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The use of check digits with identification numbers for error detection
is now standard practice. Noteable exceptions such as social security num-
bers, telephone numbers and serial numbers on currency predate computers.
Despite their ubiquity and utility, few people are knowledgeable about the
myriad of check digit schemes in use by businesses. In this article we survey
many of these schemes. Among them are three that have not been described
in journal articles previously.
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1. Introduction

The availability of inexpensive, fast, reliable scanning devices and com-
puters has made the appendage of a check digit to identification numbers a
standard practice. Indeed, one finds check digits appended to identification
numbers on airline tickets, credit cards, money orders, bank accounts, check-
ing accounts, library books, grocery items, travelers checks, driver’s licenses,



passports, rental cars, chemicals, automobiles, blood bank items, photofin-
ishing envelopes, UPS packages, express mail, bar coded mail and books.
The presence of a check digit enables a computer to detect errors in number-
s. Dozens of detection schemes have been devised. In this article we discuss
many of the methods that are being used around the world. Information
about proposed methods that have not been put into practice is contained
in the references. Many of the proposed methods described in the references
are superior to those in use.

2. The UPC Schemes

The identification number code people most frequently encounter is the
Universal Product Code found on grocery items [5, p.7-11], [40 |. A UPC
identification number consists of twelve digits, each of which can be from 0
to 9. The first digit identifies a broad category of product type ( for example,
3 signifies a health product), the next five digits identify the manufacturer,
the next five the product, the last is the check digit. (For many items, the
check digit is not printed, but it is always bar coded.) The check digit a1z
for the UPC number aqas ... a1 is chosen to satisfy the condition

(al,ag,...,alg) : (3,1,3,1,3,1,3,1,3,1,3,1) =

3a1+a2-|—3a3-|—...-|—3a11+a12EO (IIlOd 10)
In Figure 1, the check digit is 5 because

3-043+3-84+043-04+0+3-143+3-7+1+3-0=255and
55+5=60=0 (mod 10).

Figure 1. UPC identification number 03800013710 and check digit 5.



Notice that any single error, say ajay...a;...a13 — aqay. .. a; .Gy, 18
detectable since (aq, ag, ..., a; ..., a12)-(3,1,3,1,...,3,1) £ 0 (mod 10) if

)

a; # a;. To see this observe that if both
(ay,a9,...,0;,...,a12)-(3,1,3,1,...,3,1) =0 (mod 10)

and
1

(ar,a9,...,a;,...

car2) - (3,1,3,1,...,3,1) =0 (mod 10)
then ((ay,az,...,a;,...,a13)—(ay, azs, ... ) ay,...,a12))-(3,1,3,1,...,3, 1) =0
(mod 10). ThlS reduces to either a; — a = 0 (mod 10) or 3(a; — a;) =0
(mod 10). But a; # a implies a; — a = il +2,+3, +4,+£5, £6, £7, £8, +9,
so we have a contradlctlon in both cases.

There is an abbreviated 8-digit version of the 12-digit UPC code called
Version E ( see Figure 2) that is often used in special circumstances, such as
round containers (for example, soft drink cans), small items, and magazines.
The Version E scheme uses four formulas depending on the last non-check
digit of the number ayajazaqasagar to append a check digit [40, p.8].

1. If ay is 0, 1 or 2, the check digit ag is chosen so that 3a; + a; + 3as +
3as + a5+ 3ag +ar +as =0 (mod 10).

2. It ay 1s 3, the check digit ag is chosen so that 3a; + ay + 3as + a4 + a5 +
3ag +as =0 (mod 10).

3. If ary is 4, the check digit ag is chosen so that 3a; 4+ as + 3az + a4+ 3as +
3ag +as =0 (mod 10).

4. Tt a7 is 5, 6, 7, 8 or 9, the check digit ag is chosen so that 3a; + as +
3as + a4 + 3as + ag + 3ar + as =0 (mod 10).

Figure 2. The UPC Version E code.

3



The apparent irregular patterns for the weights in the four cases are
the result of the way the 12 digit UPC numbers are converted to 8
digit numbers. All Version E numbers correspond to 12 digit numbers
that have 0s in four consecutive positions that have been suppressed
[40]. To explain just the first of the four cases, consider a company
whose manufacturer’s number is 49100. Since this number ends with
two 0Os, this company must assign all products that will use a Version
E code with a 5 digit number that begins with two 0s. The 12 digit
number would then have the form 04910000agaipaq11¢12. In cases where
the third digit of the manufacturer’s number is 0, 1 or 2 (the initial 0 is
not part of the manufacturer’s number), the third digit is then moved
to position 11 and the four Os are suppressed. Thus the 12 digit num-
ber 04910000agaqpaii1ai2 becomes 049agaqparlars. When the weight 1
corresponding to the third digit of the manufacturer’s number is placed
in position 11 and the weights corresponding to the four suppressed 0s
are also suppressed we obtain the weight vector (3,1,3,3,1,3,1,1) used
in the first formula given above.

