Intense Natural Selection Caused a Rapid Morphological Transition in a Living Marine Snail

Robin Hadlock Seeley

Stable URL:
http://links.jstor.org/sici?sici=0027-8424%2819860915%2983%3A18%3C6897%3AINSCAR%3E2.0.CO%3B2-X

Proceedings of the National Academy of Sciences of the United States of America is currently published by National Academy of Sciences.
Intense natural selection caused a rapid morphological transition in a living marine snail

(predation/morphological variation/evolution)

ROBIN HADLOCK SEELEY*
Department of Biology, Yale University, P.O. Box 6666, New Haven, CT 06511

Communicated by G. Evelyn Hutchinson, May 12, 1986

ABSTRACT Shell shape and shell thickness of the intertidal snail Littorina obtusata changed markedly between 1871 and 1984 in northern New England. Shells collected prior to 1900 were high-spired with thin walls, whereas shells collected in 1982–84 were low-spired with thick walls. An intertidal crab (Carcinus maenas) which preys on L. obtusata expanded its range into northern New England around 1900. This suggests that the change in snail shell form was a response to predation by Carcinus. Field and laboratory experiments demonstrated that the high-spired form of L. obtusata, which can still be found in some Maine localities, is more vulnerable to predation by Carcinus than is the low-spired form of L. obtusata. Electrophoretic comparisons of high- and low-spired populations of L. obtusata confirmed that these populations represent different morphological forms of L. obtusata rather than different species [Nei’s D (unbiased measure of genetic distance) = 0.003]. These data demonstrate that classical Darwinian selection can produce a rapid morphological transition without speciation.

A pattern of punctuated morphological evolution in the fossil record may be widespread (1), but there is strong disagreement among evolutionary biologists over the mechanisms producing this pattern (2, 3). The main debate focuses on whether or not the punctuated equilibrium pattern (including both long-term morphological stasis and rapid morphological change) can be explained by classical neo-Darwinian mechanisms (3). Some evolutionary biologists conclude that morphological breaks observed in fossil lineages represent speciation events and suggest that natural selection plays a minor role in these rapid transitions (4–7). Other biologists maintain that natural selection may cause rapid transitions as well as slow and gradual change and that no new mechanisms need be invoked to explain punctuated morphological evolution (8–10). Many have challenged the claim that rapid transitions documented in fossil lineages represent speciation events (11–16). Recent theoretical models (17–19) analyzing the response of populations experiencing classical neo-Darwinian processes of selection and random genetic change have shown that morphological evolution in these populations may be rapid and result in a pattern like that of the punctuated equilibrium model.

Testing the power of natural selection to produce a rapid morphological transition in real organisms has been difficult for both ecologists and paleontologists: rapid transitions are rarely witnessed by ecologists, and the selective processes which might drive such a transition are not visible in the fossil record. I report here that a rapid morphological transition occurred in the intertidal snail Littorina obtusata (L.) between 1871 and 1984 in northern New England (USA) in response to intense natural selection by the crab Carcinus maenas (L.). This intertidal predator did not occur north of Cape Cod, Massachusetts, before 1900 (20); after 1900 Carcinus moved north of Cape Cod into northern New England. At present it is found as far north as northern Nova Scotia (21). Snail shells collected prior to 1900 in northern New England are high-spired with thin walls, but shells from L. obtusata populations in most areas of northern New England today are low-spired with thick walls. However, populations of L. obtusata with high-spired shells can still be found at some Maine localities (22) (Fig. 1). Geographic variation among living L. obtusata populations makes it possible to compare the vulnerability of high- and low-spired shells to crab predation and, thus, test whether directional selection by Carcinus is likely to have caused the rapid change in snail shell morphology.

Field and laboratory studies demonstrated that high-spired shells of L. obtusata are more vulnerable to Carcinus than are low-spired shells. Furthermore, genetic analyses indicated that living populations of high- and low-spired snails are not reproductively isolated. These data support the view that morphological transitions that appear abrupt in the fossil record may be a product of classical Darwinian selection and should not be assumed to represent speciation. This confirms a key prediction of Kirkpatrick’s recent theoretical model (17): that morphological transitions resulting from adaptive shifts of populations can be both large and abrupt.

