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The Search for Finite Simple Groups

The eighty year quest for the building blocks.
of group theory reflects sporadic growth spurts
whenever new basic techniques were discovered.

JosepH A. GALLIAN
University of Minnesota, Duluth

At present, simple group theory is the most active and glamorous area of research in the theory of
groups and it seems certain that this will remain the case for many years to come. Roughly speaking,
the central problem is to find some reasonable description of all finite simple groups. A number of
expository papers [36], [42], [45], [47], [49], [79] and books [21], [46], [67] detailing progress on this
problem have been written for professional group theorists, but very little has appeared which is
accessible to undergraduates. (Only Goldschmidt’s proof of the Brauer-Suzuki-Wall theorem [44]
comes to mind.) This paper is intended as a historical account of the search for simple groups for
readers who are not experts in the subject. It is the hope of the author that the paper may profitably be
read by one who is conversant with the contents of Herstein’s algebra book [55]. A complete
discussion of all important contributions to simple group theory is beyond the scope of this paper.

What are simple groups and why are they important? Evariste Galois (1811-1832) called a group
simple if its only normal subgroups were the identity subgroup and the group itself. The Abelian
simple groups are the group of order 1 and the cyclic groups of prime order, while the nonabelian
simple groups generally have very complicated structures. These groups are important because they
play a role in group theory somewhat analogous to that which the primes play in number theory or the
elements do in chemistry; that is, they serve as the “‘building blocks” for all groups. These “building
blocks” are called the composition factors of the group and may be determined in the following way.
Given a finite group G, choose a maximal normal subgroup G, of G = G,. Then the factor group
G/ G is simple, and we next choose a maximal normal subgroup G, of G,. Then G,/G. is also simple,
and we continue in this fashion until we arrive at G, ={e}. The simple groups
Go/Gy, Gi/Ga, .. ., Gan/ G, are the composition factors of G and by the Jordan-Hélder theorem
these groups are independent of the choices of the normal subgroups made in the process described.
In a certain sense, a group can be reconstructed from its composition factors and many of the
properties of a group are determined by the nature of its composition factors. This, and the fact that
many questions about finite groups can be reduced (by induction) to questions about simple groups,
make clear the importance of determining all nonabelian finite simple groups.

The narrative which follows is divided into 16 sections which appear in more or less chronological
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order according to theme. Within a particular section however, we usually include a number of results
which are related to the theme without regard to time. Thus, for example, the section on the odd order
problem appears early in the paper but includes results ranging from 1895 to 1963. In this way we
hope to emphasize two points: (1) the problems of one generation very often have deep roots in the
work of previous generations and (2) there is frequently a large temporal gap between certain results
and their subsequent improvements.

Throughout the remainder of this paper we use the term simple group to mean a finite nonabelian
simple group.

1. The alternating groups and the classical linear groups

Although Galois had formulated the definition of a simple group and had observed that the
alternating group (of even permutations) on 5 symbols was simple, the first major results in the theory
were due to Camille Jordan (1838-1922). In 1870, Jordan published Traité des Substitutions, the first
book ever written on group theory [58]. In this book he established the existence of five infinite
families of finite simple groups. One of these families, which we denote by A,, consists of the
alternating permutation groups on n >4 symbols. Jordan formed the other four families by using
matrices with entries from finite fields. One of these may be described as follows. For m > 1, the
special linear group SL(m, p") is the multiplicative group of m X m matrices of determinant 1 with
entries from the field with p" elements and the projective special linear group PSL(m, p") is the
factor group SL(m, p")/Z(SL(m, p")) where Z(SL(m, p")), the center of SL(m,p"), is the subgroup
of SL(m,p") consisting of all scalar matrices with determinant 1. Jordan proved that PSL(m, p) is
simple when (m,p) is not (2,2) or (2,3). The other three families have been given the names
orthogonal, unitary and symplectic groups and, following Hermann Weyl, mathematicians refer to
these four families collectively as the classical simple groups.

The last three types mentioned above are most easily defined as certain groups of invertible linear
transformations of a finite dimensional vector space V over a finite field modulo the center of the
group and in each case the group is obtained by considering those transformations T which leave a
nondegenerate form f of V invariant (i.e., f is a certain function from V x V into the field and
f(Tx, Ty) = f(x,y) for all x,y in V). A symmetric bilinear form (i.e., a dot product) gives an
orthogonal group; hermitian, a unitary group; and skew symmetric bilinear, a symplectic group. The
precise definitions of these groups are not needed here but the reader can find them in [2] and [6].
Jordan introduced these three families as groups of matrices instead of groups of linear transforma-
tions and proved they are simple when the field has prime order (except for a few trivial cases).

2. Range problem 1-660

A different approach was taken by Otto Holder (1859-1937) when in 1892 he initiated what we will
call the range problem; namely the complete determination of all simple groups whose orders are in a
given range. Here both the existence and the uniqueness questions must be considered; that is, it must
be determined which integers in the range are the orders of simple groups and, for each such integer,
all possible simple groups of that order must also be determined (up to isomorphism). Holder [56]
proved that the only two simple groups whose orders lie between 1 and 200 are As of order 60 and
PSL(2,7) of order 168. F. N. Cole (1861-1927), the first American-born mathematician to publish in
group theory, followed Holder’s lead in 1892 [23] when he examined the integers between 201 and 500
for simple groups. He was not totally successful for he was unable to prove that A¢ was the unique
simple group of order 360; nor was he able to show 432 was not the order of a simple group. He
overcame these difficulties [24] a year later, however, when he completed the determination of all the
simple groups with orders in the range 1 to 660. In addition to the ones in this range already found by
Jordan, Cole discovered one more, PSL(2, 8), having order 504. This provided the first example of a
simple group not known to Jordan and the first proof of the simplicity of one of the groups PSL(m, q)
with ¢ not prime.
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_ Date Integers Individual

1892 1-200 Holder [56]

1892-93 201-660 Cole [23, 24]

1895 661-1092 Burnside [15]

1900 1093-2000 Ling and Miller [60]
1912 2001-3640 (except 2520) Siceloff [71]

1922 2520 Miller [65]

1924 3641-6232 (except 5616 and 6048) Cole [26]

1942 5616 and 6048 Brauer [7]

1963 6233-20,000 Michaels [62]

1972 1-1,000,000 (21 exceptions) Hall [49, 50]

1975 Hall’s exceptions Beisiegel and Stingl [3]

CHRONOLOGY OF THE RANGE PROBLEM: The search for all simple groups of specified orders reveals
sporadic progress as new methods made possible sudden bursts of successful analysis on groups of increasingly large
order. At present the range problem Is completed through groups of order 1,000,000: all simple groups of order less
than 1,000,000 are known, but only some of those beyond that order have been discovered.