There is also a UPC shipping container code that employs two check
digits. One check digit is the standard UPC check digit and the second
is calculated using modulo 103 arithmetic [41, p.5].

European countries use a 13 digit analog of the UPC number called the
European Article Number (EAN) [27]. In this case the weight vector
is (1,3,1,3,...,1,3,1). For EAN numbers the manufacturer’s number is
preceded by two digits that identifies the country in which the item
was produced.

3. The Credit Card Scheme

A more complicated scheme, developed by IBM, is used by credit card
companies, libraries, blood banks, photofinishing companies, pharma-
cies, the motor vehicle divisions of South Dakota and Saskatchewan,
and some German banks [24], [15]. In this case, let o be the per-
mutation defined by ¢(0) = 0,0(1) = 2,0(2) = 4,0(3) = 6,0(4) =
8,0(5) = 1,0(6) = 3,0(7) =5,0(8) = 7,0(9) = 9. For any string of
digits aqaz...a,—1 we assign the check digit a, so that o(ay) + a2 +



olaz) +as+ -+ o0(a, 1)+ a, =0 (mod 10). (When n is odd, o
is applied to the even numbered positions instead.) Let us look at an
example. Say we have the number 7659214. Then the check digit ¢
satisfles 5+ 6+1+94+44+14+8+¢c=0 (mod 10) so that ¢ = 6.

The credit card shown in Figure 3 is reproduced from an ad promoting
VISA card. Notice that the check digit on the card is not be valid since
o(4)+44+0(l)+7+0(1)+2+0(3)+44+0(5)+64+0(7)+8+0(9)+1+
o(1)+2=84+44+24+74+2+4+2+6+4+1+6+5+84+94+14+242 =69 £ 0
(mod 10). Thus, the check digit does not “ check”.

Figure 3. VISA card with an invalid number.

We mention in passing that the IBM check digit method described
above is the basis for a recent story in the New York Times [14] about
a computer program known as Credit Master found on many electronic
bulletin boards that produces fake credit card numbers that have the
correct check digit.

Both the UPC scheme and the IBM scheme detect 100% of all sin-
gle digit errors, while neither detects 100% of all errors involving the
transposition of adjacent digits. In particular, an error of the form
...ab... — ...ba...is undetected by the UPC scheme if |a — b] = 5
and it is undetected by the IBM scheme if |¢ — b] = 9. Thus, of the
90 possible transposition errors the UPC scheme detects all except the
pairs 05, 16, 27, 38, 49 and their reversals. In the case of the IBM
scheme only the transpositions of 09 and 90 are undetected. So, the
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UPC code detects 80 out of 90 or 88.9% and the IBM scheme detects
88 out of 90 or 97.8%.

The state of Wisconsin uses a 14 character driver’s license number. The
first character of the number is the first character of the person’s last
name ( S for Smith, J for Jones etc.). This is followed by 10 digits that
are determined by the person’s last name, first name, middle initial
and date of birth [22, pp.292-296]. Finally, there is a tie breaking digit
to prevent the same number being assigned to different people and a
check digit. To calculate the check digit, the lead letter is converted to
a digit using the assignment A —- 1,B — 2,..., 1 —- 9, J —- |, K —
2,...,R—9,5—=2,1T—3,...,Z — 9. (Notice the aberration at S.)
The credit card method is then applied to the thirteen digits to obtain
the check digit.