METHODS

L. obtusata shells collected before 1900 [some of which were labeled Littorina palliata (Say)] were found from Nahant, Massachusetts (42°25.5' N, 70°55.0' W), at the Museum of Comparative Zoology, Harvard University (1898, MCZ 13972); and from Appledore Island, Maine (42°57' N, 70°35' W; 1871, deposited in Yale Peabody Museum, YPM 19351); and from Isle au Haut, Maine (44°04.3' N, 68°38.3' W; 1893, MCZ 13972). A sample from Nahant collected in 1915 (YPM 19079) was also measured. To compare shells collected prior to 1900 with shells of living populations of L. obtusata, snails from four different sites at each of the three above-named localities were collected (YPM 19345–19349, 19352–19358). In addition, snails from two living populations of L. obtusata from Perry, Maine (Sipp Bay, YPM 19359; Gleason Point, YPM 19360), which appeared to represent a high- and low-spired shell form, respectively, were collected.

The shell form of a L. obtusata population was assessed by measuring four shell characters (spire height, shell thickness, shell width, and shell height, all in mm). Spire height was defined as the height of the shell above the body whorl; shell thickness, as the width of the outer lip of the aperture; shell width, as the width of the body whorl; and shell height, as the length of the shell from apex to the base of the outer lip (22). The first two characters were measured with an ocular

*Present address: Section of Ecology and Systematics, Corson Hall, Cornell University, Ithaca, NY 14853.
Fig. 1. Historical and geographic variation in L. obtusata (L.) from Maine (USA). (Upper Left) Appledore Island, 1871 (YPM 19351). (Upper Right) Appledore Island, 1982 (YPM 19349). (Lower Left) Sipp Bay, Perry, 1984 (YPM 19359). (Lower Right) Gleason Point, Perry, 1984 (YPM 19360). (Bar = 5 mm.)
RESULTS

Snail shells collected at Nahant, Appledore Island, or Isle au Haut prior to 1900 were significantly taller in spine and thinnest in shell wall than were snail shells collected at these localities in 1982–84 (Figs. 1 and 2A, and Table 1). At Nahant, relative spine height decreased from a mean of 0.34 in 1898 (SD, 0.07) to a mean of −0.04 in 1915 and to −0.35 in 1982–84. This is a change of 5.4 standard deviations in at most 17 generations (1898–1915) and a change of 9.9 standard deviations in at most 86 generations (1898–1984). Shells of L. obtusata individuals collected from Sipp Bay in 1984 were higher-spired and thinner than shells collected from Gleason Point in 1984 (Figs. 1 and 2B and Table 1).

High-spired individuals of L. obtusata are more vulnerable to crab predation than are low-spired individuals. At Gleason Point, where crabs are abundant, survival of the low-spired population was 57%, but in the high-spired population, it was only 14% (P < 0.01, n = 28). At Sipp Bay, where crabs are less abundant, survival of the low-spired population was 89% but only 33% in the high-spired population (P < 0.01, n = 21). However, at Timber Cove, where crabs are rare, survival of both high-spired and low-spired populations was 100% (n = 20) (Fig. 3). In laboratory experiments, only 12% of the low-spired snails but 100% of the high-spired snails were successfully attacked by Carcinus (P < 0.001, n = 16).

Living snail populations differing markedly in shell form (Gleason Point and Sipp Bay, Figs. 1 and 2B) are very similar in frequencies of alleles detectable by starch gel electrophoresis (Nei's D = 0.003).

DISCUSSION

Results of field observations and experiments reported here demonstrate that intraspecific variation in shell spine height and thickness in L. obtusata is likely a product of varying intensities of crab predation. Low-spired shells are better defended against crab attack because of increased whorl overlap in these shells (Fig. 1). Because shell thickness increases with each successive whorl, increased overlap causes the thin shell whorls of the juvenile snail to be enclosed in the thicker whorls of the adult. In high-spired shells, these thin (and thus more vulnerable) whorls are exposed to crushing predators. The studies of the effects of Carcinus predation on living L. obtusata populations differing in shell form strongly support the hypothesis that the rapid morphological transition which took place during the last century in L. obtusata was a response to intense directional selection by Carcinus.

The claim for gradual, adaptive evolution of the low-spired form of L. obtusata is subject to the objection that current utility of the low-spired shell as a successful defense against crabs does not demonstrate that the low-spired form evolved in response to crab predation. However, the observation that the shift in shell form occurred during the same period of time that crabs were introduced, and the existence of a strongly positive correlation between "low-spired-ness" of the shell of living snail populations and abundance of Carcinus (22)
strongly supports the claim for an adaptive morphological transition in *L. obtusata*.

