
Vector Spaces

Still round the corner there may wait  
A new road or a secret gate.

J. R. R. Tolkien, The Fellowship of the Ring

The art of doing mathematics consists in finding that special case 
which contains all the germs of generality.

David Hilbert (1862–1943)

19

Definition and Examples
Abstract algebra has three basic components: groups, rings, and fields. 
Thus far we have covered groups and rings in some detail, and we have 
touched on the notion of a field. To explore fields more deeply, we need 
some rudiments of vector space theory that are covered in a linear alge-
bra course. In this chapter, we provide a concise review of this material.

Definition Vector Space
A set V is said to be a vector space over a field F if V is an Abelian 
group under addition (denoted by 1) and, if for each a [ F and 
v [ V, there is an element av in V such that the following conditions 
hold for all a, b in F and all u, v in V.

 1. a(v 1 u) 5 av 1 au
 2. (a 1 b)v 5 av 1 bv
 3. a(bv) 5 (ab)v
 4. 1v 5 v

The members of a vector space are called vectors. The members of 
the field are called scalars. The operation that combines a scalar a and 
a vector v to form the vector av is called scalar multiplication. In gen-
eral, we will denote vectors by letters from the end of the alphabet, 
such as u, v, w, and scalars by letters from the beginning of the alpha-
bet, such as a, b, c.
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 EXAMPLE 1 The set Rn 5 {(a1, a2, . . . , an) | ai [ R} is a vector space 
over R. Here the operations are the obvious ones:

(a1, a2, . . . , an) 1 (b1, b2, . . . , bn) 5 (a1 1 b1, a2 1 b2, . . . , an 1 bn)

and

 b(a1, a2, . . . , an) 5 (ba1, ba2, . . . , ban). 

 EXAMPLE 2 The set M2(Q) of 2 3 2 matrices with entries from Q is a 
vector space over Q. The operations are

ca1 a2

a3 a4
d � cb1 b2

b3 b4
d � ca1 � b1 a2 � b2

a3 � b3 a4 � b4
d

and

 
b ca1 a2

a3 a4
d � cba1 ba2

ba3 ba4
d. 

 EXAMPLE 3 The set Zp[x] of polynomials with coefficients from Zp is a 
vector space over Zp, where p is a prime. 

 EXAMPLE 4 The set of complex numbers C 5 {a 1 bi | a, b [ R} is a 
vector space over R. The vector addition and scalar multiplication are 
the usual addition and multiplication of complex numbers. 

The next example is a generalization of Example 4. Although it 
appears rather trivial, it is of the utmost importance in the theory of 
fields.

 EXAMPLE 5 Let E be a field and let F be a subfield of E. Then E is a 
vector space over F. The vector addition and scalar multiplication are the 
operations of E. 

Subspaces
Of course, there is a natural analog of subgroup and subring.

Definition Subspace
Let V be a vector space over a field F and let U be a subset of V. We say 
that U is a subspace of V if U is also a vector space over F under the  
operations of V.

 EXAMPLE 6 The set {a2x
2 1 a1x 1 a0 | a0, a1, a2 [ R} is a subspace of 

the vector space of all polynomials with real coefficients over R. 
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 EXAMPLE 7 Let V be a vector space over F and let v1, v2, . . . , vn be (not 
necessarily distinct) elements of V. Then the subset

kv1, v2, . . . , vnl 5 {a1v1 1 a2v2 1 ? ? ? 1 anvn | a1, a2, . . . , an [ F}

is called the subspace of V spanned by v1, v2, . . . , vn. Any sum of  
the form a1v1 1 a2v2 1 ? ? ? 1 anvn is called a linear combination of 
v1, v2, . . . , vn. If kv1, v2, . . . , vnl 5 V, we say that {v1, v2, . . . , vn} 
spans V. 

Linear Independence
The next definition is the heart of the theory.

Definition Linearly Dependent, Linearly Independent
A set S of vectors is said to be linearly dependent over the field F if 
there are vectors v1, v2, . . . , vn from S and elements a1, a2, . . . , an from 
F, not all zero, such that a1v1 1 a2v2 1 ? ? ? 1 anvn 5 0. A set of vectors 
that is not linearly dependent over F is called linearly independent 
over F.

In other words, a set of vectors is linearly dependent over F if there is 
a nontrivial linear combination of them over F equal to 0.