4. 3-weight Schemes

After single digit errors and errors involving the transposition of ad-
jacent digits, the next most common errors are those of the form
...abe...— ... cba... (such errors are called jump transposition) [42].
For example, for a number such as 726-5258 one might naturally trans-
pose “52”7 and “58”. This error would be undetected by the UPC
and IBM schemes but would be detected by the one used by Ameri-
can banks and by the one used on passports in many Western coun-
tries. To a number aja; . ..as banks assign (ay, as, as, a4, as, as, az, as) -
(7,3,9,7,3,9,7,3) (mod 10) [24]. Similarly, many countries use the
weighting vector (7,3,1,7,3,1,...) and modulo 10 arithmetic to assign
check digits to numbers appearing on passports [13]. These 3-weight
schemes detect all the errors that the UPC method does but they also
detect errors of the form ...abc... — ...cba... as long as |a — ¢| # 5.
(Clearly, neither the UPC scheme nor the IBM scheme detects these
errors.) In particular, the 3-weight schemes detect 100% of single dig-
it errors, 88.9% of transposition errors involving adjacent digits and
88.9% of the jump transposition errors. In the case of errors of the
form ...aca... — ...bcb... (called jump twin errors) and those of the
form ...aa... — ...bb... (called twin errors) the detection rates de-
pend on the length of the number and the choice of the three weights.
For example, for numbers of length 10 ( including the check digit) the
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weight vector (1,3,7,1,3,7,1,3,7,1) detects 66.7% of the jump twin er-
rors whereas the weight vector (7,3,1,7,3,1,7,3,1,7) detects 55.6% of the
jump twin errors. For single digit errors, transposition errors and jump
transposition errors there is nothing special about the order in which
the weights occur except that any three consecutive weights must be
distinct and relatively prime to 10 ( see Theorem 1 below). For ex-
ample, it is just as well to use 1,9, 7, 1,9, 7, ...or 3,9, 7, 3,9, 7,
...and so on. Analogously, one could use four weights such as 1, 3,
7,9, ...or 1, 3,9 7, ...in a modulus 10 scheme although I do not
know of any instance where this has been done in practice. A 4-weight
scheme detects transposition errors involving adjacent digits and jump
transposition errors at the rate of 88.9%. Interestingly, with regard to
jump twin errors and twin errors the order of the four weights does
matter. For example, using the order 1, 3, 9, 7,... no jump twin errors
are detected whereas using the order 1, 3, 7, 9,... permits the detection
of 88.9% of jump twin errors. To see why consider, for instance, an
error of the form aca ... — beb. ... Using the order 1, 3, 9, 7 the digits
aca contribute a- 1 +¢-34+a-9 = 10a 4+ 3¢ =3¢ (mod 10) whereas
the digits bcb contribute b-1 +¢-3+6-9 =100+ 3¢ =3¢ (mod 10).
Thus the error is not detected. A similar argument applies no matter
where the jump twin error occurs. In contrast, using the weights 1, 3,
7, 9 the digits aca contribute a -1 +¢-3+a -7 =8a + 3¢ (mod 10)
whereas the digits beb contribute b-14+¢-34+b6-7=8b+3¢ (mod 10).
But when |a — b| # 5, it follows that 8a # 80 (mod 10) and the error
is detected. Thus this ordering detects 88.9% of the jump twin errors.

The detection rate for twin errors depends on both the length of the
number and the ordering of the weights. The weight vector
(1,3,9,7,1,3,9,7,1,3) detects 88.9% of the twin errors whereas the vector
(1,3,7,9,1,3,7,9,1,3) detects 49.4% of the twin errors.

There is a modified generalized IBM code described in [15] that is an
improvement of the IBM method that detects 95.6% of jump transpo-
sition errors and twin errors but I do not know of any instances where
it 1s in use.

5. Modulus 11 Schemes



In contrast to the schemes previously described, the method used to
assign a check digit to the International Standard Book Number (ISBN)
employs the modulus 11 [38]. In particular, the check digit a;q is chosen
to satisfy the condition (ay,ay,...,a5) - (10,9,8,7,6,5,4,3,2,1) = 0
(mod 11). This method detects 100% of all single digit errors and 100%
of all transposition errors (not just those involving adjacent digits).
The drawback of this method is that in some cases the check digit is
required to be 10, which is not a single digit. To maintain a uniform
ten character format for all books the character X is used to represent
10.

There are many variations of the [SBN scheme that are designed to
avoid the introduction of the alphabetic character. Typical of these is
an IBM scheme used by the states of Arkansas, New Mexico and Ten-
nessee to assign driver’s license numbers [19]. To the 7-digit number
ajazasasasagar is assigned the check digit —(ay, az,as, aa, as, as, az) -
(2,7,6,5,4,3,2) (mod 11) unless this number is 0 or 1. ( Recal-
1 =3 = 8 (mod 11) and so on.) In these two instances, 1 or 0 is
appended respectively. This method catches all single digit errors but
not all transposition errors. The errors of the form ...a;...q;... —
...@j...a;... that go undetected are those where : = 1 and j =7
(an unlikely error indeed) and some involving the check digits 0 and
1. Of course, one could avoid the use of an alphabetic character by
simply not issuing numbers that yield the dot product 10. This scheme
detects 100% of single digit errors and 98.2% of transposition errors
involving adjacent digits. Nothing would be lost if the weight vector
began with 8 instead of 2 and there would be a slight gain since errors of
the form aqay...arag — aza, . ..a;ag would be detected. Table 1 gives
a catalog of common “pattern” errors and their relative frequency as
found in one empirical study [42]. Phonetic errors are those of the for-
m...a0... < ...la... for a =2,3,...,9. When giving a credit card
number over a telephone, for instance, “fifty” might well be interpreted
as “fifteen”. Obviously, phonetic errors are language dependent. The
frequency for phonetic errors in Table 1 is based on English, Dutch and
German. A type of error not listed in Table 1 are format errors caused
by the insertion or deletion characters. These are quite common and
are automatically detected when the numbers have a fixed length.



