
Abelian Forcing Sets

Michael Reid
Department of Mathematics

University of California, Berkeley
Berkeley, CA 94720

E-mail: reid@math.berkeley.edu

Joseph A. Gallian
Department of Mathematics

University of Minnesota, Duluth
Duluth, MN 55812

E-mail: jgallian@ua.d.umn.edu

September 19, 2008

Most readers of the MONTHLY have encountered particular cases of the
following question. Suppose G is a group and n is an integer with the property
that (ab)n = anbn for all a and b in G. Which n implies that G is Abelian?
Indeed, standard exercises in undergraduate abstract algebra textbooks ([1],
[2], [3], [4]) are to show that n = 2 and n = −1 are two cases that do imply
that G is Abelian. Are there others? Well, if p is any odd prime the group

Gp =


 1 a b

0 1 c
0 0 1


∣∣∣∣∣∣∣ a, b, c ∈ Zp

 is a non-Abelian group with the property

that xp = e for all x in Gp. And this implies that if n is any multiple of p
(positive or negative) then (ab)n = anbn for all a and b in Gp. Similarly, G2

(which is isomorphic to the group of symmetries of a square) is a non-Abelian
group for which (ab)n = anbn when n is any multiple of 4. From these two
observations it follows then that the identity (ab)n = anbn for all a and b in
a group implies that the group is Abelian if and only if n = 2 or n = −1.
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More generally, let us call a set of integers T Abelian forcing if every group
with the property that for all n in T

(ab)n = anbn for all a and b in G

is Abelian. So far we have shown that the only singleton Abelian forcing
sets are {−1} and {2}. What about other sets? Both of Herstein’s algebra
textbooks ([3, p.31] and [4, p.57]) include the exercise that sets containing
three consecutive integers are Abelian forcing. Moreover, one of Herstein’s
books ([4, p.57]) has an exercise that {3, 5} is an Abelian forcing set. In
contrast, the set {3, 7} is not Abelian forcing.

So, what characterizes the Abelian forcing sets? Although we could not
find the answer to this precise question in the literature, some of the essential
features of our argument below can be gleaned from a paper by F. Levi [5]
written in the group-theoretic language of fifty years ago. (Levi investigated
the question of when the mapping a → an is a group endomorphism.) Our
formulation of the question, the answer and the proof make the material
more accessible to undergraduates.

Theorem. A set S of integers is an Abelian forcing set if and only if the
greatest common divisor of the integers n(n− 1) as n ranges over S is 2.

Proof. Suppose that S is an Abelian forcing set and the greatest common
divisor d of the integers n(n − 1) as n ranges over S is not 2. Since every
integer of the form n(n− 1) is even, d has the form 2k where k > 1.

Let q be a prime that divides k. Then q divides n(n − 1)/2 for every n
in S. Thus n(n− 1) ≡ 0 mod 2q for all n in S. Next observe that for every
odd prime p the elements of the group Gp satisfy

(ab)pk = apkbpk and (ab)pk+1 = apk+1bpk+1

for all integers k. Also, the elements of G2 satisfy

(ab)4k = a4kb4k and (ab)4k+1 = a4k+1b4k+1

for all integers k. Since Gp and G2 are non-Abelian we know that the sets

A = {pk, pk + 1|k ∈ Z} = {n ∈ Z|n(n− 1) ≡ 0 mod p}
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and
B = {4k, 4k + 1|k ∈ Z} = {n ∈ Z|n(n− 1) ≡ 0 mod 4}

are not Abelian forcing sets. However, if q is odd, then S is a subset of A and
if q is 2, then S is a subset of B. In either case, S can’t be Abelian forcing
since A and B aren’t. This contradiction proves necessity.

To prove sufficiency suppose that the greatest common divisor of the in-
tegers n(n−1) as n ranges over S is 2. We will show that S is Abelian forcing
by showing that 2 ∈ S. Let n ∈ S and let a and b be arbitrary elements of
a group G. We use Z(G) to denote the center of G. The proof is bookkeeping.

Step 1. an commutes with bn−1.
(b−1ab)n = b−1anb (since (b−1ab)i = b−1aib for all i)
(b−1ab)n = b−nanbn (since n ∈ S).

Thus b−1anb = b−nanbn and bn−1an = anbn−1.

Step 2. bn commutes with an−1.
Interchange a and b in Step 1.

Step 3. 1− n ∈ S.
ab = (ab)n(ab)1−n = anbn(ab)1−n ⇒
b = an−1bn(ab)1−n = bnan−1(ab)1−n (Step 2).

So, a1−nb1−n = (ab)1−n.

Step 4. n(1− n) ∈ S.
(ab)n(1−n) = (anbn)1−n = an(1−n)bn(1−n) (Step 3).

Step 5. an(1−n) ∈ Z(G).
b−1an(1−n)b = (b−1ab)n(1−n) = (b−1)n(1−n)an(1−n)bn(1−n) (Step 4)
= (bn−1)nan(1−n)(b1−n)n = an(1−n) (Step 1).

Step 6. H = {n ∈ Z|(ab)n = anbn and an ∈ Z(G)} is a subgroup of Z.
Clear.

Step 7. C = {n(n− 1)|n ∈ S} ⊆ H.
This follows directly from Steps 4 and 5.

Step 8. 2 ∈ S.
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Since C ⊆ H and H is a subgroup of the integers, H contains the greatest
common divisor of any subset of its elements. Thus, 2 is in H. Finally, since
H ⊆ S we are done.
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