The methods of Holder and Cole are of interest. The three Sylow theorems rule out 596 of the first
660 integers as possible orders of simple groups. (In fact, they rule out 9431 of the first 10,000 [74].) If
G is assumed to be simple and H is a proper subgroup of G, then G is isomorphic to a subgroup of the
symmetric group on the cosets of H in G (compare with the proof of Theorem 2.92 in [55]). Thus G
with order | G| is represented as a group of permutations on |G |/| H| symbols and it follows that
(IG|/| H|)!is a multiple of | G |. This last fact is called the index theorem and it further reduces the list
of integers to be examined to 47. Finally, a combination of the Sylow theorems, the index theorem,
and other elementary techniques such as counting elements reduces to 33 the list of those integers
from 1 to 660 which require ad hoc arguments. Since the theory of permutation groups was much
further developed than the theory of abstract groups at that time, these remaining 33 integers were
handled with permutation group techniques. An example of a permutation-type argument will be
given later.

It is noteworthy that while the proofs of the non-simplicity of a group of order 144 or 180 occupied
more than 10 pages of Holder’s paper, the author has had undergraduates [59] who have done this in
less than 2 pages using only the results found in Herstein [55]. Similarly, using a bit more machinery,
three undergraduates from the University of Wisconsin [27] covered all the integers up to 1000 with
the exceptions of 720 and the uniqueness question. Their proofs for the cases 144 and 180 require only
12 lines.

3. PSL(m,p")

Cole’s discovery of the simplicity of PSL (2, 8) had far-reaching consequences because that same
year E. H. Moore (1862-1932), the first mathematics department chairman of the University of
Chicago, used it for the starting point of his investigations which resulted [66] in a proof that the family
of groups PSL(2,p") are all simple except when p" =2 or 3. William Burnside (1852-1927) also
obtained this result [13] shortly after Moore. Moore’s paper, in turn, led his first Ph.D. student,
Leonard E. Dickson (1874-1954), to the complete generalization of Jordan’s original result when in
1897 he proved [29] that the family of groups PSL(m,p"™) (m > 1) consisted of simple groups except
when p" = 2 or 3. Dickson called this family a triply infinite system since each of p, n, and m may take
on infinitely many values. Moore’s paper also contains many interesting results on finite fields, the
most important of which is that for each prime power p* there exists a unique field of order p* (Galois
had proved such fields exist in 1830 [41]). In the opinion of E.T. Bell [4, p.10] these results on finite
fields clearly mark the beginning of abstract algebra in America.
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4. Range problem to 1092

In 1895 Burnside [14, 15] obtained several powerful arithmetic tests for simple groups. By far the
most important of these is the fact that a simple group of even order must be divisible by one of 12, 16
or 56. In proving this result, he showed that an even order simple group cannot have a cyclic Sylow
2-subgroup. This theorem appears to be the first nonsimplicity criterion which is based on the
structure of the Sylow 2-subgroups. In the past two decades much of the research in simple group
theory has dealt with the problem of classifying all simple groups whose Sylow 2-subgroups have a
specified structure. (All the Sylow 2-subgroups of a group are isomorphic.) For example, John Walter
[77], in a long (110 pages!) and difficult proof, obtained a broad generalization of Burnside’s result
when he determined all simple groups with Abelian Sylow 2-subgroups. Similarly, all simple groups
whose Sylow 2-subgroups are dihedral (that is, are groups of symmetries of some regular n-sided
polygon) have been determined by Daniel Gorenstein and Walter [48]. The proof of this important
result appears in three papers and runs 160 pages! Commenting on this proof in Mathematical
Reviews (32 #7634), John Thompson wrote “The techniques of these papers cover the spectrum of
finite group theory more thoroughly than any single paper known to the reviewer.”

By 1893 the range problem had been completed as far as 660. Since 1092 was the next integer
known to be the order of a simple group, Burnside [15] decided to examine the integers between these
two. The arithmetical tests of his previous paper disposed of all but 17 of the 432 integers in this range
and the Sylow theorems ruled out six more. The remaining 11 integers were considered individually
although his proof for the hardest integer in the range, 720, was erroneous and he inadvertently
omitted 1008. The efficiency of Burnside’s nonsimplicity tests is further evidenced by the fact that they
dispose of all odd integers up to 2025 and all but 14 of the odd integers less than 9000. As a rule, even
integers are much harder to eliminate than odd integers but Burnside’s ‘12, 16, 56 theorem’ alone
rules out 3691 of the first 5000 even integers [74].

5. Permutation representations and character theory

In obtaining their results Burnside, Cole, and Hélder utilized permutation representations of
groups. Certain permutation groups—transitive, doubly transitive, and primitive—play an especially
important role in simple group theory. (A permutation group on a set S is called transitive on S if for
each pair g, b of letters of S there is an element in G which sends a to b; G is called doubly transitive
on S if for each two ordered pairs of distinct letters of S, (a, a') and (b, b’), there is an element in G
which sends a to b and a' to b’; see [78, p. 15] for the definition of a primitive group.) The reasons for
the importance of these groups are that the representation of a group as permutations of the cosets of
a subgroup is transitive and that many of the known simple groups can be represented as a doubly
transitive (and therefore primitive) permutation group. Thus, a common technique when dealing with
a simple group G is to represent it as a transitive, doubly transitive or primitive group and then utilize
the theory of these groups to obtain important information about G.