Table 1. Common Pattern Errors

Error type Form Relative frequency
single error a—b 79.1%
transposition of adjacent digits | ab — ba 10.2%
jump transposition abc — cba 0.8%
twin error aa — bb 0.5%
phonetic error al < la 0.5%
a=2,...,9
jump twin error aca — beb 0.3%

A scheme designed to detect many kinds of errors is a modulo 11
scheme used by some German banks that employs weights that for-
m a geometric progression rather than the arithmetic progression as in
the case for the ISBN method [15]. Specifically, a, is chosen so that
(ay,az,...,a,)(2,2%,...,2") =0 (mod 11). As before, the situation
that a, = 10 must be avoided or handled in some special way. Whereas
the [ISBN method detects 100% of single errors, 100% of transposition
errors and 100% of jump twin errors it does not detect 100% of pho-
netic errors or 100% of twin errors. On the other hand, for n < 10,
the weighting vector (2,2,...,2") permits 100% detection of all errors
listed in Table 1.

Of all the methods actually in use the most exotic [ have encountered is
the one used on some German bank accounts [15]. This scheme, called
the P.T.T. scheme, employs three permutations and two moduli as fol-
lows. For ¢ = 1,2 and 3 define o;(a) = (¢(a + 1)(mod11)) (mod 10).

To the number ayas ... as, assign
o1(ar)+o2(az)+os(as)+o1(as)+oa(as)+os(as)+o1(ar)+o2(as) (mod 10).
As an illustration consider 2191-06-70. Here the check digit is
01(2) + o3(1) + 03(9) + o4(1) + 02(0) + 03(6) + 01(7) + 02(0) =
34+44+8+2+240+8+2=9 (mod 10).

This scheme detects 100% of single digit errors, 96.3% of transposition
errors involving adjacent digits and jump transpositions, 95.6 % of twin
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and jump twin errors and 95.8% of phonetic errors.
6. Modulus 9 and 7 Schemes

Because the most common error is a single digit error, it is surprising
that there are several error detection schemes in widespread use that
do not detect 100% of single digit errors. Indeed, United States Postal
Service money orders, VISA travelers checks, airline tickets, Federal
Express mail and United Parcel Service packages are assigned check
digits that use modulus 9 or modulus 7 schemes which are not 100%
effective at detecting single errors. The U.S. postal money orders, for
instance, simply divide the identification number by 9. The remainder
is the check digit [24]. For VISA travelers checks, the check digit is
the digit that must be added to the identification number so that the
resulting number is evenly divisible by 9 [24]. For example, dividing
1002044679091 by 9 gives a remainder of 7 so the check digit is 2. These
modulus 9 methods detect all single digit errors except substitution of a
9 for a 0 or vice versa. The only transposition errors involving adjacent
digits detected by this method are those involving the check digit. It
follows that single errors are detected at the rate of 98.0%. The rate for
detecting errors involving the transposition of adjacent digits depends
on the length of the number but in all practical situations it is low. For
example, for money orders it is only 10%.

Airline companies, Federal Express and the United Parcel Service use
the remainder upon division by 7 to assign check digits [24]. This
method is slightly less effective than dividing by 9 for detecting sin-
gle digit errors but fairly effective for detecting transposition errors.
In particular, any substitution of b for a in the identification number
where |a — b| = 7 will go undetected while any transposition of digit-
s a and b with |a —b| = 7 will also go undetected. The single error
detection rate for this method is 94.0% whereas the rate for detecting
adjacent transposition errors is 94.1%.

