform Inverse Fourier Transform
X(F)= > xnk 1> x[n] = [ X (F)e’**"dF
N=—o0 1
OR OR
X(Q) = n:Zofx[n]e—an X[n] = 1 j X (F)e"dQ
N=—00 272- 2

Where 27 =Q)

N=o00 N=o0o

X(8)= X[ " = 3 Xk "

N=—o0 N=—o0
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N=o00 N=o00

X(8)= X[ " = 3 Xk "

N=—o0 N=—00

X(S)= 3 (x[nf *)e

N=—o0

= DTFT(x[n]e™™")

Also ) )
X (S) _ Zx[n]e—(2+j§2)n _ Zx[n]e—Sn
= X(2) = Zx[n]z‘n Where € =
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z Transform of u[n]

First DTFT
X(Q)= Y x[ne

N=00 N=00
= X(QQ) = Z:u[n]e_JQn = Ze“m Does not converge
N=—o0 n=0

Then z-transform

X(2)= riou[n]z‘n = rioz‘”

N=—00

ROC

Z 1
z|>1

T 71 1-7°1
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Unilateral z Transform

For similar reasoning as in Laplace Transform, unilateral z-transform is used

X(2) = riox[n]z‘n

Applies to only causal signals

Department of Electrical and Computer Engineering