Much effort was devoted in the late 1800’s and early 1900’s to classifying the transitive and
primitive permutation groups of low degree. These results often prove useful in simple group theory.
To illustrate, let us consider Siceloff’s proof [71] that there is no simple group of order 1188 =
22.3%-11. If G were a simple group of order 1188, Sylow’s theorem implies G has 12 subgroups of
order 11 which are conjugate in G. If for each element g in G we define T, to be the mapping which
sends the Sylow 11-subgroup § to the Sylow 11-subgroup g~'Sg, we see that G may be viewed as a
transitive permutation group on the set of Sylow 11-subgroups of G (cf. proof of 2.92 in [55]). Then
letting H denote a subgroup of G which consists of all permutations which have some Sylow
11-subgroup fixed, it follows that | H|= 3-11 (see [78, p. 51]) and H is a permutation group on the
other 11 Sylow 11-subgroups. By Sylow’s theorem H has an element of order 11 and so this element is
an 11-cycle. Thus H is a transitive permutation group of degree 11 and order 99. But Cole [25] has
shown no such group exists.

A homomorphism from a group into a group of matrices with entries from some field is called a
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representation of the group. If T is a representation of G, the character of this representation is the
function X from G to the field defined by X(g)= trace(T(g)) for all g in G. There exist numerous
arithmetical relations on the characters of a group G which are intimately related to the structure of
G. Thus a knowledge of the characters of a group reveals much information about the group itself.
The theory of group characters has profoundly influenced the search for simple groups. This theory
was developed by Georg Frobenius (1849-1917) in a series of papers beginning in 1896. (The historical
background to Frobenius’ creation of group characters is detailed in [51, 52].) Around the turn of the
century Issai Schur (1875-1941) and especially Burnside simplified the theory and found many
important applications of it. In recent times, character theory has been further developed and refined
by Brauer, Suzuki, and Feit.

6. Odd order problem

During the period 1895-1901 much attention was focused, particularly by Burnside, on the
possibility of the existence of a simple group of odd order. In his 1895 paper [15], Burnside had shown
that there is no simple group of odd order less than 2025. He later extended this to 9000 [16] and then
to 40,000 [18]. Numerous arithmetical theorems obtained by Burnside in this period reduced the list of
possible odd orders less than 40,000 to 7; these were then eliminated by elementary considerations.

In 1901 Burnside [17] used character theory to prove that a nonsolvable transitive permutation
group of prime degree is doubly transitive. Since a simple group which has a subgroup of prime index
can be represented as a transitive permutation group on the cosets of this subgroup it must be doubly
transitive. But the order of a doubly transitive group of degree n is divisible by n(n ~ 1) [78, p. 20] so
Burnside’s result shows there is no odd order simple group which has a subgroup of prime index.
Burnside [18] also proved in 1901 that if a simple group has odd order n and p is the smallest prime
divisor of n then n is divisible either by p* or by both p* and a prime factor of p*+p +1.

Burnside’s efforts convinced him that there were no simple groups of odd order and that the
eventual proof of this would involve the use of character theory. In fact, he wrote [20, p. 503] “The
contrast that these results shew between groups of odd and of even order suggests inevitably that
simple groups of odd order do not exist.” He further wrote [17] “The results obtained in this paper,
partial as they necessarily are, appear to me to indicate that an answer to the interesting question as to
the existence or non-existence of simple groups of odd order may be arrived at by further study of the
theory of group characters.”

The next important step in this direction however, did not come for more than 50 years. In 1957,
Michio Suzuki [72] used character theory to prove that a simple group in which the centralizer of any
nonidentity element is Abelian must have even order. (The centralizer of an element x in a group G is
the subgroup C(x) = {g € G| gx = xg}.) Three years later, in a major work [37], Walter Feit, Marshall
Hall, Jr., and John Thompson obtained a broad generalization of Suzuki’s result by showing that
“Abelian” could be replaced by the much weaker condition “nilpotent.” (A group is nilpotent if all of
its Sylow subgroups are normal.) Their proof was similar to Suzuki’s and character theory played an
important role in it.

Burnside’s prophecy was at Jast fulfilled in 1963 when Feit and Thompson expanded on the ideas of
the two papers mentioned above and proved [38] that groups of odd order are solvable. (A finite
group is solvable if all of its composition factors have prime order; thus, solvable groups are not
simple.) The difficulty of this proof and the significance of both the theorem and the methods
employed cannot be exaggerated. Concerning one portion of the proof, Suzuki wrote in Mathematical
Reviews (29 #3538) ... [This 50 page portion] represents one of the highest points ever achieved in
the theory of finite groups.”

The proof of the “Odd Order Theorem” occupies an entire 255 page issue of the Pacific Journal of
Mathematics. It proceeds by assuming that there is a group G of minimal odd order which is not
solvable. Then every proper subgroup of G is solvable and therefore Philip Hall’s extensive work on
solvable groups could be brought to bear on the subgroups. Ultimately, they were able to derive a
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contradiction. For their achievement, Feit and Thompson were awarded the Frank Nelson Cole Prize
in Algebra by the American Mathematical Society in 1965. (The Cole Prize is named after the same
Cole who had determined the simple groups with orders between 201 and 660 and was established in
his honor in recognition of his many years of service to the Society.)

7. Dickson’s simple groups

In the period from 1897 to 1905 Dickson made many fundamental contributions to the theory of
simple groups. In a series of papers appearing from 1897 to 1899 he extended Jordan’s results on the
simplicity of the orthogonal, unitary and symplectic groups over fields of prime order to arbitrary
finite fields. Much of this work emanated from his Ph.D. dissertation, the first one ever done in
mathematics at the University of Chicago. Whether there exist two nonisomorphic simple groups of
the same order had been a long-standing problem by 1899. But Dickson’s proof in 1897 that PSL(3,4)
is simple provided a possible answer to this question since it and the simple group A, both have order
20,160. It was quickly suspected that these two were not isomorphic since As contains elements of
orders 6 and 15 while no such elements were known to be in PSL(3,4). At Moore’s suggestion, Ida
Schottenfels investigated these two groups and proved [70] they were not isomorphic. Shortly
thereafter, Dickson showed [30] that there are infinitely many such examples. Since these examples
were given by Dickson no others have been found and there is no known triple of nonisomorphic
simple groups of equal order. After 20,160 the next known integer for which there is a pair of
nonisomorphic simple groups of equal order is 4,585,351,680, and it wasn’t until the mid 1960’s that
20,160 was shown to be the smallest possible integer for which this can happen.