 EXAMPLE 8 In R3 the vectors (1, 0, 0), (1, 0, 1), and (1, 1, 1) are linearly 
independent over R. To verify this, assume that there are real numbers  
a, b, and c such that a(1, 0, 0) 1 b(1, 0, 1) 1 c(1, 1, 1) 5 (0, 0, 0).  
Then (a 1 b 1 c, c, b 1 c) 5 (0, 0, 0). From this we see that  
a 5 b 5 c 5 0. 

Certain kinds of linearly independent sets play a crucial role in the 
theory of vector spaces.

Definition Basis
Let V be a vector space over F. A subset B of V is called a basis for V  
if B is linearly independent over F and every element of V is a linear 
combination of elements of B.

The motivation for this definition is twofold. First, if B is a basis for 
a vector space V, then every member of V is a unique linear combination 
of the elements of B (see Exercise 19). Second, with every vector space 
spanned by finitely many vectors, we can use the notion of basis to 
 associate a unique integer that tells us much about the vector space. (In 
fact, this integer and the field completely determine the vector space up 
to isomorphism—see Exercise 31.)
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 EXAMPLE 9 The set V 5 e c a a � b

a � b b
d ` a, b [ R f

is a vector space over R (see Exercise 17). We claim that the set

B � e c1 1

1 0
d , c0 1

1 1
d f  is a basis for V over R. To prove that the set

B is linearly independent, suppose that there are real numbers a and b 
such that

a c1 1

1 0
d � b c0 1

1 1
d � c0 0

0 0
d .

This gives c a a � b

a � b b
d � c0  0

0 0
d , so that a 5 b 5 0. On the other 

hand, since every member of V has the form

c a a � b

a � b b
d � a c1 1

1 0
d � b c0 1

1 1
d ,

we see that B spans V. 

We now come to the main result of this chapter.

 Theorem 19.1 Invariance of Basis Size

If {u1, u2, . . . , um} and {w1, w2, . . . , wn} are both bases of a vector 
space V over a field F, then m 5 n.

PROOF Suppose that m 2 n. To be specific, let us say that m , n. Con-
sider the set {w1, u1, u2, . . . , um}. Since the u’s span V, we know that w1 
is a linear combination of the u’s, say, w1 5 a1u1 1 a2u2 1 ? ? ? 1 amum, 
where the a’s belong to F. Clearly, not all the a’s are 0. For convenience, 
say a1 2 0. Then {w1, u2, . . . , um} spans V (see Exercise 21). Next, con-
sider the set {w1, w2, u2, . . . , um}. This time, w2 is a linear combination of 
w1, u2, . . . , um, say, w2 � b1w1 � b2u2 �  . . . 1 bmum, where the b’s  
belong to F. Then at least one of b2, . . . , bm is nonzero, for otherwise the 
w’s are not linearly independent. Let us say b2 2 0. Then w1, w2, u3, . . . , 
um span V. Continuing in this fashion, we see that {w1, w2, . . . , wm} spans 
V. But then wm11 is a linear combination of w1, w2, . . . , wm and, there-
fore, the set {w1, . . . , wn} is not  linearly independent. This contradiction 
finishes the proof. 

Theorem 19.1 shows that any two finite bases for a vector space have 
the same size. Of course, not all vector spaces have finite bases. However, 
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there is no vector space that has a finite basis and an infinite basis (see 
Exercise 25).

Definition Dimension
A vector space that has a basis consisting of n elements is said  
to have dimension n. For completeness, the trivial vector space {0} is 
said to be spanned by the empty set and to have dimension 0.

Although it requires a bit of set theory that is beyond the scope of 
this text, it can be shown that every vector space has a basis. A vector 
space that has a finite basis is called finite dimensional; otherwise, it is 
called infinite dimensional.

Exercises

Somebody who thinks logically is a nice contrast to the real world.
The Law of Thumb

  1. Verify that each of the sets in Examples 1–4 satisfies the axioms for 
a vector space. Find a basis for each of the vector spaces in  
Examples 1–4.

  2. (Subspace Test) Prove that a nonempty subset U of a vector space V 
over a field F is a subspace of V if, for every u and u9 in U and ev-
ery a in F, u 1 u9 [ U and au [ U. (In words, a nonempty set U is 
a subspace of V if it is closed under the two operations of V.)

