The Lester R. Ford Awards were established in 1964 to recognize authors of articles of expository excellence published in

2001

Keith Kendig, Is a 2000-year-old formula still keeping some secrets?,

E.R. Scheinerman, When is close close enough.

2000

P. J. McKenna, Large torsional oscillations in suspension bridges revisited: Fixing an old approximation,

William Terrell, Some fundamental control theory I: Controllability, observability, and duality and Some fundamental control Theory II: Feedback linearization of single input nonlinear systems,

Vilmos Totik, A tale of two integrals,

1999

Yoav Benyamini, Applications of the universal surjectivity of the Cantor set,

Jerry L. Kazdan, Solving equations, an elegant legacy,

Bernd Sturmfels, Polynomial equations and convex polytopes,

1998

S. C. Coutinho, The many avatars of a simple algebra,

Judith V. Grabiner, Was Newton's calculus a dead end? The continental influence of Maclaurin's Treatise of Fluxions,

Bruce Pourciau, Reading the Masters: Newton and the birth of celestial mechanics,

1997

Robert G. Bartle, Return to the Riemann integral,

A. F. Beardon, Sums of powers of integers,

John Brillhart and Patrick Morton, A case study in mathematical research: The Golay-Rudin-Shapiro Sequence,

1996

Martin Aigner, Turan's Graph Theorem,

Sheldon Axler, Down with determinants!,

John Oprea, Geometry and the Foucault Pendulum,

1995

Fernando Q. Gouvea, A marvelous proof,

Robert Gray, Georg Cantor and transcendental numbers,

Jonathan L. King, Three problems in search of a measure,

I. Kleiner and N. Movshovitz-Hadar, The role of paradoxes in the evolution of mathematics,

William C. Waterhouse, A counterexample for Germain,

1994

Bruce C. Berndt and S. Bhargava, Ramanujan--for lowbrows,

Edgar R. Lorch (Reuben Hersh, editor), Szeged in 1934,

Leonard Gillman, An axiomatic approach to the integral,

Joseph H. Silverman, Taxicabs and sums of two cubes,

Dan Velleman and Istvan Szalkai, Versatile coins,

1993

Carsten Thomassen, The Jordan-Schoenflies Theorem and the classification of surfaces,

Don Knuth, Two notes on notation,

1992

Clement W.H. Lam, The search for a finite projective plane of order 10,

1991

Marcel Y. Berger, Convexity,

Ronald Graham and Frances Yao, A whirlwind tour of computational geometry,

Joyce Justicz, Edward R. Scheinerman, and Peter Winkler, Random intervals,

1990

Jacob Goodman, Janos Pach and Chee K. Yap, Mountain climbing, ladder moving, and the ring-width of a polygon,

Doron Zeilberger, Kathy O'Hara's constructive proof of the unimodality of the Gaussian polynomials,

1989

Gert Almkvist and Bruce Berndt, Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, pi and the

Richard K. Guy, The strong law of small numbers,

1988

James Epperson, On the Runge example,

Stan Wagon, Fourteen proofs of a result about tiling a rectangle,

1987

Stuart S. Antman, Book Review of

Joan Cleary, Sidney Morris and David Yost, Numerical geometry - numbers for shapes,

Howard Hiller, Crystallography and cohomology of groups,

Jacob Korevaar, Bieberbach's conjecture and its proof by Louis de Branges,

Peter M. Neumann, Book Review of

1986

Jeffrey C. Lagarias, The 3

Michael E. Taylor, Book Review of

1985

John D. Dixon, Factorization and primality tests,

Donald G. Saari and John B. Urenko, Newton's method, circle maps, and chaotic motion,

1984

Judith Grabiner, Who gave you the epsilon? Cauchy and the origins of rigorous calculus,

Roger Howe, Very basic Lie theory,

John Milnor, On the geometry of the Kepler problem,

Joel Spencer, Large numbers and unprovable theorems,

William C. Waterhouse, Do symmetric problems have symmetric solutions?,

1983

Robert F. Brown, The Fixed Point Property and Cartesian Products,

Tony Rothman, Genius and Biographers: The Fictionalization of Evariste Galois,

Robert S. Strichartz, Radon inversion - variations on a theme,

1982

Philip Davis, Are there coincidences in mathematics?,

R. Arthur Knoebel, Exponentials reiterated,

1981

R. Creighton Buck, Sherlock Holmes in Babylon,

Bruce H. Pourciau, Modern multiplier rules,

Alan H. Schoenfeld, Teaching problem-solving skills,

Edward R. Swart, The philosophical implications of the four-color problem,

Lawrence A. Zalcman, Offbeat integral geometry,

1980

Desmond Fearnley-Sander, Hermann Grassmann and the creation of linear algebra,

David Gale, The game of Hex and the Brouwer fixed-point theorem,

Karel Hrbacek, Nonstandard set theory,

Cathleen S. Morawetz, Nonlinear conservation equations,

Robert Osserman, Bonnesen-style isoperimetric inequalities,

1979

Bradley Efron, Controversies in the foundations of statistics,

Ned Glick, Breaking records and breaking boards,

Kenneth I. Gross, On the evolution of noncommutative harmonic analysis,

Joseph B. Kruskal and Lawrence A. Shepp, Computerized tomography: the new medical x-ray technology,