In his classic book Linear Groups Dickson listed all the isomorphisms between the simple groups
he knew. For example, A,, PSL(2,4), and PSL(2,5) are defined differently but are isomorphic. The
question of whether Dickson’s list of isomorphisms contained all which were possible among the
simple groups known to him was not answered until 50 years later when Jean Dieudonné proved [35]

&

A Chronological Collection of ...

1870 Jordan Established simplicity of alternating
groups and linear groups over fields
of prime order.

1892 Holder Began range problem.

1895-1900 Cole, Miller Proved simplicity of Mathieu groups.
1896-1901 Frobenius-Bumnside Developed character theory.
1897-1905 Dickson Established simplicity of linear groups

over arbitrary finite fields. Discovered
a family of simple groups of Lie type.

1904 Bumnside Proved p°q® theorem.
1954 Brauer Began the program of characterizing simple
groups in terms of centralizers of involutions.
1955 Chevalley : Discovered new approach to simple groups.
Discovered new families of simple groups
of Lie type.
1958-1961 Steinberg, Tits, Hertzig, Extended Chevalley’s methods and discovered
Ree new infinite families of simple groups
of Lie type.
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that Dickson’s list was complete. Dickson also listed all the coincidences in the orders of the simple
groups known to him but whether this list was complete was not determined until 1955 when Emil
Artin (1898-1962) proved [1] with an elegant number-theoretical study that it was.

Without going into detail we mention that the classical linear groups over the field of complex
numbers are Lie groups (because, roughly, they possess a smooth geometric. structure) and Wilhelm
Killing (1847-1923) and Elie Cartan (1869-1951) proved (1888-1894) that besides the simple Lie
groups corresponding to the classical groups there are only five additional simple ones called
exceptional Lie groups. In two papers in 1901 and 1905 Dickson discovered a new infinite family of
finite simple groups by defining analogs over finite fields of one of these exceptional Lie groups [31,
32). It is remarkable that no additional new finite simple groups were found until Claude Chevalley
and others, 50 years later, were able to show (among other results) that the remaining four exceptional
Lie groups also had finite analogs.

8. The Mathieu groups

In 1861 E. Mathieu discovered a family of five transitive permutation groups. This remarkable
family has become very important in both the theory of simple groups and coding theory as well as in
permutation group theory. In 1895, while determining all transitive permutation groups on 10 or 11
symbols, Cole observed [25] that the smallest Mathieu group (order 7920) is simple and by 1900 G. A.
Miller (1863-1951) had shown [63, 64] the other four are also simple. Three of these groups have order
less than 1,000,000 and this brought to 53 the number of such simple groups known in 1900. This
number would not be enlarged until 1960.

Among all the simple groups known by 1905 the Mathieu groups had the peculiar distinction of
being the only ones which were not part of an infinite family of simple groups (such as A, or
PSL(m,p")). To this date they (and 21 or so other simple groups) still have not been shown to be
members of any infinite family of simple groups in a natural way.

... Highlights in the Theory of Simple Groups

1960 Suzuki Discovered new infinite family of simple
groups (only simple groups with orders not
divisible by 3).

1963 Feit-Thompson Proved simple groups have even order.
1965 Gorenstein-Walter Classified all simple groups with dihedral
Sylow 2-subgroups.

1966-1975 Janko, Hall, Higman, Sims, Discovered new sporadic simple groups.
McKay, McLaughlin,
Suzuki, Held, Conway,
Thompson, Fischer, Lyons,
Rudvalis, Wales, O’Nan, Smith

1968 ‘Thompson Proved N-theorem. Classified all minimal
simple groups.

1969 Walter Classified all simple groups with Abelian
Sylow 2-subgroups.

1971 Thompson Proved Suzuki groups are the only simple
groups with orders not divisible by 3.

1972 Wales Classified all simple groups with orders
of the form p°q®r.

1975 Hall, Beisiegel-Stingl Completed range problem to 1,000,000.
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9. Range problem to 6232

The determination of all simple groups of order up to 2000 was completed in 1900 when G. Ling
and Miller proved [60] that there is no simple group whose order is between 1093 and 2000. It is
interesting to note that although there are 908 integers in this range only 28 required any special
treatment. For example, Burnside’s result on odd order simple groups and his “even, but not divisible
by 12, 16 or 56” theorem eliminated all but 118 possibilities. Then the Sylow theorems, the index
theorem, and several results of Frobenius on groups with orders of the form p°q® reduced the
possibilities to 28.

In 1902 Frobenius determined [40] all transitive permutation groups of degree p + 1 and order
p(p®—1)/2 where p is prime. Since any simple group of order p(p>— 1)/2 can be represented as a
transitive permutation group on the p + 1 conjugate Sylow p-subgroups, it follows from Frobenius’
theorem that PSL(2,p) is the only simple group of order p(p”>— 1)/2. This appears to be the first
arithmetical characterization of an infinite family of simple groups. Fifty-six years later this uniqueness
theorem was generalized in answer to a question of Artin. Artin had observed that the simple groups
PSL(2,p) (p >3) and PSL(2,2"), where 2" + 1 is prime, have orders which are divisible by a prime
whose cube exceeds the order of the group. He conjectured that these were the only such simple
groups and Brauer and Reynolds [11] used modular character theory (the character values lie in a field
of prime characteristic) to prove this conjecture.

Twelve years after Ling and Miller completed the range problem up to 2000, L. P. Siceloff, at the
suggestion of Cole, proved [71] that the only integers between 2001 and 3640 which are orders of
simple groups are 2448, 2520, and 3420. All of these were on Dickson’s list in 1901. Since 2448 and
3420 have the form p(p®—1)/2 the uniqueness question concerning these integers had been answered
affirmatively by Frobenius ten years earlier and it was Miller who ten years afterward showed [65] that
A, is the unique simple group of order 2520. Thus by 1922 all simple groups of order up to 3640 had
been determined.