  3. Verify that the set in Example 6 is a subspace. Find a basis for this 
subspace. Is {x2 1 x 1 1, x 1 5, 3} a basis?

  4. Verify that the set kv1, v2, . . . , vnl defined in Example 7 is a sub-
space.

  5. Determine whether or not the set {(2, 21, 0), (1, 2, 5), (7, 21, 5)} is 
linearly independent over R.

  6. Determine whether or not the set

e c2 1

1 0
d , c0 1

1 2
d , c1 1

1 1
d f

  is linearly independent over Z5.
  7. If {u, v, w} is a linearly independent subset of a vector space, show 

that {u, u 1 v, u 1 v 1 w} is also linearly independent.
  8. If {v1, v2, . . . , vn} is a linearly dependent set of vectors, prove that 

one of these vectors is a linear combination of the other.
  9. (Every spanning collection contains a basis.) If {v1, v2, . . . , vn} spans 

a vector space V, prove that some subset of the v’s is a basis for V.
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 10. (Every independent set is contained in a basis.) Let V be a finite- 
dimensional vector space and let {v1, v2, . . . , vn} be a linearly 
 independent subset of V. Show that there are vectors w1, w2, . . . , wm 
such that {v1, v2, . . . , vn, w1, . . . , wm} is a basis for V.

 11. If V is a vector space over F of dimension 5 and U and W are sub-
spaces of V of dimension 3, prove that U > W 2 {0}. Generalize.

 12. Show that the solution set to a system of equations of the form

a11x1 1 ? ? ? 1 a1nxn 5 0
 a21x1 1 ? ? ? 1 a2nxn 5 0

  ? ? ?
  ? ? ?
  ? ? ?
 am1x1 1 ? ? ? 1 amnxn 5 0,

  where the a’s are real, is a subspace of Rn.
 13. Let V be the set of all polynomials over Q of degree 2 together with 

the zero polynomial. Is V a vector space over Q?
 14. Let V 5 R3 and W 5 {(a, b, c) [ V | a2 1 b2 5 c2}. Is W a sub-

space of V? If so, what is its dimension?
 15. Let V 5 R3 and W 5 {(a, b, c) [ V | a 1 b 5 c}. Is W a subspace 

of V? If so, what is its dimension?

 16. Let V 5 e ca b

b c
d ` a, b, c [ Q f . Prove that V is a vector space 

  over Q, and find a basis for V over Q.
 17. Verify that the set V in Example 9 is a vector space over R.
 18. Let P 5 {(a, b, c) | a, b, c [ R, a 5 2b 1 3c}. Prove that P is a sub-

space of R3. Find a basis for P. Give a geometric description of P.
 19. Let B be a subset of a vector space V. Show that B is a basis for V if 

and only if every member of V is a unique linear combination of the 
elements of B. (This exercise is referred to in this chapter and in 
Chap ter  20.)

 20. If U is a proper subspace of a finite-dimensional vector space V, 
show that the dimension of U is less than the dimension of V.

 21. Referring to the proof of Theorem 19.1, prove that {w1, u2, . . . , um} 
spans V.

 22. If V is a vector space of dimension n over the field Zp, how many 
elements are in V?

 23. Let S 5 {(a, b, c, d) | a, b, c, d [ R, a 5 c, d 5 a 1 b}. Find a  basis 
for  S.
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 24. Let U and W be subspaces of a vector space V. Show that U > W is 
a subspace of V and that U 1 W 5 {u 1 w | u [ U, w [ W} is a 
subspace of V.

 25. If a vector space has one basis that contains infinitely many ele-
ments, prove that every basis contains infinitely many elements. 
(This exercise is referred to in this chapter.)

 26. Let u 5 (2, 3, 1), v 5 (1, 3, 0), and w 5 (2, 23, 3). Since (1/2)u 2  
(2/3)v 2 (1/6)w 5 (0, 0, 0), can we conclude that the set {u, v, w} is 
linearly depen dent over Z7?

 27. Define the vector space analog of group homomorphism and ring 
homomorphism. Such a mapping is called a linear transformation. 
Define the vector space analog of group isomorphism and ring iso-
morphism.

 28. Let T be a linear transformation from V to W. Prove that the image 
of V under T is a subspace of W.

 29. Let T be a linear transformation of a vector space V. Prove that  
{v [ V | T(v) 5 0}, the kernel of T, is a subspace of V.

 30. Let T be a linear transformation of V onto W. If {v1, v2, . . . , vn} 
spans V, show that {T(v1), T(v2), . . . , T(vn)} spans W.