A second potential objection to the claim for adaptive evolution of shell form within a species is that the pattern of rapid change in shell form is compatible with a process of extinction (of a high-spired species) and range expansion (of a low-spired species) as well as with a process of in situ evolution of a single snail species. Two findings indicate that evolution of populations within a single species is the correct interpretation of this pattern. First, two populations from eastern Maine (Sipp Bay and Gleason Point) differing in shell shape and thickness (Figs. 1 and 2B) are genetically as similar as are conspecific populations of other *Littorina* species (28). Second, snail populations at localities with moderately high numbers of crabs are intermediate in shell form to more extreme high- or low-spired populations (22) found at localities where crab abundance is low and high, respectively. Data revealing that shells collected from Nahant in 1915 are also intermediate in spire height further support the interpretation of this morphological transition as a gradual, within-species response to a new selective pressure.

The pattern of rapid morphological change observed in *L. obtusata* matches the pattern of change predicted by Kirkpatrick (17) for a population moving rapidly from one fitness peak to another as a result of a changed environment. Kirkpatrick’s (17) theoretical model predicts that a rapid transition driven by natural selection would be likely to appear discontinuous in the fossil record because of the brevity of the transitional period relative to sampling interval. Analysis of the morphological transition in *L. obtusata* indicates that it took place in approximately 100 years (± 100 generations). The intermediate shell shape of the 1915 Nahant collection (Fig. 2A and Table 1) suggests that at this locality, transitional forms were present only 17 years (± 17 generations) after high-spired snails had been collected. This supports the conclusion of the Kirkpatrick (17) model that morphological transitions driven by selection in a changing environment can occur rapidly. As Palmer (29) has pointed

Table 1. Comparison of shell shape (relative spire height) and thickness of *L. obtusata* populations collected at different times from one locality or from different sites within a locality in 1984

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Populations from one locality at different times</th>
<th>Populations from different Perry sites in 1984</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nahant 1898 (44) 1915 1982–84</td>
<td>Appledore Island 1871 (46) 1982–84</td>
</tr>
<tr>
<td></td>
<td>Sipp Bay 1982–84 (15)</td>
<td>Gleason Point 1982–84 (16)</td>
</tr>
<tr>
<td>Relative spire height</td>
<td>Median 0.34 0.19 0.52</td>
<td>Minimum 0.34 0.27 0.36</td>
</tr>
<tr>
<td></td>
<td>P < 0.0001 0.003 0.0001</td>
<td>0.0001 0.0001</td>
</tr>
<tr>
<td>Relative shell thickness</td>
<td>Median -0.06 -0.06 -0.06</td>
<td>Minimum -0.06 -0.06 -0.06</td>
</tr>
<tr>
<td></td>
<td>P < 0.001 0.93 0.0001</td>
<td>0.0001 0.0001</td>
</tr>
</tbody>
</table>

Numbers of observations are shown in parentheses. Significance levels are shown for results of Kruskal–Wallis tests.
gastropods could result from changes at few gene loci and differing in crab structure, ecological conditions, and the degree to which selection will differ among taxa according to population range. This is underscored by Vermeij's initial discovery that two other gastropod species showed no significant morphological change [Littorina littorea (L.); ref. 33] in response to the range expansion of Carcinus. L. obusata, in contrast, apparently responded to this significant ecological event with a major change in shell morphology.

I thank G. Vermeij for originally drawing my attention to the history of Carcinus in New England, J. Powell for the use of his laboratory, G. M. Davis for use of the Molluscan Molecular Genetics Laboratory at the Academy of Natural Sciences of Philadelphia; and L. Buss, R. G. Harrison, D. E. Schindel, R. D. Turner, T. D. Seeley, and J. Wulff for their comments. W. K. Sacco photographed the shells in Fig. 1. This work was supported by National Science Foundation Doctoral Dissertation Grant BSR-8312757, a scholarship from the National Capital Shell Club of Washington, DC, a Jessup Scholarship from the Academy of Natural Sciences of Philadelphia, and a grant from the Bache Fund, National Academy of Sciences.