Again there was a twelve year hiatus before the exhaustive enumeration of integers in a certain
range was continued. In 1924, Cole returned to the problem again and showed [26] that the only
integers between 3641 and 6232 which are orders of simple groups were the four on Dickson’s 1901
list. Unfortunately Cole’s paper was so lacking in detail that its value was diminished. The uniqueness
question for PSL(2,23) (order 6072) had previously been settled affirmatively by Frobenius, and Cole
did the same for PSL(2, 16) (order 4080). Eighteen years after Cole’s paper Brauer [7] showed, with
the use of character theory, that the remaining two integers also corresponded to unique simple
groups. So by 1942 all simple groups of order as far as 6232 had been detéermined.

10. Burnside’s p°q® theorem

In 1904, Burnside used character theory to prove [19] that every group of order p°q® where p and
q are primes is solvable. This theorem represented the final generalization of a large number of special
cases which had been established by Sylow, Frobenius, Burnside, Jordan, and Cole; it has become the
classic example of the power of character theory. With character theory a simple proof was possible 70
years ago, but a character-free proof of Burnside’s theorem, although long sought, has appeared only
in the past few years. Thompson had indicated in his fundamental paper [75] on minimal simple
groups (see section 14) that a character-free proof of the Burnside theorem could be extracted from
that paper and the “odd order paper” [38]. David Goldschmidt [43], in 1970, gave a short
character-free proof of the theorem when p and q are odd and Helmut Bender [5] two years later
proved the general result without character theory. By combining the arguments of Bender in the odd
~ order case and of Hiroshi Matsuyama [61] in the even order case it is now possible to obtain a short
and attractive character-free proof of the p°q® theorem.

Despite the early outstanding achievements with character theory by Burnside and Frobenius,
others seemed to ignore it as a tool in simple group theory until Brauer brought it to the forefront in
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the 1940’s and 50’s. This is partly explained by the fact that interest in simple groups began to wane
around 1905.

11. The Chevalley groups

In 1948 Dieudonné [34] classified all the known simple groups according to their method of
construction. This classification scheme modernized the one Dickson had devised in 1901. Whereas
Dickson obtained his results by means of complicated matrix calculations which often obscured the
underlying ideas, Dieudonné utilized the geometric properties of linear transformations and vector
space theory to simplify and clarify Dickson’s work. Although Dieudonné’s approach to the classical
linear groups is much more elegant than Dickson’s, his methods still required that each family of
simple groups be treated individually and he found no new simple groups. Thus, simple group theory
was revitalized in 1955 when Chevalley, in his celebrated paper [22], introduced a new approach which
provided a uniform method for investigating three kinds of the classical linear groups and Dickson’s
simple groups of Lie type as well. In addition to encompassing most of the then-known simple groups,
his method also yielded several new.infinite families of finite simple groups.

This was accomplished in the following way. With every pair (L, K) where L is a Lie algebra over
the complex numbers (i.e., an algebra whose associative law is replaced by the Jacobi identity and also
satisfies the condition x> = 0 for all x) and K is a field, a new Lie algebra Ly is constructed. Chevalley
was able to associate with every such pair a certain subgroup of the automorphism group of Lx which
is simple. With the appropriate choice of L and K these simple groups are those investigated by
Jordan, Dickson, and Dieudonné. With other choices of L and K Chevalley obtained his new simple
groups (the smallest of these has order 2*¢3°527*13-17). These groups were the first new simple
groups found in more than 50 years. That they were indeed new was established by comparing their
orders with the orders of the simple groups which had been known. The formulas for the orders of the
Chevalley groups over finite fields were derived by using topological properties of the Lie group of the
same type. Artin [1] developed a new classification scheme for the known simple groups which
included the Chevalley groups. He used fewer classes than did Dickson and Dieudonné and his
method considerably improved theirs (see also [2]).

12. Groups of Lie type

During the period 1958-1959 Chevalley’s methods were extended and modified by Robert
Steinberg, Jacques Tits, and D. Hertzig (see [21]) to obtain additional new infinite families of simple
groups and the classical groups not handled by Chevalley. Shortly thereafter, Suzuki [73], while in the
process of classifying a certain type of doubly transitive permutation groups, also discovered another
new infinite family. Analyzing the Suzuki groups, Rimhak Ree noticed that when interpreted from a
Lie-theoretical point of view, they were closely related to a certain family of Chevalley groups. He
then showed that the method of Steinberg could be used to construct the Suzuki groups. This in turn
led him to investigate two other similar situations and eventually discover his two families of simple
groups [68, 69]. The Suzuki and Ree groups together with those of Chevalley and Steinberg are
collectively referred to as the simple groups of Lie type. These, together with the alternating groups
A, (n=5) account for all but 26 or so of the finite simple groups known to date.

The Suzuki groups are noteworthy for another reason. They provided the first examples of simple
groups whose orders are not divisible by 3, and Thompson, in a major classification theorem, has
recently shown that these are the only possible such groups. The elements of the Suzuki groups are
certain 4 X 4 matrices with entries from the Galois fields of order 2>"*", again illustrating the extremely
important role that matrix groups over finite fields play in simple group theory.

13. Sporadic simple groups

A simple group which no one has yet been able to fit into an infinite class of simple groups in a
natural way is called a sporadic simple group.-For example, A, and PSL(n, q) are infinite families of
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The Known Finite Simple Groups ...