 31. If V is a vector space over F of dimension n, prove that V is isomor-
phic as a vector space to Fn 5 {(a1, a2, . . . , an) | ai [ F}. (This ex-
ercise is referred to in this chapter.)

 32. Show that it is impossible to find a basis for the vector space of  
n 3 n (n . 1) matrices such that each pair of elements in the  basis 
commutes under multiplication.

 33. Let Pn 5 {anx
n 1 an21x

n21 1 ? ? ? 1 a1x 1 a0 | each ai is a real 
number}. Is it possible to have a basis for Pn such that every ele-
ment of the basis has x as a factor?

 34. Find a basis for the vector space { f [ P3 | f (0) 5 0}. (See Exercise 33 
for notation.)

 35. Given that f is a polynomial of degree n in Pn, show that { f, f 9,  
f 0, . . . , f (n)} is a basis for Pn. ( f (k) denotes the kth derivative of f.)

 36. Prove that for a vector space V over a field that does not have char-
acteristic 2, the hypothesis that V is commutative under addition is 
redundant.

 37. Let V be a vector space over an infinite field. Prove that V is not the 
union of finitely many proper subspaces of V.
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Emil Artin was one of the leading mathe-
maticians of the 20th century and a major 
contributor to linear algebra and abstract  
algebra. Artin was born on March 3, 1898, 
in Vienna, Austria, and grew up in what was 
recently known as Czechoslovakia. He 
 received a Ph.D. in 1921 from the University 
of Leipzig. Artin was a professor at the 
University of Hamburg from 1923 until he 
was barred from employment in Nazi 
Germany in 1937 because his wife had a 
Jewish grandparent. His family  emigrated 
to the United States where he spent one year 
at Notre Dame then eight years at Indiana 
University. In 1946 he moved to Princeton, 
where he stayed until 1958. The last four 
years of his career were spent where it 
began, at Hamburg. 

Artin’s mathematics is both deep and 
broad. He made contributions to number the-
ory, group theory, ring theory, field theory, 
Galois theory, geometric algebra, algebraic 
topology, and the theory of braids—a field 
he invented. Artin received the American 

For Artin, to be a mathematician meant to 
participate in a great common effort, to con-
tinue work begun thousands of years ago, 
to shed new light on old discoveries, to seek 
new ways to prepare the developments of 
the future. Whatever standards we use, he 
was a great mathematician.

richard brauer,  
Bulletin of the American 

Mathematical Society

Mathematical Society’s Cole Prize in num-
ber theory, and he solved one of the 23  
famous problems posed by the eminent 
mathematician David Hilbert in 1900.

Eminent mathematician Hermann Weyl 
said of Artin “I look upon his early work in 
algebra and number theory as one of the few 
big mathematical events I have witnessed in 
my lifetime. A genius, aglow with the fire of 
ideas—that was the impression he gave in 
those years.”

Artin was an outstanding teacher of 
mathematics at all levels, from freshman 
calculus to seminars for colleagues. Many  
of his Ph.D. students as well as his son  
Michael have become leading mathemati-
cians. Through his research, teaching, and 
books, Artin exerted great influence among 
his contemporaries. He died of a heart  
attack, at the age of 64, in 1962.

For more information about Artin, visit:

http://www-groups.dcs 
.st-and.ac.uk/~history/
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Olga Taussky-Todd was born on August 30, 
1906, in Olmütz in the Austro-Hungarian 
Empire. Taussky-Todd received her doctoral 
degree in 1930 from the University of Vienna. 
In the early 1930s she was hired as an assistant 
at the University of Göttingen to edit books on 
the work of David Hilbert. She also edited 
lecture notes of Emil Artin and assisted 
Richard Courant. She spent 1934 and 1935 
at Bryn Mawr and the next two years at 
Girton College in Cambridge, England. In 
1937, she taught at the University of 
London. In 1947, she moved to the United 
States and took a job at the National Bureau 
of Standards’ National Applied Mathematics 
Laboratory. In 1957, she became the first 
woman to teach at the California Institute of 
Technology as well as the first woman to  
receive tenure and a full professorship in 
mathematics, physics, or  astronomy there. 
Thirteen Caltech Ph.D. students wrote their 
Ph.D. theses under her direction.

“Olga Taussky-Todd was a distinguished 
and prolific mathematician who wrote about 
300 papers.”

edith luchins and mary ann mcloughlin,  
Notices of the American  

Mathematical Society, 1996

In addition to her influential contributions to 
linear algebra, Taussky-Todd did important 
work in number theory.