1978

Ralph P. Boas, Partial sums of infinite series, and how they grow,

Louis H. Kauffman and Thomas F. Banchoff, Immersions and Mod-2 quadratic forms,

Neil J.A. Sloane, Error correcting codes and invariant theory: new applications of a 19th century technique,

1977

Shreeram Abhyankar, Historical ramblings in algebraic geometry and related algebra,

Joseph B. Keller, Inverse problems,

Donald S. Passman, What is a group ring?,

Douglas Wiens, Hideo Wada, Daihachiro Sato and James P. Jones, Diophantine representation of the set of prime numbers,

William P. Ziemer, William H. Wheeler, S.H. Moolgavkar, Paul R. Halmos, John H. Ewing and William H. Gustafson, American mathematics from 1940 to the day before yesterday,

1976

Michel L. Balinski and H.P. Young, The quota method of apportionment,

Edward A. Bender and J.R. Goldman, On the applications of Möbius inversion in combinatorial analysis,

Branko Grünbaum, Venn diagrams and independent families of sets,

James E. Humphreys, Representations of SL (2,p),

Joseph B. Keller and David W. McLaughlin, The Feynman integral,

Justin J. Price, Topics in orthogonal functions,

1975

Raymond Ayoub, Euler and the zeta function,

J. Callahan, Singularities and plane maps,

Donald E. Knuth, Computer science and its relation to mathematics,

Johannes C.C. Nitsche, Plateau's problems and their modern ramifications,

Sherman K. Stein, Algebraic tiling,

Lawrence Zalcman, Real proofs of complex theorems (and vice versa),

1974

Patrick Billingsley, Prime numbers and Brownian motion,

Garrett Birkhoff, Current trends in algebra,

Martin D. Davis, Hilbert's tenth problem is unsolvable,

I.J. Schoenberg, The elementary cases of Landau's problem of inequalities between derivatives,

Lynn A. Steen, Highlights in the history of spectral theory,

R.J. Wilson, An introduction to matroid theory,

1973

Jean A. Dieudonné, The historical development of algebraic geometry,

Samuel Karlin, Some mathematical models of population genetics,

Peter D. Lax, The formation and decay of shock waves,

Thomas L. Saaty, Thirteen colorful variations on Guthrie's four-color conjecture,

Lynn A. Steen, Conjectures and counterexamples in metrization theory,

R.L. Wilder, History in the mathematics curriculum: Its status, equality, and function,

1972

Gulbank D. Chakerian and Lester H. Lange, Geometric extremum problems,

Paul M. Cohn, Rings of fractions,

Frederick Cunningham, Jr., The Kakeya problem for simply connected and for star-shaped Sets,

W.J. Ellison, Waring's problem,

Leon Henkin, Mathematical foundations for mathematics,

Victor Klee, What is a convex set?,

1971

Jean A. Dieudonné, The work of Nicholas Bourbaki,

George Forsythe, Pitfalls in computation, or why a math book isn't enough,

Paul R. Halmos, Finite-dimensional Hilbert spaces,

Eric Langford, A problem in geometric probability,

Peter V. O'Neil, Ulam's conjecture and graph reconstructions,

Olga Taussky, Sums of squares,

1970

Henry L. Alder, Partition identities - from Euler to the present,

Ralph P. Boas, Inequalities for the derivatives of polynomials,

William A. Coppel, J.B. Fourier - on the occasion of his two hundredth birthday,

Norman Levinson, A motivated account of an elementary proof of the prime number theorem,

John Milnor, A problem in cartography,

Ivan Niven, Formal power series,

1969

Harley Flanders, A proof of Minkowski's inequality for convex curves,

George Forsythe, What to do till the computer scientist comes,

Marcel F. Neuts, Are many 1-1 functions on the positive integers onto?,

Pierre Samuel, Unique Factorization,

Hassler Whitney, The mathematics of physical quantities,

Albert Wilansky, Spectral decomposition of matrices for high school students,

1968

Frederick Cunningham, Jr., Taking limits under the integral sign,

W.F. Newns, Functional Dependence,

Daniel Pedoe, On a theorem in Geometry,

Keith L. Phillips, The maximal theorems of Hardy and Littlewood,

F.V. Waugh and Margaret W. Maxfield, Side-and-Diagonal numbers,

Hans J. Zassenhaus, On the fundamental theorem of algebra,

1967

Wai-Kai Chen, Boolean matrices and switching nets,

D.R. Fulkerson, Flow networks and combinatorial operations research,

Mark Kac, Can one hear the shape of a drum?,

M. Zuhair Nashed, Some remarks on variations and differentials,

Paul B. Yale, Automorphisms of the complex numbers,

1966

Carl B. Allendoerfer, Generalizations of theorems about triangles,

Peter D. Lax, Numerical solutions of partial differential equations,

Marvin Marcus and Henry Minc, Permanents,

1965

R. H. Bing, Spheres in E3,

Louis Brand, A division algebra for sequences and its associated operational calculus,

Robert G. Kuller, Coin tossing, probability, and the Weierstrass approximation theorem,

R. Duncan Luce, The mathematics used in mathematical psychology,

Hartley Rogers, Jr., Information theory,

Elmer Tolsted, An elementrary derivation of Cauchy, Holder, and Minkowski inequalities form Young's Inequality,