Date and Order
Discoverer Type: Name Group Notation (p is a prime, ¢ = p")
1870 — ; A, (m>4) ' m!/2
Jordan alternating group )
‘ of degree m

1870 classical linear " L. (p) or PSL(m,p) (m >1) d~'pm—? ﬁ (' -1);
Jordan projective special _ 2

linear d= (m’ 14 1)
1870 classical linear S:n(P) (m >1) ap~ [1 @* -1

S i=1

Jordan symplectic d=@2p-1)
1870 classical linear Ozu(s,p), € = 1, (m>3) d'p™""(p™-¢):
Jordan orthogonal .

e -1md=wtp-

1873 classical linear Un(p) (m >2) d-ipmm-va 1"[z @' -(~-1))
i !
Jordan unitary d=(mp+1)
1893 classical linear L,(8) or PSL(2,8) 504 = 2*-3%.7
Cole Lx(8)
1893 classical linear LAg)or PSL(2,9)(g>3) d'q{¢’—1);d=Q,9q-1)
Moore projective special
linear
1895 sporadic M, 7920 = 2*-3*.5-11
Mathieu- Mathieu 11 '
Cole
1891 classical linear 1 L.(q) or PSL(m,q)(m >1) d 'q™"" ﬁz @ -1
Dickson projective specia _ N
linear d=(mgq-1)
1§W ~ classical linear " S2m(q) (m>1) dq™ H @*—-1);
Dickson symplectic d=@2,q-1) '
1898 classical linear O;.(6,q), e= %1, (m>3) d7'q"" g™ —¢)-
Dickson orthogonal

M@ - d=ta -0

1898 classical linear Un(q) (m >2) dgm= ] (q' - (- 1))
. . i=2 .

Dickson ; unitary d=(mq+1)

1899 sporadic My, ' 95,040 = 2%.3%5-11

Mathieu- Mathieu 12 -

Miller :

1900 sporadic M, 443,520 = 27-3%.5-7-11

Mathieu- Mathieu 22 '

Miller

1900 sporadic - My 10,200,960 = 27-3%-5-7-11-23

Mathieu- Mathieu 23

Miller
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simple groups while the five Mathieu groups are sporadic. In the classification schemes of Dickson,
Dieudonné, and Artin only the five Mathieu groups are sporadic and no new ones were discovered
until Zvonimir Janko found one of order 175,560 in 1966 [57]. Remarkably, the discoveries of Mathieu
and Janko are separated by more than one hundred years. Using other results of Janko, M. Hall
proved [49] the existence of a sporadic simple group of order 604, 800 in 1967. This brought to 56 the
number of known simple groups of order less than 1,000,000 and to 7 the number of sporadic simple
groups. Paraphrasing Gorenstein [47, p. 14] we recount the following anecdote in connection with
Hall's simple group:

Shortly after Hall constructed his group he gave a lecture on it at Oxford. Donald Higman
and Charles Sims were in the audience and they were both struck by the fact that one of the
Mathieu groups had certain permutation properties analogous to those of a group which Hall
had used in his construction. That very same night this observation led them to the
construction of a new sporadic simple group!

Hall’s method has also led to the discovery of two others by analogous methods. By now there are
26 or so sporadic simple groups and it has been proved that there are exactly 56 simple groups of order
less than 1,000,000. (Of late, new sporadic simple groups are being discovered so frequently that it is
difficult for one to be sure of their precise number.)

Some of the sporadic simple groups have been discovered in the course of solving certain problems
in permutation group theory while others have turned up as the automorphism group of a
distance-transitive graph (see Chapter 4 and the Appendix in [6]). Quite often, two or more sporadic
groups are related in some way. Indeed, the Conway .1 simple group contains 12 sporadic simple
groups as subgroups! The existence of many of these recently-discovered groups has been verified by
means of a permutation representation of the group and extensive use of computers.

An important technique which has led to the discovery of a number of sporadic simple groups
involves the notion of the centralizer of an involution (i.e., of an element of order 2). This method is
employed in the following way. Choose H to be the centralizer of an involution from some known
simple group G. Next, assume G* is any simple group which contains an involution x such that C(x)
is isomorphic to H. (By a theorem of Brauer and Fowler [10] only a finite number of such groups can
exist, so H “‘almost” determines G.) Then a great deal of information about G * can be obtained. With
this information it is often possible to show that G* is isomorphic to G or to some other known simple
group. For example Dieter Held [53] has proved such a theorem when G = A; or A,. If it cannot be
shown that G* must be isomorphic to some known simple group, the information may be adequate to
suggest a method of constructing a new simple group. Held [54] has also been instrumental in
accomplishing this. He began with the observation that PSL(5,2) and the largest Mathieu group
possess involutions with isomorphic centralizers and no other known simple group has this property.
Choosing this for H, he was led to three possible configurations for G*. Ultimately, enough properties
of this third group were derived so that Graham Higman and John McKay were able to construct it
with the use of a computer. -

Similarly, one may proceed by assuming G is a simple group which contains an involution whose
centralizer closely resembles the form of a centralizer of an involution from a known simple group. In
this case, if the information about G is not self-contradictory it suggests the possible existence of a
new simple group and may be sufficient to lead to an actual construction of the group. This is how
Janko discovered his simple group of order 175,560. Each member of a family of simple groups
discovered by Ree has a centralizer isomorphic to Z,x PSL(2,3") and has its Sylow 2-subgroups
isomorphic to Z,x Z,X Z,. Janko set out to determine all simple groups which have a centralizer
isomorphic to Z,x PSL(2,p"), p odd, and with Sylow 2-subgroups isomorphic to Z,X Z,X Z,.
Eventually he was able to show that either p =3 and the group is of Ree type or p" =5. The
information he obtained about this latter case led him to write down a pair of 7 X 7 matrices with
entries in the field of order 11 which generated a new simple group.
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... Their Types, Notations and Orders ...

