1. Let \(A = \begin{pmatrix} 4 & 4 & 4 & 4 & 4 \\ 4 & 4 & 3 & 3 & 2 \\ 3 & 3 & 1 & 1 & -1 \end{pmatrix} \).

(a) Find the \(LU \) factorization of \(A \).

(b) Write \(L \) as a product of elementary matrices.

(c) Find all solutions to \(Ax = 0 \). Put your answer in vector parametric form.

(d) Use the \(LU \) decomposition for \(A \) to solve the system \(Ax = \begin{pmatrix} -4 \\ 2 \\ 9 \end{pmatrix} \).

(e) Find all \(b \) for which \(Ax = b \) is consistent. Put your answer in vector parametric form. That is, write your answer in the form \(b = xv_1 + yv_2 \) for some \(v_1 \) and \(v_2 \).

2. Let \(A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 4 & 9 \\ 1 & 8 & 27 \end{pmatrix} \).

(a) Find \(A^{-1} \) by row reduction.

(b) Find all cofactors of \(A \) and calculate the determinant of \(A \) all 6 ways by cofactors: across all rows, down all columns.

(c) Find the \(LU \) factorization of \(A \).

3. Suppose \(M = \begin{pmatrix} 0 & A \\ A & B \end{pmatrix} \) is a block matrix, and \(A \) and \(B \) are invertible.

(a) Show that \(M \) is invertible and \(M^{-1} = \begin{pmatrix} -A^{-1}BA^{-1} & A^{-1} \\ A^{-1} & 0 \end{pmatrix} \).

(b) If \(M \) is invertible, do \(A \) and \(B \) have to be invertible as well? Why or why not?

(c) Find a formula for the determinant of \(M \) in terms of the determinants of \(A \) and \(B \).

4. Find the determinants of each of the following matrices.

\[
\begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 3 \\ 1 & 3 & 5 \end{pmatrix}, \quad \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & 3 & 3 \\ 1 & 3 & 5 & 5 \\ 1 & 3 & 5 & 7 \end{pmatrix}.
\]

Can you find the general pattern? Can you find the general \(L \) and \(U \)?
5. In this problem we prove that \(\det(A^t) = \det(A) \). That is, a matrix and its transpose have the same determinant.

(a) Prove that the transpose of an elementary matrix is still an elementary matrix.

(b) Prove that if \(E \) is an elementary matrix, then \(\det(E^t) = \det(E) \).

(c) Use parts (a) and (b) to prove that for any square matrix \(A \), \(\det(A^t) = \det(A) \).

 Hint: Use the fact that \((MN)^t = N^tM^t \) and the fact that the determinant of a product is the product of the determinants.

(d) Unrelated but still interesting, if \(A \) is a square matrix and \(E \) is an elementary matrix, then we know \(EA \) performs \(E \)'s row operation on \(A \). What does the matrix \(AE \) look like?

6. Let \(A \) and \(B \) be \(n \times n \) matrices.

(a) If \(A \) is not invertible, prove that \(AB \) is not invertible.

(b) If \(B \) is not invertible, prove that \(AB \) is not invertible.

Can you prove (a) and (b) in two different ways? One way should use determinants, the other should use problem 5 above.

7. Solve each of the following problems using linear algebra, that is, by solving systems of equations.

(a) Find the equation of the line \(ax + by + c = 0 \) passing through the points \((1, 2)\) and \((5, 8)\).

(b) Find the equation of a quadratic in the form \(x^2 = a + bx + cy \) passing through the points \((-1, -1), (1, 1), (3, 5)\).

(c) Show that there is no quadratic of the form \(x^2 = a + bx + cy \) passing the points \((-1, -1), (1, 1), (3, 3)\).

(d) Find a formula for the sum \(f(n) = 1^2 + 3^2 + 5^2 + \cdots + (2n - 1)^2 \).