7. Alphanumeric Schemes
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Many identification numbers utilize both alphabetic and numeric char-
acters. One of the most prevalent of these was developed in 1975 and is
called Code 3-out-of-9 (the name derives from the method of bar coding
of the characters), or simply Code 39 [27]. Code 39 permits the 26 up-
per case letters A through 7, the digits 0 through 9 and the characters
-, . and a space. Because Code 39 has been chosen by the Department
of Defense, the automotive companies and the health industry for use
by their suppliers it has become the workhorse of non-retail business. A
typical example of a Code 39 number is 210SA32ZBV. The last charac-
ter is the “check.” The check character is determined by assigning the
letters A through Z the numerical values 10 through 35 respectively.
The values 36, 37 and 38 are assigned to -, . and a space, respectively.
The original number comprised of the digits 0 through 9, the letters A
through Z and dashes, periods and spaces is now converted to a string
ay,ds,...,a, where the a;’s are integers between 0 and 38. The check
character is the character corresponding to the numerical value

(a1,a9,...,a,) - (n,n—1,...,2,1) (mod 39).

Finally, this value is converted to its alphabetical counterpart, if neces-
sary. Let us examine the Code 39 method for the number 210SA32ZBV.
Here is how we determine that the check character is V. Fiirst we convert
the alphabetic characters to their numeric counterparts : 2105A322B8 —2,
1, 0, 28, 10, 3, 2, 35, 11. Then we compute

9-248-14+7-04+6-2845-10+4-34+3-242-35+1-11

=18+84+04+168+50+124+6+704 11 = 343.

Since 343 divided by 39 has a remainder of 31 and V has the numerical
value 31, the check character is V. In many applications of Code 39
the special characters $, /, + and % are permitted. These characters
are assigned the numerical values 39 through 42, respectively. In these
applications the check character is determined by the remainder upon
division by 43 instead of 39. When the modulus 39 is used the single
error detection rate depends on the number of characters in the number
and is less than 100%. Precise information about which errors are
detectable in contained in Section 9. For the modulus 43, 100% of the
single digit errors and 100% of the transposition errors are detected.
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In some cases where the 43 character version of Code 39 is used the
check digit simply corresponds to the modulo 43 value of the sum of
the values of the characters (i.e., weights are not used). For example,
to compute the check character for the number E598976987 we calcu-
late 14 +54+9+84+9+T7+6+9+8+7=82=39 (mod 43) so
that the check character is §. This method detects 100% of single dig-
it errors but 0% of the transposition errors not involving the check digit.

The state of Washington and the province of Manitoba use a check
digit scheme on their driver’s license numbers [19]. The license num-
ber is a blend of 12 alphabetic and numeric characters. To compute
the check digit, alphabetic characters are assigned numeric values as
follows: * - 4 A —-1,B—-2,....1 - 9,J - 1,K - 2,....R —
9,5 — 2,17 — 3,...,Z — 9. (Notice the aberration at S.) The 12-
character license number, after the alphabetic to numeric conversion,
then corresponds to a string of digits aya,...a;; with ayg as the check
digit calculated as |a; — ay + a3 — aq + - - ag — ayy + ay2| (mod 10).
The absolute value was introduced to avoid negative numbers but since
—1=9 (mod 10) instead of using the absolute value, the weight vec-
tor (1,9,1,9,...,1) could have been used. Interestingly, the use of the
absolute value rather than the weight vector (1,9,1,9,...,1) actually
reduces the error detection capability of the scheme.

Although it is common practice to put the check digit last, notice that
the above scheme does not do so. There is no mathematical reason
why the check digit should be last. Besides the state of Washington,
South Dakota does not put the check digit last on their driver’s license
numbers [19].

8. Error Correcting Schemes

Schemes that incorporate two check digits are not uncommon. For
instance, Norway employs two check digits modulo 11 to allocate regis-
tration numbers to its citizens [28]. The last two digits of these eleven
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digit numbers aya, ... aypaq; are chosen so that
(ay,az,...,a10) - (3,7,6,1,8,9,4,5,2,1) =0 (mod 11) and

(ay,az,...,a11)-(5,4,3,2,7,6,5,4,3,2,1) =0 (mod 11).

This method detects all single digit errors and all double errors except
those where the difference between the correct number and the incorrect
number has the form (0,0,0,a,0,0,0,0,0,11—a,0). Numbers for which
a1g or ayq is “10” are not assigned.

An even more effective two check digit scheme consists of strings of
length 10 satisfying (ay,az,...,a10)-(1,1,...,1,1) =0 (mod 11) and
(a1,a2,...,010)-(1,2,3,...,9,10) =0 (mod 11). Avoiding all strings
that require ag or aip to be “107 still leaves 82,644,629 numbers. This
method detects all double errors and corrects all single errors. The first
dot product determines the magnitude of any single error while the
second one identifies the location of the error. Let’s see how this works.
Say our number is 73245018. Then ag and ayq satisfy 8 + ag + a19 = 0
(mod 11) and 10 + 9ag + 10a1p = 0 (mod 11) so that ag = 7 and
@190 = 7. Consider the error 7324501877 — 7824501877. Since the sum
of the digits of the incorrect number is 5 (mod 11), we know that one
of its digits is 5 too large (assuming only one error has been made). But
which one? Suppose the error occurred in the ith position. Then the
second dot product is 5 too large. That is, (7,8,2,4,5,0,1,8,7,7) -
(1,2,3,4,5,6,7,8,9,10) = 5; (mod 11) or 10 = 5 (mod 11). We
conclude that the second digit is 5 too large.

