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Concept of probability

• Random Experiment

• Number of Outcomes - Events

• Sample Space – A correction of all possible events

• Complement

• Union

• Intersection
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Relative Frequency and Probability
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Conditional Probability and Independent Events
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Independent Events

A and B are independent if
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Does Order Matter in a Repeated Trials Series?

Let probability of success is p => probability of failure is q= 1-p
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Two Interesting Examples from Digital Communication

• Concatenation increases probability of error

[start with probability of correct decision (1-PE )]

• Redundancy reduces probability of error

[(start with probability of error PE ]

Binary Symmetric Channel (BSC)
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Random Variable

• Discrete Random Variables

• Continuous Random Variables

Let’s first look at discrete random variables

1. Probabilities

2. Joint Probabilities

3. Conditional Probabilities

4. Cumulative Distribution Function
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Cumulative Distribution Function (CDF)
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Gaussian PDF
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Cannot be solved analytically, so let’s define

Which is widely tabulated
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More General Gaussian PDF
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Statistical Averages (Means)
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Mean of a Function of Random Variable
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Moments and Central Moments






 dxxPxX X

nn )(






 dxxPxxXX X

nn )()()(

nth moment

nth central moment






 dxxPxxiance XX )()(var 22






 dxxPxxdeviationdards XX )()(tan 2

Special Cases



Department   of   Electrical   and   Computer   Engineering

Variance of Two Independent Variables
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Central Limit Theorem

Sum of large number of random variables tend to be Gaussian.
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Random Processes

A random variable which is a function of time is a random process.

A random Variable is X and a random Process is X(t)
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Autocorrelation Function of A Random Process
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For stationary random processes:
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An Example of a Random Process
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Autocorrelation function of a power signal
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Power Spectral Density of Random Process
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Power of a Random Process

2XPX 

)()()0( tXtXRX 

22 )( XtX 

)0(XX RP 




dSX )(
2

1










dSX )(
1

0








Department   of   Electrical   and   Computer   Engineering

Example 1 – Low-Pass Random Process

)
4

(
2

)(
B

rect
N

SX



 

)2(sin)(  BcNBRX 

NBRP XX  )0(





00

)(2)(
1

dffSdSP XXX 


NBdf
N

B

 
0

2
2

Alternatively



Department   of   Electrical   and   Computer   Engineering

)(tY)(tX )(th

)()()(
2

 XY SHS 

Transmission through Linear System

Sum of Independent Random Processes
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Bandpass Random Process

ttXttXtX cscc  sin)(cos)()( 
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Bandpass random process has two quadrature low pass 

components having equal power.
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Example – Bandpass Noise
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