Date and Order
Discoverer Type: Name Group Notation p is a prime, ¢ = p"
1900 sporadic M,, 244,823,040 = 2'°-3*-5-7-11-23
Mathieu- Mathieu 24
Miller
1901 and Lie Giq) q°(q°*-1)(q* - 1)
1905 groups of type*G,
Dickson .
1955 Lie E{q) q*(q”-1)(¢*- 1)
Chevalley Cheuvalley groups of @ -1D@*-1
type E,
1955 Lie Eq(q) d”'¢*(q” - 1)(¢°- 1)
Chevalley Chevalley groups of (@'- 1@ -)g*-1)-
type Ec (-1 d=B,q-1)
1955 Lie EAq) d7'q®(g" - 1)(¢" - 1)
Chevalley Chevalley groups of @—-1)(g"°-1)(g*-1)-
type E, @ -1)@-1);d=@2,9-1)
1955 Lie Edq) q9™(@* - 1)(g*-1)-
Chevalley Chevalley groups of @*-1)(g"-1)g"-1)-
type Ea @7~ -Dg*-1)
1959 Lie *Edq?) d”'qg*(¢’-1)(g°+1):
Steinberg- twisted groups of (@*-1(¢g"-1)(@g°+1)-
Tits- type E, (@7-1;d=(3,q+1)
Hertzig
1959 Lie ’Ddq*) q*(q*-1)@g°~1)-
Steinberg- twisted groups of (@°+q*+1)
Tits- type D4
Hertzig ‘
1960 Lie Sz(q) or *Bxq), ¢ =2"""'  ¢*(@*+1)(@-1)
Suzuki Suzuki groups
1961 Lie , *GAq), 9 =3 (@’ +1)(@g-1)
Ree Ree groups of .
ope Gs .
1961 Lie ‘ *Fdq), g =2 9"@*+ 1)@*-1)-.
Ree Ree groups of @+1g-1)
type F, '
1966 sporadic Ja 175,560 = 2*-3-5-7-11-19
Janko Janko
1967 sporadic HaJ 604,800 = 27-3%-5%7
Hall-Janko Hall-Janko
1968 sporadic - HiS 44,352,000 = 2°-3%.5%7-11
Higman-Sims Higman-Sims :
1969 sporadic HIM 50,232,960 = 27-3*.5:17-19
Hall-Janko- Hall-Janko-McKay
McKay '
1969 sporadic McL 898,128,000 = 27-3%5%7-11
McLaughlin McLaughlin
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This method was also recently used independently by Bernd Fischer and Thompson and by Robert
Griess to discover a possible new simple group. This object, called the “Monster” M, is not defined in
terms of generators and relations. In fact, it has not been defined at all! What Fischer, Thompson and
Griess did was to assume that there exists a finite simple group M that satisfies certain hypotheses.
They showed, under this assumption, that M would be in fact a new simple group (i.e., not isomorphic
to any existing simple group). They also obtained a great deal of other information about M, such as
its order, properties of certain subgroups, and a portion of its character table. Thompson has
computed the order of M to be

808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000
= 2%3%5°7°11°13°17-19-23-29-31-41-59-71

(hence the name). If there is a simple group satisfying the stipulated hypothesis we should be able to
deduce what it must look like and once we know what it looks like, we should be able to define it. For
the Monster M this last step has not yet been accomplished.

A certain section of M (i.e., a group of the form H/K where H and K are subgroups of M and K
is normal in H), the “Baby Monster” B, is also a possible new simple group. Fischer has computed the
order of B to be 4,154,781,481,226,426,191,177,580,544,000,000 = 2*3*5°7°11-13-17-19-23-41-47. Of
course, neither of the groups M or B has yet been shown to exist.

In addition to the role the centralizers of involutions play in the discovery of new simple groups,
these subgroups are important for another reason. There is presently underway a systematic attempt
to use the centralizers of involutions as a means for classifying all the known finite simple groups. This
program began in 1954 with Brauer’s characterization of PSL(3,q), ¢ odd, and is now almost
complete. According to Gorenstein [47, p. 21], “Probably more individuals have been involved in this
effort than in any other single area of simple group theory.” We refer the reader to section 4.4 of [36]
for a survey of results of this type.

14, Thompson’s N-paper

Most simple groups contain other simple groups as subgroups. For example, A;CA,C A;....On
the other hand, a minimal simple group is one, all of whose proper subgroups are solvable. It follows
then that every simple group has a minimal simple group as a section. Minimal simple groups are
therefore basic and the complete determination of all such groups would clearly be of great value. In
the early 1960’s Thompson set out to do just this. Such an endeavor was a natural successor to the Odd
Order Theorem since the minimal counterexample G in that proof was a minimal simple group.
Actually, Thompson decided to tackle a more general classification problem. The normalizer of a
nonidentity solvable subgroup of a group G is called a local subgroup of G and an N-group is one in
which all local subgroups are solvable. Evidently, every minimal simple group is also an N-group.

As early as 1963, Thompson had concluded that with only finitely many exceptions the simple
N-groups were PSL(2, q) (¢ > 3) and the Suzuki groups. The complete classification of all nonsolva-
ble N-groups however, did not come until several years later. The 407 page proof (!!) [75] of this
remarkable theorem is spread out over six journal issues during the seven year period 1968-1974.
Describing his approach, Thompson writes [75, p. 383]:

In a broad way, this paper may be thought of as a successful transformation of the theory
of solvable groups to the theory of simple groups. By this is meant that a substantial structure
is constructed which makes it possible to exploit properties of solvable groups to obtain
delicate information about the structure and embedding of many solvable subgroups of the
simple group under consideration. In this way, routine results about solvable groups acquire
great power.

(An essay which outlines the organization of the proof and discusses some of the arguments used is
given in [46, pp. 473-480].)
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... Listed in Order of Discovery

Date and Order

Discoverer Type: Name Group Notation p is a prime, g =p"