Single digit errors in reading bar coded identification numbers are usu-
ally correctable in much the same fashion. An unintelligible block of
bars pinpoints the source of the error while the check digit condition
diagnoses the extent of the error.

Two-check-digit schemes that correct all single digit errors and al-
| transposition errors utilizing modulo 37 or modulo 97 arithmetic have
been discovered ([36] and [7]). An industrial bar code scheme called
Code 93 also uses two check digits [27, p.34]. One large mail order
house has implemented a four-check-digit scheme [43].
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9. Theory

The examples above can be put in an abstract setting as follows.
Let Zy be the set {0,1,2,...,k — 1} and let oy,09,...,0, be a se-
quence of mappings from Z; into itself. For any string of elements
ayay . ..a, 1 from Zy, append an element a, so that oy(a;) + o2(aq) +
oot on(a,) =0 (mod k). We call the sequence oy, 03, -, 0, a check
digit scheme for 7. Typically, o, is chosen to be the identity or the
negative of the identity. A single digit error a; — a; is detectable
if and only if o;(a;) # Ui(a;) (mod k) while a transposition error
iy e QO e > L iy . QG4 - .. 1 detectable if and on-
ly if o;(a;)+0;(a;) # oi(a;)+0;(a;) (mod k). Of course, the condition
for detection of a single digit error in position :z is just that o; is a per-
mutation on Z. Since the mapping from Z, — Z; given by ¢ — muz
for all @ is a permutation if and only if gcd(m, k) = 1, we see that
the UPC, the bank, passport and the ISBN schemes detect 100% of all
single-digit errors, whereas a scheme that assigns a check digit «, to
the string ajay...a,_1 so that (ay,az,...,a,_1,a,) - (n,...,2,1) =0
(mod 10) does not. In particular, notice that a single error a; — a; for
i even is undetected if |a; — a;| = 5. Similarly, a single error a; — a;
for 7 that is divisible by 5 is undetected if |a; — a;| is even. Despite this
deficiency, the latter method is used on the Chemical Abstract Service
registry numbers [24] and on driver’s licenses issued by the state of
Utah and the province of Quebec [19]. (Code 39 numbers have the
same deficiency.) Since a Quebec driver’s license number has twelve
digits, notice that all errors in the third position are undetected! On
the other hand, this scheme does detect 100% of transposition errors
involving adjacent digits, while the UPC, IBM and most other modulo
10 schemes do not.

For check digits that satisfy a condition
(a1,az,...,0,) (W1, wa,...,w,) =0 (mod k),

we may readily determine the undetectable single position errors and
the undetectable transposition errors. (Actually, there is no compelling
reason to use 0 in the condition. Any value in Z; will do.)
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Theorem 1 Suppose an identification number a,a, . ..a, satisfies
(a1,a9,...,0,) (W1, wy,...,w,) =0 (mod k).

Then a single-position error a; — a; is undetectable if and only if (a; —
a;)w; = 0 (mod k) and a transposition error that interchanges the
elements in the ith and jth positions is undetectable if and only if (a; —
a;)(w; —w;) =0 (mod k).

Proof. Consider a single error in the :th position. Say a; is substi-
tuted for a;. Then the dot product for the correct number and the dot
product for the incorrect number differ by (a; — a;)w;. Thus the error
is undetectable if and only if (a; — a;)wi =0 (mod k).

Now consider an error of the form
L R e TN /7 1/ 7 R/ 71/ S I

Then the dot product for the correct number and the dot product for
the incorrect number differ by

(aiwi + ajw;) — (a;w; + a;w;) = (@i — a;)(wi — w;).
Thus, the error is undetectable if and only if
(a; —a;)(w; —w;) =0 (mod k). y
When a check digit satisfies the condition (ay, as, ..., a,) (w1, ws, ..., w,) =
0 (mod k) and the digits aq,as,...,a, are restricted to 0 to & — 1 it
is straightforward to determine conditions on the weights that ensure

all errors of specific types are detectable. These are provided in Table

2.