FIG. 3. Differences in survival of populations representing high- and low-spired shell forms of L. obtusata at three Maine sites differing in crab (Carcinus) abundance. Crabs were very abundant at Gleason Point, much less abundant at Sipp Bay, and extremely rare at Timber Cove (see text). ❷� High-spired populations; ○, low-spired populations.
You have printed the following article:

Intense Natural Selection Caused a Rapid Morphological Transition in a Living Marine Snail
Robin Hadlock Seeley
Stable URL:
http://links.jstor.org/sici?sici=0027-8424%2819860915%2983%3A18%3C6897%3AINSCAR%3E2.0.CO%3B2-X

This article references the following linked citations. If you are trying to access articles from an off-campus location, you may be required to first logon via your library web site to access JSTOR. Please visit your library's website or contact a librarian to learn about options for remote access to JSTOR.

[Endnotes]

1. **Punctuated Equilibria: The Tempo and Mode of Evolution Reconsidered**
 Stephen Jay Gould; Niles Eldredge
 Stable URL:
 http://links.jstor.org/sici?sici=0094-8373%28197721%293%3A2%3C115%3APETTAM%3E2.0.CO%3B2-H

2. **Punctuated Equilibrium is Now Old Hat**
 Roger Lewin
 Stable URL:
 http://links.jstor.org/sici?sici=0036-8075%2819860214%29231%3A4739%3C672%3APEINOH%3E2.0.CO%3B2-C

5. **Is a New and General Theory of Evolution Emerging?**
 Stephen Jay Gould
 Stable URL:
 http://links.jstor.org/sici?sici=0094-8373%28198024%296%3A1%3C119%3AIGEVEE%3E2.0.CO%3B2-U

NOTE: The reference numbering from the original has been maintained in this citation list.
8 Review: Microevolution in Relation to Macroevolution
Reviewed Work(s):
 \textit{Macroevolution: Pattern and Process}. by Steven M. Stanley
Russell Lande
\textit{Paleobiology}, Vol. 6, No. 2. (Spring, 1980), pp. 233-238.
Stable URL:
http://links.jstor.org/sici?sici=0094-8373%28198021%296%3A2%3C233%3AMIRTM%3E2.0.CO%3B2-F

10 A Neo-Darwinian Commentary on Macroevolution
Brian Charlesworth; Russell Lande; Montgomery Slatkin
Stable URL:
http://links.jstor.org/sici?sici=0014-3820%28198205%2936%3A3%3C474%3AANCOM%3E2.0.CO%3B2-2

14 Snail Shape and Growth Rates: Evidence for Plastic Shell Allometry in Littorina littorea
Paul Kemp; Mark D. Bertness
Stable URL:
http://links.jstor.org/sici?sici=0027-8424%2819840201%2981%3A3%3C811%3ASSAGRE%3E2.0.CO%3B2-2

15 Quantum Changes in Gastropod Shell Morphology Need Not Reflect Speciation
A. Richard Palmer
Stable URL:
http://links.jstor.org/sici?sici=0014-3820%28198505%2939%3A3%3C699%3AQCMGSM%3E2.0.CO%3B2-C

17 Quantum Evolution and Punctuated Equilibria in Continuous Genetic Characters
Mark Kirkpatrick
Stable URL:
http://links.jstor.org/sici?sici=0003-0147%28198206%29119%3A6%3C833%3AQSEP%3E2.0.CO%3B2-T

NOTE: The reference numbering from the original has been maintained in this citation list.
18 Expected Time for Random Genetic Drift of a Population between Stable Phenotypic States
Russell Lande
Stable URL:
http://links.jstor.org/sici?sici=0027-8424%2819851115%2982%3A22%3C7641%3AETFRGD%3E2.0.CO%3B2-D

29 Quantum Changes in Gastropod Shell Morphology Need Not Reflect Speciation
A. Richard Palmer
Stable URL:
http://links.jstor.org/sici?sici=0014-3820%28198505%2939%3A3%3C699%3AQCIGSM%3E2.0.CO%3B2-C

32 Environmental Change and the Evolutionary History of the Periwinkle (Littorina littorea) in North America
Geerat J. Vermeij
Stable URL:
http://links.jstor.org/sici?sici=0014-3820%28198205%2936%3A3%3C561%3AECAEH%3E2.0.CO%3B2-F

NOTE: The reference numbering from the original has been maintained in this citation list.