Taussky-Todd received many honors and 
awards. She was elected a Fellow of the 
American Association for the Advancement 
of Science and vice president of the American  
Mathematical Society. In 1990, Caltech 
 established an instructorship named in her 
honor. Taussky-Todd died on October 7, 1995,  
at the age of 89.

For more information about Taussky-Todd,  
visit:

http://www-groups.dcs 
.st-and.ac.uk/~history

http://www.agnesscott 
.edu/lriddle/women/women.htm
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CHAPTER 19 9TH EDITION
Solutions for odd-numbered exercises for the chapter on

Vector Spaces

1. Each of the four sets is an Abelian group under addition. The
verification of the four conditions involving scalar multiplication
is straight forward. Rn has basis {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 1)};
M2(Q) has basis

{[
1 0
0 0

]
,
[

0 1
0 0

]
,
[

0 0
1 0

]
,
[

0 0
0 1

]}
;

Zp[x] has basis {1, x, x2, . . .}; C has basis {1, i}.

3. (a2x
2 + a1x + a0) + (a′2x

2 + a′1x + a′0) = (a2 + a′2)x
2 + (a1 +

a′1)x + (a0 + a′0) and a(a2x
2 + a1x + a0) = aa2x

2 + aa1x + aa0.
A basis is {1, x, x2}. Yes, this set {x2 + x + 1, x + 5, 3} is a
basis because a(x2 + x + 1) + b(x + 5) = 3c = 0 implies that
ax2 + (a + b)x + a + 5b + 3c = 0. So, a = 0, a + b = o and
a+5b+3c = 0. But the two conditions a = 0 and a+b = 0 imply
b = 0 and the three conditions a = 0, b = 0, and a+ 5b+ 3c = 0
imply c = 0.

5. They are linearly dependent, since −3(2,−1, 0) − (1, 2, 5) +
(7,−1, 5) = (0, 0, 0).

7. Suppose au+ b(u+ v) + c(u+ v +w) = 0. Then (a+ b+ c)u+
(b+ c)v + cw = 0. Since {u, v, w} are linearly independent, we
obtain c = 0, b+ c = 0, and a+ b+ c = 0. So, a = b = c = 0.

9. If the set is linearly independent, it is a basis. If not, then
delete one of the vectors that is a linear combination of the
others (see Exercise 8). This new set still spans V . Repeat this
process until you obtain a linearly independent subset. This
subset will still span V since you deleted only vectors that are
linear combinations of the remaining ones.

11. Let u1, u2, u3 be a basis for U and w1, w2, w3 be a basis for W .
Since dim V = 5, there must be elements a1, a2, a3, a4, a5, a6 in
F , not all 0, such that a1u1+a2u2+a3u3+a4w1+a5w2+a6w3 = 0.
Then a1u1 + a2u2 + a3u3 = −a4w1 − a5w2 − a6w3 belongs to
U ∩W and this element is not 0 because that would imply that



ii

a1, a2, a3, a4, a5 and a6 are all 0.

In general, if dim U + dimW > dimV , then U ∩W 6= {0}.

13. No. x2 and −x2 + x belong to V but their sum does not.

15. Yes, W is a subspace. If (a, b, c) and (a′, b′, c′) belong to W then
a+b = c and a′+b′ = c′. Thus, a+a′+b+b′ = (a+b)+(a′+b′) =
c + c′ so (a, b, c) + (a′ + b′ + c′) belongs to W and therefore W
is closed addition. Also, if (a, b, c) belongs to W and d is a real
number then d(a, b, c) = (da, db, dc) and ad + bd = cd so W is
closed under scalar multiplication.

17.
[

a a+ b
a+ b b

]
+
[

a′ a′ + b′

a′ + b′ b′

]
=
[

a+ a′ a+ b+ a′ + b′

a+ b+ a′ + b′ b+ b′

]
and c

[
a a+ b

a+ b b

]
=
[

ac ac+ bc
ac+ bc bc

]
.

19. Suppose B is a basis. Then every member of V is some linear
combination of elements of B. If a1v1+ · · ·+anvn = a′1v1+ · · ·+
a′nvn, where vi ∈ B, then (a1−a′1)v1 + · · ·+(an−a′n)vn = 0 and
ai−a′i = 0 for all i. Conversely, if every member of V is a unique
linear combination of elements of B, certainly B spans V . Also,
if a1v1 + · · ·+ anvn = 0, then a1v1 + · · ·+ anvn = 0v1 + · · ·+ 0vn
and therefore ai = 0 for all i.