Table 2. Conditions for detection of all errors of various types

Error type Form Condition for modulus k
single a; — a ged(w;, k) =1
transposition R PN I N7 BN T ged(w; — wi, k) =1
jump transposition | abc — cba ged(wiys —wi k) =1
twin aa — bb (positions 7 and i + 1) ged(w; + wiyr, k) =1
phonetic a0 < la (positions ¢ and ¢ + 1) Jwiy1 Z (J — Dw;
forall j =0,1,...,k—-1
jump twin aca — beb (positions 4,1+ 1,14+ 2) | ged(w; + wig2,k) =1

15



To apply the conditions given in Table 2 to methods such as the 3-
weight scheme used by banks, notice that specifying that the check
digit ag for the bank number ayasasasasagarag is ajazazaqasagaryas
(mod 10) is equivalent to the condition (ay, ay,as, ay, as, ag, az,ag, ag) -

(7,3,9,7,3,9,7,3,9) =0 (mod 10).

The preceding theorem and Table 2 reveal the shortcomings of the
various values for the modulus. In the case that the modulus k is less
than 10, all single digit errors and all transposition errors cannot be
detected without restricting the digits to range from 0 to & — 1. For
instance, serial numbers on airline tickets simply use the modulo 7 value
of the number as the check digit. Since this scheme does not distinguish
between a and a' when |a —a'| = 7 all such errors are undetectable. On
the other hand, for modulus 11 schemes the conditions of the preceding
theorem for the detection of all single errors and all transposition errors
are simply met by choosing distinct weights between 0 and 10. As
previously mentioned the only drawback of modulus 11 schemes is the
necessity of introducing an extra character or the avoiding of certain
numbers.

Noting that the schemes described above that utilize modulus 10 are
not simultaneously 100% effective in detecting single digit errors and
100% effectivein detecting transposition errors involving adjacent digits
whereas the ones that use division by 11 are, it is natural to raise the
question of whether it is possible to devise a one-check-digit scheme
that utilizes division by 10 that detects all single-digit errors and all
transposition errors involving adjacent digits. The next theorem says
that the answer is no (see also [15]).

Theorem 2 [25] Suppose an error detecting scheme with an even
modulus detects all single-position errors. Then for every: and j there
is a transposition error involving positions ¢ and j that cannot be de-
tected.

Proof. Let the modulus be 2m. Let us say that the digit = in
position ¢ contributes o;(x) in the determination of the check dig-
it. Obviously, in order to detect all single-position errors it is nec-
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essary that the mappings o; be permutations. In order to detect all
transposition errors involving positions : and j it is necessary that
oi(a) + oj(b) # 0i(b) + o;(a) for all @ # b in Zs,. It then follows that
the mapping o(z) = o;(z) — o;(x) must be a permutation of 7Z,,. But
summing the elements of 7,,, modulo 2m we then have

m=m+0+(1+2m—-1)+2+2m—-2)+---+(m—-14+m+1).

m=Y =Y olr) = Ylos()-0i(z) = ¥ o;(a)-Y oilx) = m—m = 0.

This contradiction completes the proof.
9. Non-commutative Schemes

In contrast to modulus 10 schemes that can not detect all single digit
errors and all transposition errors of adjacent digits, in 1969 Verhoeft,
in his Ph. D. thesis [42], devised a method utilizing a noncommutative
algebraic system on the set {0,1,...,9} that detects all single-digit
errors and all transposition errors involving adjacent digits without the
necessity of introducing a new character as is the case for the [SBN
method. (Interestingly, after Verhoeff devised his scheme two authors
published “proofs” that a scheme that detected all such errors was not
possible (see [42, p. 11]). Consider the permutation o(0) = 1,0(1) =
5,0(2) = T7,0(3) = 6,0(4) = 2,0(5) = 8,0(6) = 3,0(7) = 0,0(8) =
9,0(9) = 4 and the algebraic system defined by Table 3. The algebraic
system defined in Table 3 is called the dihedral group of order 10 and
is denoted by Dq.

The group Dy is known to chemists, geologists and physicists as the
dihedral point group with 10 elements. Scientists use it to describe
the 5 rotational symmetries and 5 reflectional symmetries of a regular
pentagon. For example, the symbol 1 represents a rotation of 72 degrees
whereas the symbol 5 represents a reflection across one of the five axes
of symmetry. Then 15 is a 72 degree rotation followed by the reflection
represented by 5.
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Table 5.2. Multiplication for Dy