1969 sporadic Suz 448,345,497,600 = 2'*-37-5%.7-11-13

Suzuki Suzuki

1969 sporadic HHM 4,030,387,200 = 2'°-3*.5%.7*.17

Held-Higman- Held-Higman-McKay

McKay

1969 sporadic Co, 4,157,776,806,543,360,000 =

Conway- Conway’s .1 group 2%.3%.5%7%.11-13-23

Thompson

1969 sporadic Co, 42,305,421,312,000 =

Conway- Conway’s .2 group 2%.3%.5%.7-11-23

Thompson

1969 sporadic Co, 495,766,656,000 = 2'°-37-

Conway- Conway’s .3 group 5%7-11-23

Thompson

1969 sporadic Fi,, 64,561,751,654,400 =

Fischer Fischer 22 2'7.3%.5%.7-11-13

1969 sporadic Fi; 4,089,460,473,293,004,800 =

Fischer Fischer 23 218.312.52.7-11-13-17-23

1969 sporadic Fi,, 1,255,205,709,190,661,721,292,

Fischer Fischer 24 800 = 2*'-3'%.52.7.11-13-17-2329

1971 sporadic LyS 51,765,179,004,000,000 =

Lyons-Sims Lyons-Sims 2%.37-5%7-11-31:37-67

1972 sporadic Rud 145,926,144,000 =

Rudvalis- Rudvalis 21.3%.5*7-13-29

Conway-Wales

1973 sporadic O’'N 460,815,505,920 =

O’Nan-Sims O’Nan 2°-3*-5-7*11-19-31

1974 sporadic M or F, (possible new 808,017,424,794,512,875,886,

Fischer Monster simple group) 459,904,961,710,757,005,754,368,
000,000,000 = 2*¢-3%.5%-7%.11*
13%17:19-23-29-31-41-47-59-71

1974 sporadic B or F; (possible new 4,154,781,481,226,426,191,

Fischer Baby Monster simple group) 177,580,544,000,000 =
24.3%.5%7%11-13-
17-19-23-41-47

1974 sporadic F;or E 90,745,943,887,872,000 =

Fischer- Fischer 3 or Thompson 2'%.3.5%.7%.13-19-31

Smith- group

Thompson

1974 sporadic Fsor F 273,030,912,000;000 =

Fischer- Fischer 5 or 24.3%5%7-11-19

Smith Harada group

1975 sporadic J. (possible new simple 86,775,571,046,077,562,880 =

Janko Janko 4 group) 2%.3%.5.7-11°-23-29-31:37-43
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This result has a number of important corollaries, the most important of which is a classification of
all minimal simple groups. A few consequences of this corollary are mentioned in the next two
sections. For his many profound contributions to simple group theory, Thompson was awarded the
Fields Medal — the mathematical equivalent of the Nobel Prize — by the International Congress of
Mathematicians in 1970.

15. The p“q®r® problem

One of the corollaries of Thompson’s result classifying the minimal simple groups seems to have
put the solution of a very difficult, well-known problem within reach. This problem concerns the
natural generalization of Burnside’s p°q® theorem to three primes. Since there are eight known
simple groups which have orders divisible by exactly three distinct primes the logical extension of
Burnside’s result would be the complete determination of all simple groups with orders of the form
p°q°re. The first steps in this direction were taken by Burnside, Frobenius and E. Maillet. For
example, Burnside [14] showed that there is no simple group whose order has the form pq°r where
p < g < r. Fifty years later Brauer and Hsio Tuan [12] used character theory to show that except for
the groups PSL(2,5) and PSL(2,7), the restriction “p < g < r’”’ was unnecessary. In 1962 and again in
1968 Brauer [8, 9] returned to this problem and determined all simple groups whose orders have the
form p°q°r where a =1 or 2 or the form 2°3%5.

In spite of the fact that Brauer and his predecessors had solved the ‘“‘three-prime problem” in
numerous special cases, the complete solution was far from sight until Thompson proved his result.
‘Specifically, he proved that a simple group whose order is divisible by exactly three distinct primes
must have one of PSL(2,4), PSL(2,7), PSL(2,8), PSL(2,17) or PSL(3,3) as a section. From this it
follows that such a group must have order of the form 2°3°p< where p is 5, 7, 13 or 17. Then, since
character theory is a natural tool for analyzing groups whose orders have a prime to the first power
only, David Wales [76] used it in conjunction with the N-paper to determine all simple groups (8 of
them) whose orders have the form 2°3°p. Finally, Kenneth Klinger and Geoffrey Mason are presently
in the midst of showing (they hope) that there are no simple groups with orders of the form 2°3%p®
with ¢ > 1. Of course, the completion of this work will finish the p°q°r® problem.

16. The range problem to 1,000,000

At the suggestion of Brauer, Sister Michaels, in her 1963 Ph.D. dissertation [62], showed that there
was no known simple group in the range 6232 to 20,000. Her work was superseded during the late 60’s
and early 70’s when the range problem was taken up by M. Hall [49, 50]. Using a wide assortment of
methods from elementary to advanced as well as a computer he succeeded in eliminating all but 21 of
the first 1,000,000 integers as possible orders for new simple groups. For the integers not eliminated by
elementary considerations, the theory of modular characters and Thompson’s result on minimal
simple groups played an important role. The character theory yields integer equations which certain
parameters of the group must satisfy and-a computer was used to make the verifications. Every simple
group must have a section which is a minimal simple group so the order of any simple group is divisible
by the order of a minimal simple group.

Hall was able to show that from among Thompson’s list of minimal simple groups only PSL(2,5),
PSL(2,7), PSL(2,8), PSL(2,13), PSL(2,17), PSL(3,3), PSL(2,23) and PSL(2,27) could occur as a
section of an unknown simple group of order less than 1,000,000. From a result of Gorenstein it then
follows that such a group has order divisible by 840 or 2184. Eventually the list was pared down to
1146 integers which required individual consideration. The first paper [49] eliminates all but about 100
of these and the second paper [50] reduces the list to 21.

Then Paul Fong [39 classified all simple groups whose Sylow 2-subgroups have order at most 2°
and this reduced Hall’s list to 13 integers as possible orders for new simple groups of order less than
1,000,000. Finally, the range problem to 1,000,000 was recently finished when two students of Held,
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Bert Beisiegel and Volker Stingl [3], eliminated the remaining integers on Hall’s list by extending
Fong’s work as far as the case 2.

In conclusion we mention that even though the range problem is not the central one in simple
group theory, this achievement is a dramatic illustration of how far the theory has progressed in the 84
years since Holder determined the simple groups of order up to 200.

The author wishes to thank Professor Roger D. Coleman, Professor Warren J. Wong, and the editors for
suggesting numerous changes in the manuscript. I am also grateful to Professor Robert L. Griess, Jr., for sending
me information about the sporadic simple groups and some references.
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