21. Since w1 = a1u1 + a2u2 + · · · + anun and a1 6= 0, we have u1 =
a−11 (w1−a2u2−· · ·−anun), and therefore u1 ∈ 〈w1, u2, . . . , un〉.
Clearly, u2, . . . , un ∈ 〈w1, u2, . . . , un〉. Hence every linear com-
bination of u1, . . . , un is in 〈w1, u2, . . . , un〉.

23. Since (a, b, c, d) = (a, b, a, a+ b) = a(1, 0, 1, 1) + b(0, 1, 0, 1) and
(1, 0, 1, 1) and (0, 1, 0, 1) are linearly independent, these two vec-
tors are a basis.

25. Suppose that B1 = {u1, u2, . . . , un} is a finite basis for V and
B2 is an infinite basis for V . Let w1, w2, . . . , wn+1 be distinct
elements of B2. Then, as in the proof of Theorem 19.1, the
set {w1, w2, . . . , wn} spans V . This means that wn+1 is a linear
combination of w1, w2, . . . , wn. But then B2 is not a linearly
independent set.



iii

27. If V and W are vector spaces over F , then the mapping must
preserve addition and scalar multiplication. That is, T : V →
W must satisfy T (u+ v) = T (u) + T (v) for all vectors u and v
in V , and T (au) = aT (u) for all vectors u in V and all scalars a
in F . A vector space isomorphism from V to W is a one-to-one
linear transformation from V onto W .

29. Suppose v and u belong to the kernel and a is a scalar. Then
T (v + u) = T (v) + T (u) = 0 + 0 = 0 and T (av) = aT (u) =
a · 0 = 0.

31. Let {v1, v2, . . . , vn} be a basis for V . The mapping given by
φ(a1v1 + a2v2 + · · · + anvn) = (a1, a2, . . . , an) is a vector space
isomorphism. By observation, φ is onto. φ is one-to-one be-
cause (a1, a2, . . . , an) = (b1, b2, . . . , bn) implies that a1 = b1, a2 =
b2, . . . , an = bn. Since φ((a1v1+a2v2+· · ·+anvn)+(b1v1+b2v2+
· · ·+ bnvn)) = φ((a1 + b1)v1 + (a2 + b2)v2 + · · ·+ (an + bn)vn) =
(a1+b1, a2+b2, . . . , an+bn) = (a1, a2, . . . , an)+(b1, b2, . . . , bn) =
φ(a1v1 + a2v2 + · · · + anvn) + φ(b1v1 + b2v2 + · · · + bnvn) we
have shown that φ preserves addition. Moreover, for any c in
F we have φ(c(a1v1 + a2v2 + · · · + anvn)) = φ(ca1v1 + ca2v2 +
· · ·+canvn) = (ca1, ca2, . . . , can) = c(a1, a2, . . . , an) = cφ(a1v1+
a2v2 + · · ·+ anvn) so that φ also preserves scalar multiplication.

33. No, for 1 is not in the span of such a set.

35. Write a1f + a2f
′ + · · · + anf

(n) = 0 and take the derivative n
times to get a1 = 0. Similarly, get all other a′is = 0. So, the set
is linearly independent and has the same dimension as Pn.

37. Suppose that V =
⋃n

i=1 Vi where n is minimal and F is the
field. Then no Vi is the union of the other Vj’s for otherwise
n is not minimal. Pick v1 ∈ V1 so that v1 6∈ Vj for all j 6= 1.
Pick v2 ∈ V2 so that v2 6∈ Vj for all j 6= 2. Consider the infinite
set L = {v1 + av2 | a ∈ F}. We claim that each member
of L is contained in at most one Vi. To verify this suppose
both u = v1 + av2 and w = v1 + bv2 belong to some Vi. Then
u−w = (a− b)v2 ∈ Vi ∪V2. By the way that v2 was chosen this
implies that i = 2. Also, bu − aw = (b − a)v1 ∈ Vi ∪ V1, which



iv

implies that i = 1. This contradiction establishes the claim.
Finally, since each member of L belongs to at most one Vi, the
union of the Vi has at most n elements of L. But the union of
the Vi is V and V contains L.
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