[«]J0 1 2 3 4 5 6 7 8 9|
ofo 1 2 3 4 5 6 7 8 9
{1 2 3 4 06 7 8 9 5
212 3 401 7 8 9 5 6
313 4 01 2 89 5 6 7
404 01 23 9 5 6 7 8
505 9 8 7 6 0 4 3 21
6([6 5 9 8 7 1 0 4 3 2
77 6 5 9 8 2 1 0 4 3
8|8 7 6 5 9 3 2 1 0 4
919 8 7 6 5 4 3 2 10

Verhoeft’s idea is to view the digits 0 to 9 as the elements of the group
Do and to replace ordinary addition with calculations done in Dqg. In
particular, to any string of digits aya,...a,_y, we append the check
digit a, so that o(aq) * 0'2(0,2) Koe e ook J”’Q(Gn,Z) * a”’l(an,l) *a, = 0.
(Here ¢'(z) = o(o' !(z)). Since o has the property that o'(a) # o(b)
if a # b all single digit errors are detected. Also, because

axo(b)#bxo(a) if a#b, (1)

it follows that all transposition errors involving adjacent digits are de-
tected (since (1) implies that o'(a) * o*1(b) # o'(b) * o't (a) if a #£ b).
This scheme detects 95.6% of twin errors, 94.2% of jump transposition
and jump twin errors and 100% of phonetic errors [42, p. 54]..

In 1990 the German Bundesbank began using the Verhoeft check digit
scheme to append a check digit to the serial numbers on bank notes
[34]. Table 4 gives the values of the functions o,0?, ... 0" needed
for the computations. ( The functional value o?(j) appears in the row
labeled with o' and the column labeled j.) Since the serial numbers
on the bank notes are alphanumeric, it is necessary to assign numerical

values to the letters. This assignment is shown in Table 5.
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Table 5.3

\ [0 1 2 3 45 6 7 8 9
o[l 5 7 6 2 8 3 0 9 4
o255 8 03 7 9 6 1 4 2
o8 9 1 6 0 4 3 5 2 7
o9 4 5 3 1 2 6 8 7 0
o4 2 8 6 5 7 3 9 0 1
o 12 7 9 3 8 0 6 4 1 5
o |7 0 4 6 9 1 3 2 5 8
o 10 1 2 3 4 5 6 7 8 9
o |1 5 7 6 2 8 3 0 9 4

o5 8 03 7 9 6 1 4 2
Table 5.4

To trace through a specific example consider the bank note ( featur-
ing the mathematician Gauss!) shown in Figure 4 with the number
AGB536827U7. To verify that 7 is the appropriate check digit we ob-
serve that (0) * a%(2) x 0®(8) x 0*(5) * 0°(3) * 0%(6) * 7(8) * 03(2) *
o () ko (T) T =1%0%2+2+6%x6x5x 2+ 0 17 = 0 as it should be.
( To illustrate how to use the multiplication table for Dy we compute
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Lx0%2+2=(1%0)*2%x2=1%2+2=(1%2)x2=3%2=0).

Figure 4. German bank note with serial number AG8536827U and
check digit 7.

A shortcoming of the German bank note scheme is that it does not
distinguish between a letter and its assigned numerical value. Thus, a
substitution of 7 for U ( or vice versa) and the transposition of 7 and U
are not detected by the check digit. This shortcoming can be avoided
by using Dss, the dihedral group of order 36, to assign every letter
and digit a distinct value together with an appropriate permutation o
( see [20], [23] or [45]). Using this method to append one of the 36
alphanumeric characters as a check character, all single position errors
and all transposition errors involving adjacent alphanumeric characters
will be detected.

Although the error detecting schemes using non-commutative systems
are more effective than the schemes that use modular arithmetic, the
German bank note application is the only one I know that uses a non-
commutative system.

We conclude with a comparison table of the error detection rates for
the modulo 10 schemes and the scheme based on the dihedral group.
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All of these schemes are 100% effective for detecting single digit errors.
Recall that the detection rates for twin errors using 3-weight or 4-weight
schemes depend on the length of the number. In the table we have used
length 10. Winters [45] has devised a two check scheme based on the
dihedral group of order 10 that detects 100% of all the errors listed in
Table 6.

Table 6. Comparison of detection rates.

method ab — ba | ach — bea | aa — bb | a0 — la | aca — beb
upPC 88.9 0 88.9 100 88.9
1,3,7, ... 88.9 88.9 55.6 100 66.7
73,1, ... 88.9 88.9 55.6 100 55.6
1,39,7,... | 88.9 88.9 88.9 100 0
1,3,7,9,... | 88.9 88.9 49.4 100 88.9
credit card | 97.8 0 93.3 87.5 87.7
P.T.T. 96.3 96.3 95.6 95.8 95.6
dihedral 100 94.2 94.2 100 94.2
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